Selection of Tomato (Solanum lycopersicum) Hybrids Resistant to Fol, TYLCV, and TSWV with Early Maturity and Good Fruit Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Resistant Genes Experiment
2.2. Harvest Quality Analysis
2.2.1. External and Internal Colors
2.2.2. pH and Titratable Acidity
2.2.3. Total Soluble Solids
2.2.4. Firmness
2.3. Statistical Analysis
3. Results
3.1. Genes Detections
3.2. Analysis of Internal and External Color
3.3. Analysis of Total Soluble Solids, Firmness, pH and Titratable Acidity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jenkins, J.A. The origin of the cultivated tomato. Econ. Bot. 1948, 2, 379–392. [Google Scholar] [CrossRef]
- Blancard, D.; Laterrot, H.; Marchoux, G.; Candresse, T. Enfermedades del Tomate: Identificar, Conocer, Controlar; Mundi-Prensa México S.A de C.V.: Mexico City, México, 2011. [Google Scholar]
- Peralta, I.; Spooner, D.M.; Knapp, S. Taxonomy of wild tomatoes and their relatives (Solanum sections lycopersicoides, Juglandilolia, Lycopersicon; Solanaceae). Syst. Bot. Monogr. 2008, 84, 1–186. [Google Scholar]
- Tanksley, S.D.; McCouch, S.R. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 1997, 277, 1063–1066. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, H. Directorio de Colecciones de Germoplasma en América Latina y el Caribe, 1st ed.; Colectar las razas nativas más antiguas, con el fin de conservar el patrimonio nacional biocultural; International Plant Genetic Resources Institute (IPGRI): Rome, Italy, 2000. [Google Scholar]
- Engels, J.M.; Visser, L. Guía para el Manejo Eficaz de un Banco de Germoplasma; Manuales para Bancos de Germoplasma No. 6. (eds); Bioversity International: Rome, Italy, 2007. [Google Scholar]
- SIAP. 2022. Available online: https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2022/Panorama-Agroalimentario-2022 (accessed on 10 May 2023).
- Detweiler, A.J.; Noordijk, H.; Bell, N.N.C.; Bubl, C.E. 2014. Available online: https://extension.oregonstate.edu/sites/default/files/documents/ec1333-s.pdf (accessed on 10 May 2023).
- United States Department of Agriculture. Plants Database. 2023. Available online: http://plants.usda.gov (accessed on 5 August 2024).
- FAOSTAT; FAO. 2023. Available online: http://www.fao.org/faostat/es/#data/QC/visualize (accessed on 5 August 2024).
- Ascencio-Álvarez, A.; López-Benítez, A.; Borrego-Escalante, F.; Rodríguez-Herrera, S.; Flores-Olivas, A.; Jiménez-Díaz, F.; Gámez-Vázquez, A. Marchitez Vascular del Tomate: I. Presencia de Razas de Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyder y Hansen en Culiacán, Sinaloa, México. Rev. Mex. Fitopatol. 2008, 26, 114–120. [Google Scholar]
- Al Abdallat, A.M.; Al Debei, H.S.; Asmar, H.; Misbeh, S.; Quraan, A.; Kvarnheden, A. An efficient in vitro-inoculation method for Tomato yellow leaf curl virus. Virol. J. 2010, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Lugo-Melchor, O.Y.; Guzmán-Uriarte, R.; García-Estrada, R.S.; León-Félix, J.; Josefina, L.F. Geminivirus Transmitidos por Mosca Blanca (Bemisia tabaci) en Tomate, en el Valle Agrícola de Culiacán, Sinaloa. Rev. Mex. Fitopatol. 2011, 29, 109–118. [Google Scholar]
- Francis, F.J. Quality as influenced by color. Food Qual. Prefer. 1995, 6, 149–155. [Google Scholar] [CrossRef]
- Herregods, M. Postharvest market quality preferences for fruit and vegetables. In Proceedings of the XXV International Horticultural Congress, Part 8: Quality of Horticultural Products 518, Brussels, Belgium, 2–7 August 1998; pp. 207–212. [Google Scholar]
- A.O.A.C. Association of Official Analytical Chemists: Official Methods of Analysis, 16th ed.; AOAC: Washington, DC, USA, 1998. [Google Scholar]
- Lafrance, R.; Valdez-Torres, J.B.; Villicaña, C.; García-Estrada, R.S.; Esparza-Araiza, M.J.; León-Félix, J. Response Surface Methodology for Optimization of Multiplex-PCR Protocols for Detection of TYLCV, TSWV and Fol Molecular Markers: Analytical Performance Evaluation. Genes 2023, 14, 337. [Google Scholar] [CrossRef]
- Ahumada, O.; Villalobos, J.R. Operational model for planning the harvest and distribution of perishable agricultural products. Int. J. Prod. Econ. 2011, 133, 677–687. [Google Scholar] [CrossRef]
- Pesaresi, P.; Mizzotti, C.; Colombo, M.; Masiero, S. Genetic regulation and structural changes during tomato fruit development and ripening. Front. Plant Sci. 2014, 5, 82777. [Google Scholar] [CrossRef] [PubMed]
- Liñero, O.; Cidad, M.; Arana, G.; Nguyen, C.; de Diego, A. The use of a standard digital camera as an inexpensive, portable, fast and non-destructive analytical tool to measure colour: Estimation of the ripening stage of tomatoes (Solanum lycopersicum) as a case study. Microchem. J. 2017, 134, 284–288. [Google Scholar] [CrossRef]
- Wills, R.; McGlasson, B.; Graham, D.; Joyce, D. Postharvest: An Introduction to the Physiology & Handling of Fruit, Vegetables & Ornamentals, 4th ed.; Cab International: Wallingford, UK, 1998. [Google Scholar]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Casierra-Posada, F.; Aguilar-Avendaño, Ó.E. Calidad en frutos de tomate (Solanum lycopersicum L.) cosechados en diferentes estados de madurez. Agron. Colomb. 2008, 26, 300–307. [Google Scholar]
- Cantwell, M.; Stoddard, S.; LeStrange, M.; Aegerter, B. Report to the California Tomato Comimision; Tomato variety trials: Postharvest evaluations for 2006. UCCE Fresh Market Tomato Variety 2006 Trial Postharvest Evaluation; UC Davis: Davis, CA, USA, 2007; 16p. [Google Scholar]
- Chamarro, L.J. Anatomía y fisiología de la planta. In El Cultivo del Tomatee; Nuez, F., Ed.; Mundi Prensa: Madrid, Spain, 1995; pp. 43–90. [Google Scholar]
- Davies, J.N.; Huobson, G.E. The constituents of tomato fruit-the influence of environment, nutrition and genotype. CRC Crit. Rev. Food Sci. Nutr. 1981, 15, 205–280. [Google Scholar] [CrossRef] [PubMed]
- Turhan, A.; Seniz, V. Estimation of certain chemical constituents of fruits of selected tomato genotypes grown in turkey. Afr. J. Agric. Res. 2009, 4, 1086–1092. [Google Scholar]
- MCS (Mexico Calidad Suprema) Tomato 2005. PC-020-2005 Pliego de Condiciones Para el Uso de la Marca Oficial México Calidad Suprema en Tomate. SAGARPA, BANCOMEX, SECRETARIA DE ECONOMIA. México D.f. 22p. Available online: http://intranet.dif.cdmx.gob.mx/transparencia/new/art_121/52/_anexos/pliegodecondicionesmanzana.pdf (accessed on 5 August 2024).
- USDA. United States Standards for Grades of Fresh Tomatoes. 1991. Available online: https://www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1%5D.pdf (accessed on 5 August 2024).
- García, E.; Barret, M.D. Evaluation of processing tomatoes from two consecutive growing seasons: Quality attributes, peelability and yield. J. Food Process. Preserv. 2006, 30, 20–26. [Google Scholar] [CrossRef]
- Batu, A. Determination of acceptable firmness and colour values of tomatoes. J. Food Eng. 2004, 61, 471–475. [Google Scholar] [CrossRef]
- Meza, N.; Méndez, J.M. Características del fruto de tomate de árbol (Cyphomandra betaceae [Cav.] Sendtn) basadas en la coloración del arilo, en la Zona Andina Venezolana. Rev. Científica UDO Agrícola 2009, 9, 289–294. [Google Scholar]
- Castellanos, J.Z. (Ed.) Manual de Producción de Tomate en Invernadero; Intagri, S.C.: Celaya, México, 2009; 458p. [Google Scholar]
- Martín-Hernández, S.; Ordaz-Chaparro, V.M.; Sánchez-García, P.; Beryl Colinas-Leon, M.T.; Borges-Gómez, L. Calidad de tomate (Solanum lycopersicum L.) producido en hidroponia con diferentes granulometrías de tezontle. Agrociencia 2012, 46, 243–254. [Google Scholar]
- Malundo TM, M.; Shewfelt, R.L.; Scott, J.W. Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Biol. Technol. 1995, 6, 103–110. [Google Scholar] [CrossRef]
Codes | Tomato Hybrids | Resistance/Susceptibility |
---|---|---|
T-101 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; TYLCV |
T-108 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; TYLCV |
T-142 | commercial | IR: Fol (1, 2, 3), TSWV; SC: TYLCV |
T-140 | commercial | IR: Fol (1) SC: Fol (2, 3), TYLCV, TSWV |
T-117 | non-commercial | IR: Fol (1, 2, 3); HR:TSWV; SC: TYLCV |
T-118 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; TYLCV |
T-128 | non-commercial | IR: Fol (1, 2, 3), TSWV; SC: TYLCV |
T-132 | non-commercial | IR: Fol (1, 2, 3), TSWV; SC: TYLCV |
T-58 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; HR: TYLCV |
T-49 | non-commercial | IR: Fol (1, 2, 3); HR:TSWV; SC: TYLCV |
T-59 | non-commercial | IR: Fol (1, 2, 3); HR:TSWV; SC: TYLCV |
T-63 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; IR: TYLCV |
T-57 | non-commercial | IR: Fol (1, 2, 3), TSWV; SC: TYLCV |
T-90 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; TYLCV |
T-91 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; TYLCV |
T-66 | non-commercial | IR: Fol (1, 2); SC: Fol (3), TSWV; TYLCV |
Source | DF | Seq SS | Contribution | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
External chromaticity | |||||||
Genes | 1 | 0.000631 | 1.10% | 0.000631 | 0.000631 | 0.93 | 0.364 |
Harvest dates | 2 | 0.04666 | 81.29% | 0.04666 | 0.02333 | 34.25 | 0 * |
Hybrids × Harvest dates | 18 | 0.004663 | 8.12% | 0.004663 | 0.000259 | 0.38 | 0.958 |
Error | 8 | 0.005449 | 9.49% | 0.005449 | 0.000681 | ||
Total | 29 | 0.057403 | 100.00% | ||||
External hue angle (h°) | |||||||
Genes | 1 | 4.001 | 1.90% | 4.001 | 4.001 | 0.22 | 0.653 |
Harvest dates | 2 | 12.125 | 5.77% | 12.125 | 6.062 | 0.33 | 0.728 |
Hybrids × Harvest dates | 18 | 46.916 | 22.32% | 46.916 | 2.606 | 0.14 | 1 |
Error | 8 | 147.117 | 70.00% | 147.117 | 18.39 | ||
Total | 29 | 210.159 | 100.00% | ||||
Internal chromaticity | |||||||
Genes | 1 | 4.001 | 1.90% | 4.001 | 4.001 | 0.22 | 0.653 |
Harvest dates | 2 | 12.125 | 5.77% | 12.125 | 6.062 | 0.33 | 0.728 |
Hybrids × Harvest dates | 18 | 46.916 | 22.32% | 46.916 | 2.606 | 0.14 | 1 |
Error | 8 | 147.117 | 70.00% | 147.117 | 18.39 | ||
Total | 29 | 210.159 | 100.00% | ||||
Internal hue angle (h°) | |||||||
Genes | 1 | 1.517 | 0.46% | 1.517 | 1.517 | 0.05 | 0.826 |
Harvest dates | 2 | 14.4 | 4.33% | 14.4 | 7.2 | 0.24 | 0.789 |
Hybrids × Harvest dates | 18 | 80.741 | 24.27% | 80.741 | 4.486 | 0.15 | 1 |
Error | 8 | 236.076 | 70.95% | 236.076 | 29.509 | ||
Total | 29 | 332.734 | 100.00% | ||||
Titratable Acidity (%) | |||||||
Genes | 1 | 0.000631 | 1.10% | 0.000631 | 0.000631 | 0.93 | 0.364 |
Harvest dates | 2 | 0.04666 | 81.29% | 0.04666 | 0.02333 | 34.25 | 0 * |
Hybrids × Harvest dates | 18 | 0.004663 | 8.12% | 0.004663 | 0.000259 | 0.38 | 0.958 |
Error | 8 | 0.005449 | 9.49% | 0.005449 | 0.000681 | ||
Total | 29 | 0.057403 | 100.00% | ||||
Total soluble solids (°Brix) | |||||||
Genes | 1 | 0.1673 | 0.90% | 0.1673 | 0.1673 | 0.17 | 0.693 |
Harvest dates | 2 | 4.0372 | 21.80% | 4.0372 | 2.0186 | 2.02 | 0.194 |
Hybrids × Harvest dates | 18 | 6.3411 | 34.23% | 6.3411 | 0.3523 | 0.35 | 0.968 |
Error | 8 | 7.9771 | 43.07% | 7.9771 | 0.9971 | ||
Total | 29 | 18.5227 | 100.00% | ||||
Firmness (N) | |||||||
Genes | 1 | 1.26 | 0.67% | 1.26 | 1.26 | 0.22 | 0.652 |
Harvest dates | 2 | 84.547 | 44.78% | 84.547 | 42.274 | 7.34 | 0.015 * |
Hybrids × Harvest dates | 18 | 56.951 | 30.16% | 56.951 | 3.164 | 0.55 | 0.861 |
Error | 8 | 46.052 | 24.39% | 46.052 | 5.756 | ||
Total | 29 | 188.811 | 100.00% | ||||
pH units | |||||||
Genes | 1 | 0.009538 | 1.42% | 0.009538 | 0.009538 | 0.7 | 0.426 |
Harvest dates | 2 | 0.462261 | 69.00% | 0.462261 | 0.23113 | 17.04 | 0.001 * |
Hybrids × Harvest dates | 18 | 0.089586 | 13.37% | 0.089586 | 0.004977 | 0.37 | 0.963 |
Error | 8 | 0.10851 | 16.20% | 0.10851 | 0.013564 | ||
Total | 29 | 0.669895 | 100.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lafrance, R.; Villicaña, C.; Valdéz-Torres, J.B.; García-Estrada, R.S.; Báez Sañudo, M.A.; Esparza-Araiza, M.J.; León-Félix, J. Selection of Tomato (Solanum lycopersicum) Hybrids Resistant to Fol, TYLCV, and TSWV with Early Maturity and Good Fruit Quality. Horticulturae 2024, 10, 839. https://doi.org/10.3390/horticulturae10080839
Lafrance R, Villicaña C, Valdéz-Torres JB, García-Estrada RS, Báez Sañudo MA, Esparza-Araiza MJ, León-Félix J. Selection of Tomato (Solanum lycopersicum) Hybrids Resistant to Fol, TYLCV, and TSWV with Early Maturity and Good Fruit Quality. Horticulturae. 2024; 10(8):839. https://doi.org/10.3390/horticulturae10080839
Chicago/Turabian StyleLafrance, Richecarde, Claudia Villicaña, José Benigno Valdéz-Torres, Raymundo Saúl García-Estrada, Manuel Alonzo Báez Sañudo, Mayra Janeth Esparza-Araiza, and Josefina León-Félix. 2024. "Selection of Tomato (Solanum lycopersicum) Hybrids Resistant to Fol, TYLCV, and TSWV with Early Maturity and Good Fruit Quality" Horticulturae 10, no. 8: 839. https://doi.org/10.3390/horticulturae10080839
APA StyleLafrance, R., Villicaña, C., Valdéz-Torres, J. B., García-Estrada, R. S., Báez Sañudo, M. A., Esparza-Araiza, M. J., & León-Félix, J. (2024). Selection of Tomato (Solanum lycopersicum) Hybrids Resistant to Fol, TYLCV, and TSWV with Early Maturity and Good Fruit Quality. Horticulturae, 10(8), 839. https://doi.org/10.3390/horticulturae10080839