Salt–Alkali Tolerance Evaluation for Bermudagrass and Critical Indicator Screening at the Seedling Stage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Growth Conditions
2.2. Salt and Alkali Stress Treatment
2.3. Determination of Net Photosynthetic Rate
2.4. Determination of Chlorophyll Content
2.5. Relative Moisture Content Determination
2.6. Determination of Relative Electrolyte Conductivity (REL)
2.7. Determination of Malondialdehyde Content
2.8. Determination of Proline Content
2.9. Determination of Soluble Protein Content
2.10. Data Statistical Analysis
3. Results
3.1. Physiological Responses of Bermudagrass under Saline–Alkali Stress
3.2. Analysis of Eight Indicators of Salt–Alkali Tolerance Coefficient of Bermudagrass
3.3. Pearson Correlation Analysis of Salt–Alkali Tolerance of Bermudagrass
3.4. Comprehensive Evaluation of Salt–Alkali Tolerance of Bermudagrass
3.5. Cluster Analysis of Salt–Alkali Tolerance of Bermudagrass
3.6. Stepwise Regression Analysis to Screen Key Indicators for Salt–Alkali Tolerance Evaluation
4. Discussion
4.1. Key Indicators for Evaluating Salt–Alkali Tolerance of Bermudagrass Genotypes
4.2. Establishment of a Salt–Alkali Tolerance Evaluation Model for Bermudagrass Genotypes
4.3. Differences in Salt–Alkali Tolerance among Bermudagrass Genotypes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.L.; Ma, M.S.; Sun, Y.M.; Lu, P.; Shi, H.F.; Guo, Z.F.; Zhu, H.F. Comparative physiological and transcriptome profiles uncover salt tolerance mechanisms in alfalfa. Front. Plant Sci. 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Qi, A.G.; Wang, B.Q.; Zhang, X.J.; Dong, Q.D.; Liu, J.X. Integrated analyses of transcriptome and chlorophyll fluorescence characteristics reveal the mechanism underlying saline-alkali stress tolerance in Kosteletzkya pentacarpos. Front. Plant Sci. 2022, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.G.; Jin, Y.L.; Guo, W.; Xue, Y.W.; Yu, L.H. Metabolic and physiological changes in the roots of two oat cultivars in response to complex saline-alkali stress. Front. Plant Sci. 2022, 13, 18. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.J.; Wei, M.Y.; Wu, G.H.; Ren, A.Z. Epichloe endophytes improved Leymus chinensis tolerance to both neutral and alkali salt stresses. Front. Plant Sci. 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Ben Abdallah, H.; Mai, H.J.; Alvarez-Fernandez, A.; Abadia, J.; Bauer, P. Natural variation reveals contrasting abilities to cope with alkaline and saline soil among different Medicago truncatula genotypes. Plant Soil 2017, 418, 45–60. [Google Scholar] [CrossRef]
- Bai, J.H.; Yan, W.K.; Wang, Y.Q.; Yin, Q.; Liu, J.H.; Wight, C.; Ma, B.L. Screening oat genotypes for tolerance to salinity and alkalinity. Front. Plant Sci. 2018, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Takano, T.; Liu, S.K. Screening and evaluation of saline-alkaline tolerant germplasm of rice (Oryza sativa L.) in soda saline-alkali soil. Agronomy 2018, 8, 205. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Zhang, Z.H.; Huang, J.F.; Feng, L.L.; Cao, L.Y.; Li, X.; Liu, T.M.; Zong, Q.J.; Wang, H.L. Salt-promoted growth of monolayer tungsten disulfide on hexagonal boron nitride using all chemical vapor deposition approach. Appl. Surf. Sci. 2022, 605, 11. [Google Scholar] [CrossRef]
- Yang, H.L.; Yu, X.H.; Wang, C.F.; Yang, Y.; Wang, X.H.; Yang, Q.H. Evaluation of the cold tolerance of Saccharum spontaneum L. clones with different ploidy levels on the basis of morphological and physiological indices. Plant Biol. 2020, 22, 623–633. [Google Scholar] [CrossRef]
- Katuwal, K.B.; Jespersen, D.; Bhattarai, U.; Chandra, A.; Kenworthy, K.E.; Milla-Lewis, S.R.; Schwartz, B.M.; Wu, Y.Q.; Raymer, P. Multilocational screening identifies new drought-tolerant, warm-season turfgrasses. Crop Sci. 2022, 62, 1614–1630. [Google Scholar] [CrossRef]
- Ye, T.T.; Wang, Y.P.; Feng, Y.Q.; Chan, Z.L. Physiological and metabolomic responses of bermudagrass (Cynodon dactylon) to alkali stress. Physiol. Plant. 2021, 171, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.D.; He, Y.Z.; Wang, H.H.; Zhu, Y.Z. Leaf physiological responses of three psammophytes to combined effects of warming and precipitation reduction in horqin sandy land, northeast China. Front. Plant Sci. 2022, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Mu, J.; Fu, Y.; Liu, B. SiFBA5, a cold-responsive factor from Saussurea involucrata promotes cold resilience and biomass increase in transgenic tomato plants under cold stress. BMC Plant Biol. 2021, 21, 75. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Wang, Y.Q.; Geng, G.D.; Yang, R.; Yang, Z.F.; Yang, C.M.; Xu, R.H.; Zhang, Q.Q.; Kakar, K.U.; Li, Z.H.; et al. Comparative analysis of physiological, enzymatic, and transcriptomic responses revealed mechanisms of salt tolerance and recovery in Tritipyrum. Front. Plant Sci. 2022, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xue, H.; Zhang, F. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression. Plant Biotechnol. J. 2021, 19, 311–323. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Jia, T.; Tang, T.; Anwar, M.; Ali, A.; Hassan, M.J.; Zhang, Y.Z.; Tang, Q.L.; Peng, Y. A heat shock transcription factor TRHSFB2A of white clover negatively regulates drought, heat and salt stress tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2022, 23, 12769. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.G.; Zhang, Y.Z.; Wang, N.; He, H.J.; Tan, Q.P.; Wen, B.B.; Zhang, R.; Sun, M.Y.; Zhao, X.H.; Fu, X.L.; et al. Prunus persica terpene synthase PPTPS1 interacts with PPABI5 to enhance salt resistance in transgenic tomatoes. Front. Plant Sci. 2022, 13, 12. [Google Scholar] [CrossRef]
- Lu, Z.K.; Li, J.Y.; Yuan, C.; Xi, B.; Yang, B.H.; Meng, X.Y.; Guo, T.T.; Yue, Y.J.; Gao, Y.Q.; Liu, J.B.; et al. Evaluation of mutton quality characteristics of dongxiang tribute sheep based on membership function and gas chromatography and ion mobility spectrometry. Front. Nutr. 2022, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Ali, Q.; Ayaz, M.; Mu, G.Y.; Hussain, A.; Yuanyuan, Q.; Yu, C.J.; Xu, Y.J.; Manghwar, H.; Gu, Q.; Wu, H.J.; et al. Revealing plant growth-promoting mechanisms of Bacillus strains in elevating rice growth and its interaction with salt stress. Front. Plant Sci. 2022, 13, 1–17. [Google Scholar] [CrossRef]
- Ashraf, M.; Al-Qurainy, F.; Ahmad, M.S.A.; Iqbal, M.Y.; Mehmood, A.; Riffat, A.; Alvi, A.K. Morpho-physiological diversity of barley (Hordeum vulgare L.) germplasm for heat tolerance. Turk. J. Bot. 2022, 46, 37. [Google Scholar]
- Zhao, X.; Jia, T.; Hu, X.Y. Hcar is a limitation factor for chlorophyll cycle and chlorophyll b degradation in chlorophyll-b-overproducing plants. Biomolecules 2020, 10, 1639. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Bai, X.; Jiang, C.F.; Li, Z. Phosphoproteomic analysis of two contrasting maize inbred lines provides insights into the mechanism of salt-stress tolerance. Int. J. Mol. Sci. 2019, 20, 1886. [Google Scholar] [CrossRef] [PubMed]
- Sikder, R.K.; Wang, X.R.; Jin, D.S.; Zhang, H.H.; Gui, H.P.; Dong, Q.; Pang, N.C.; Zhang, X.L.; Song, M.Z. Screening and evaluation of reliable traits of upland cotton (Gossypium hirsutum L.) genotypes for salt tolerance at the seedling growth stage. J. Cotton Res. 2020, 3, 13. [Google Scholar] [CrossRef]
- Kojonna, T.; Suttiyut, T.; Khunpolwattana, N.; Pongpanich, M.; Suriya-Arunroj, D.; Comai, L.; Buaboocha, T.; Chadchawan, S. Identification of a negative regulator for salt tolerance at seedling stage via a genome-wide association study of Thai rice populations. Int. J. Mol. Sci. 2022, 23, 1842. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, J.R.; Wang, C.F.; Li, K.L.; Zhang, X.W.; Yang, Z.; Li, M.T.; Wang, B.S. An effective screening method and a reliable screening trait for salt tolerance of (Brassica napus L) at the germination stage. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, M.F.; Ma, H.Y.; Jiang, L.; Zhao, Z.Y.; Ma, J.B.; Wang, L. Differential responses of dimorphic seeds and seedlings to abiotic stresses in the halophyte Suaeda salsa. Front. Plant Sci. 2021, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Al-Ashkar, I.; Sallam, M.; Ghazy, A.; Ibrahim, A.; Alotaibi, M.; Ullah, N.; Al-Doss, A. Agro-physiological indices and multidimensional analyses for detecting heat tolerance in wheat genotypes. Agronomy 2023, 13, 154. [Google Scholar] [CrossRef]
Code | Original Site | Longitude | Latitude | Elevation (m) | Precipitation (mm) | Mean Temperature (°C) |
---|---|---|---|---|---|---|
C1 | Yining City | 81°36′13″ E | 43°55′45″ N | 639 | 319.8 | 8.9 |
C4 | Yining City | 81°38′32″ E | 43°57′24″ N | 671 | 319.8 | 8.9 |
C6 | Yining City | 81°17′42″ E | 43°56′16″ N | 620 | 319.8 | 8.9 |
C7 | Cha County | 81°23′47″ E | 43°56′34″ N | 594 | 314.7 | 9 |
C8 | Zepu County | 77°16′21″ E | 38°03′56″ N | 1280 | 66.7 | 11.3 |
C12 | Yuepuhu County | 77°07′28″ E | 39°05′37″ N | 1180 | 74.7 | 11.7 |
C14 | Turpan County | – | – | – | 15.3 | 14.6 |
C15 | Kashghar City | 76°00′39″ E | 39°26′14″ N | 1260 | 67.4 | 12 |
C19 | Yingjisha County | 76°08′01″ E | 38°56′47″ N | 1280 | 86.5 | 8.9 |
C20 | Kashghar City | 75°56.520′ E | 39°25.899′ N | 1280 | 67.4 | 12 |
C23 | Atux County | 76°38′44″ E | 39°45′12″ N | 1200 | 88.5 | 13.1 |
C26 | Hutubi City | – | – | – | ||
C30 | Yining City | 81°17′38″ E | 43°57′65″ N | – | 54.2 | 9.5 |
C35 | Cha County | 81°14′93″ E | 43°52′60″ N | 597 | ||
C36 | Cha County | 81°12′29″ E | 43°51′05″ N | 590 | 314.7 | 9 |
C37 | Cha County | 81°10′59″ E | 43°47′23″ N | 635 | 314.7 | 9 |
C39 | Huocheng County | 80°56′17″ E | 44°05′55″ N | 707 | 321.2 | 6.8 |
C40 | Huocheng County | 80°46′50″ E | 44°02′33″ N | 588 | 321.2 | 6.8 |
C41 | Huocheng County | 80°44′15″ E | 44°01′01″ N | 588 | 321.2 | 6.8 |
C44 | Barkol County | 93°28′57″ E | 42°41′36″ N | −139 | 219.8 | 2 |
C49 | Turpan County | 89°32′05″ E | 42°54′44″ N | – | 15.3 | 14.6 |
C50 | Hami City | 93°28′06″ E | 42°41′04″ N | 627 | – | – |
C53 | Turpan County | – | – | – | – | – |
C65 | Xinjiang Agricultural University | – | – | 850 | 230 | 6.5 |
C109 | Korla City | – | – | – | 55.4 | 11.8 |
C111 | Yining City | – | – | – | – | – |
C112 | Zepu County | – | – | – | 66.7 | 11.3 |
C119 | Yining City | – | – | – | 319.8 | 8.9 |
C120 | Yining City | – | – | – | 319.8 | 8.9 |
C133 | Kashghar City | – | – | – | 67.4 | 12 |
C135 | Toksun County | – | – | – | 54.2 | 9.5 |
C136 | Hami City | – | – | – | – | – |
C137 | Markit County | – | – | – | – | – |
C142 | Yining City | – | – | – | – | – |
C143 | Zepu County | – | – | – | 66.7 | 11.3 |
C145 | Manas County | – | – | – | 225.2 | 7 |
C146 | Xinjiang Agricultural University | – | – | – | – | – |
C147 | Xinjiang Agricultural University | – | – | – | – | – |
EC (ds/m) | pH | Total Phosphorus (g/kg) | Available Nitrogen (mg/kg) | Organic Carbon (g/kg) |
---|---|---|---|---|
3780 | 7.07 | 0.51 | 63.18 | 104.41 |
Code | SACPn | SACChla | SACChlb | SACRWC | SACREL | SACMDA | SACPro | SACProtein |
---|---|---|---|---|---|---|---|---|
C1 | 0.88 gh | 0.73 p | 0.55 r | 0.92 e | 1.84 m–p | 0.32 f | 4.55 m | 1.06 o |
C4 | 0.81 hij | 0.98 fg | 1.03 h | 1.00 fg | 2.14 j–m | 2.68 ab | 4.38 n | 1.02 no |
C6 | 0.92 g | 0.98 fg | 0.88 j | 0.94 ghi | 1.91 m–p | 0.86 f | 3.40 s | 0.93 mno |
C7 | 0.67 l | 1.05 e | 1.37 e | 0.79 j | 2.80 ef | 1.00 b–f | 1.83 x | 0.91 l–o |
C8 | 0.58 mn | 1.16 d | 2.02 d | 0.89 i | 1.99 l–o | 0.58 f | 3.95 p | 0.92 k–n |
C12 | 0.66 l | 0.92 i–l | 0.76 m | 0.42 o | 1.99 l–o | 0.84 c–f | 3.62 r | 1.14 k–n |
C14 | 0.68 kl | 1.24 c | 2.79 b | 0.76 jk | 2.54 f–i | 0.74 ef | 7.86 b | 1.02 k–n |
C15 | 0.76 ijk | 0.89 lm | 0.55 r | 0.88 e | 2.50 e–h | 1.06 c–f | 1.48 Aa | 1.05 j–n |
C19 | 0.99 f | 0.61 r | 0.24 y | 0.75 jk | 3.91 b | 0.74 f | 5.14 j | 1.17 i–n |
C20 | 0.52 no | 0.79 o | 0.37 x | 0.79 j | 2.97 de | 1.13 b–f | 4.61 m | 1.05 h–m |
C23 | 0.84 hi | 1.08 e | 1.22 f | 0.42 o | 1.64 pq | 0.62 f | 4.84 k | 1.06 h–m |
C26 | 1.16 e | 0.94 hij | 0.63 p | 0.42 o | 3.19 cd | 2.05 a | 1.65 yz | 0.92 h–m |
C30 | 0.42 pq | 0.84 n | 0.44 uv | 0.74 d | 2.74 ef | 1.52 a–e | 3.11 t | 1.05 g–m |
C35 | 0.86 gh | 0.90 klm | 0.59 q | 0.59 lmn | 2.69 efg | 2.06 b–f | 3.89 q | 1.03 g–l |
C36 | 0.52 no | 0.99 f | 1.02 h | 0.82 j | 2.28 i–l | 0.39 f | 6.23 f | 1.05 f–k |
C37 | 0.64 lm | 0.98 fg | 0.90 j | 0.62 lm | 2.04 mn | 1.32 b–f | 7.41 c | 1.01 f–k |
C39 | 0.64 lm | 0.89 lm | 0.52 st | 0.94 ghi | 1.40 q | 0.37 f | 4.60 lm | 1.13 f–k |
C40 | 0.86 b | 0.57 q | 0.46 w | 0.57 n | 2.03 de | 0.72 def | 2.04 v | 1.00 f–k |
C41 | 0.66 lm | 0.99 f | 0.97 i | 0.71 k | 2.14 j–m | 0.65 f | 5.21 ij | 1.04 f–k |
C44 | 1.79 gh | 0.67 s | 0.40 u | 0.54 lmn | 2.90 lmn | 0.73 f | 2.54 w | 0.92 e–k |
C49 | 0.27 st | 0.95 ghi | 0.85 k | 0.58 a | 2.12 j–m | 0.66 f | 1.69 y | 1.21 e–k |
C50 | 1.45 c | 0.77 a | 0.88 a | 0.96 fgh | 2.37 h–k | 3.11 b–f | 5.40 h | 1.10 e–k |
C53 | 0.72 kl | 0.88 m | 0.69 o | 0.88 i | 1.46 q | 0.33 f | 2.71 u | 1.29 d–j |
C65 | 2.45 a | 0.90 lm | 0.52 st | 0.79 j | 2.92 de | 1.97 abc | 5.68 g | 1.13 d–j |
C109 | 0.34 rs | 0.84 n | 0.41 w | 0.57 mn | 3.40 c | 1.77 b–f | 7.24 d | 1.07 c–i |
C111 | 1.10 e | 1.07 e | 2.04 d | 0.99 f | 2.50 f–i | 3.33 a–d | 5.35 hi | 1.20 c–h |
C112 | 0.26 t | 1.36 b | 2.25 c | 0.71 k | 1.84 m–p | 0.67 f | 1.52 zAa | 1.21 c–h |
C119 | 0.85 gh | 0.95 ghi | 0.71 n | 0.59 lmn | 4.85 a | 1.03 b–f | 1.30 Ab | 1.10 b–g |
C120 | 1.29 d | 0.91 j–m | 0.51 t | 0.43 p | 2.01 l–o | 0.74 b–f | 1.04 Ac | 1.12 b–g |
C133 | 1.02 f | 0.62 r | 0.42 v | 0.80 j | 1.85 m–p | 1.40 b–f | 4.70 l | 1.11 b–g |
C135 | 0.45 op | 0.90 klm | 0.46 u | 0.47 o | 2.41 g–j | 0.83 c–f | 0.69 Ae | 1.19 b–g |
C136 | 0.81 hij | 0.94 h–k | 0.96 i | 0.64 l | 1.78 nop | 1.35 c–f | 0.88 Ad | 1.17 b–f |
C137 | 0.38 pqr | 0.98 fg | 0.81 l | 0.901 hi | 1.69 opq | 1.68 b–f | 4.25 o | 1.29 b–e |
C142 | 0.37 qr | 1.06 e | 1.11 g | 0.68 c | 2.95 de | 1.97 b–f | 4.07 p | 1.35 bcd |
C143 | 0.75 jk | 0.96 fgh | 0.80 l | 0.81 j | 4.03 b | 0.39 def | 5.05 ij | 1.23 bcd |
C145 | 0.83 hij | 0.71 p | 0.54 rs | 0.41 o | 2.07 k–n | 1.39 b–f | 6.72 e | 1.07 bc |
C146 | 0.45 op | 0.99 f | 1.02 h | 0.93 ghi | 2.54 f–i | 1.02 b–f | 8.54 a | 1.07 b |
C147 | 0.88 gh | 1.04 e | 1.12 g | 0.46 b | 2.06 lmn | 1.28 c–f | 6.79 e | 1.06 a |
Max | 2.45 | 1.36 | 2.79 | 1.00 | 4.85 | 3.33 | 8.54 | 1.35 |
Min | 0.26 | 0.57 | 0.24 | 0.41 | 1.40 | 0.32 | 0.69 | 0.91 |
Average Value | 0.80 | 0.92 | 0.89 | 0.71 | 2.43 | 1.19 | 4.10 | 1.09 |
CV (%) | 51.80 | 17.49% | 61.99% | 25.64% | 29.66% | 61.66% | 50.62% | 9.64% |
Code | UPn | UChla | UChlb | URWC | UREL | UMDA | UPro | UProtein | D | RankD | CSAC | RankCSAC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 0.28 | 0.21 | 0.12 | 0.87 | 0.87 | 1 | 0.49 | 0.36 | 0.455 | 14 | 0.525 | 11 |
C4 | 0.25 | 0.52 | 0.31 | 1 | 0.79 | 0.22 | 0.47 | 0.25 | 0.452 | 15 | 0.476 | 20 |
C6 | 0.3 | 0.52 | 0.25 | 0.89 | 0.85 | 0.82 | 0.34 | 0.04 | 0.440 | 18 | 0.501 | 15 |
C7 | 0.19 | 0.61 | 0.44 | 0.65 | 0.6 | 0.77 | 0.15 | 0 | 0.383 | 22 | 0.426 | 25 |
C8 | 0.15 | 0.75 | 0.7 | 0.8 | 0.83 | 0.91 | 0.42 | 0.02 | 0.525 | 6 | 0.573 | 6 |
C12 | 0.18 | 0.45 | 0.21 | 0.02 | 0.83 | 0.83 | 0.37 | 0.53 | 0.355 | 27 | 0.428 | 24 |
C14 | 0.19 | 0.86 | 1 | 0.59 | 0.67 | 0.86 | 0.91 | 0.26 | 0.654 | 1 | 0.668 | 1 |
C15 | 0.23 | 0.41 | 0.12 | 0.79 | 0.68 | 0.75 | 0.1 | 0.33 | 0.367 | 25 | 0.426 | 25 |
C19 | 0.34 | 0.06 | 0 | 0.58 | 0.27 | 0.86 | 0.57 | 0.6 | 0.379 | 24 | 0.410 | 27 |
C20 | 0.12 | 0.29 | 0.05 | 0.64 | 0.54 | 0.73 | 0.5 | 0.32 | 0.345 | 28 | 0.399 | 29 |
C23 | 0.26 | 0.64 | 0.39 | 0.02 | 0.93 | 0.9 | 0.53 | 0.35 | 0.433 | 19 | 0.503 | 14 |
C26 | 0.41 | 0.47 | 0.15 | 0.03 | 0.48 | 0.43 | 0.12 | 0.03 | 0.234 | 38 | 0.265 | 38 |
C30 | 0.08 | 0.34 | 0.08 | 0.55 | 0.61 | 0.6 | 0.31 | 0.32 | 0.306 | 34 | 0.361 | 31 |
C35 | 0.27 | 0.42 | 0.14 | 0.3 | 0.63 | 0.42 | 0.41 | 0.27 | 0.319 | 31 | 0.358 | 33 |
C36 | 0.12 | 0.53 | 0.31 | 0.69 | 0.75 | 0.98 | 0.71 | 0.33 | 0.488 | 9 | 0.553 | 9 |
C37 | 0.17 | 0.52 | 0.26 | 0.36 | 0.82 | 0.67 | 0.86 | 0.23 | 0.431 | 20 | 0.486 | 18 |
C39 | 0.18 | 0.41 | 0.11 | 0.89 | 1 | 0.98 | 0.5 | 0.5 | 0.485 | 10 | 0.571 | 7 |
C40 | 0.28 | 0 | 0.09 | 0.28 | 0.82 | 0.87 | 0.17 | 0.21 | 0.273 | 37 | 0.340 | 36 |
C41 | 0.18 | 0.53 | 0.29 | 0.5 | 0.78 | 0.89 | 0.58 | 0.29 | 0.442 | 17 | 0.505 | 13 |
C44 | 0.7 | 0.13 | 0.06 | 0.22 | 0.57 | 0.86 | 0.24 | 0.03 | 0.313 | 33 | 0.351 | 35 |
C49 | 0.01 | 0.48 | 0.24 | 0.29 | 0.79 | 0.89 | 0.13 | 0.68 | 0.360 | 26 | 0.439 | 23 |
C50 | 0.55 | 0.26 | 0.25 | 0.93 | 0.72 | 0.08 | 0.6 | 0.44 | 0.483 | 11 | 0.479 | 19 |
C53 | 0.21 | 0.39 | 0.18 | 0.8 | 0.98 | 1 | 0.26 | 0.86 | 0.503 | 7 | 0.585 | 3 |
C65 | 1 | 0.42 | 0.11 | 0.65 | 0.56 | 0.45 | 0.64 | 0.49 | 0.541 | 4 | 0.540 | 10 |
C109 | 0.04 | 0.34 | 0.07 | 0.27 | 0.42 | 0.52 | 0.83 | 0.36 | 0.317 | 32 | 0.356 | 34 |
C111 | 0.39 | 0.64 | 0.7 | 0.98 | 0.68 | 0 | 0.59 | 0.65 | 0.603 | 2 | 0.579 | 4 |
C112 | 0 | 1 | 0.79 | 0.51 | 0.87 | 0.88 | 0.11 | 0.68 | 0.546 | 3 | 0.605 | 2 |
C119 | 0.27 | 0.49 | 0.18 | 0.31 | 0 | 0.77 | 0.08 | 0.44 | 0.297 | 35 | 0.318 | 37 |
C120 | 0.47 | 0.43 | 0.11 | 0.04 | 0.82 | 0.86 | 0.04 | 0.49 | 0.338 | 30 | 0.408 | 28 |
C133 | 0.35 | 0.07 | 0.07 | 0.66 | 0.87 | 0.64 | 0.51 | 0.47 | 0.404 | 21 | 0.455 | 21 |
C135 | 0.09 | 0.43 | 0.09 | 0.11 | 0.71 | 0.83 | 0 | 0.63 | 0.282 | 36 | 0.361 | 31 |
C136 | 0.25 | 0.47 | 0.28 | 0.38 | 0.89 | 0.66 | 0.02 | 0.59 | 0.382 | 23 | 0.443 | 22 |
C137 | 0.06 | 0.52 | 0.22 | 0.85 | 0.92 | 0.55 | 0.45 | 0.86 | 0.493 | 8 | 0.554 | 8 |
C142 | 0.05 | 0.62 | 0.34 | 0.46 | 0.55 | 0.45 | 0.43 | 1 | 0.455 | 13 | 0.488 | 17 |
C143 | 0.23 | 0.5 | 0.22 | 0.68 | 0.24 | 0.97 | 0.56 | 0.72 | 0.480 | 12 | 0.515 | 12 |
C145 | 0.26 | 0.19 | 0.12 | 0 | 0.81 | 0.64 | 0.77 | 0.38 | 0.342 | 29 | 0.396 | 30 |
C146 | 0.09 | 0.53 | 0.31 | 0.88 | 0.67 | 0.77 | 1 | 0.37 | 0.532 | 5 | 0.578 | 5 |
C147 | 0.29 | 0.6 | 0.35 | 0.09 | 0.81 | 0.68 | 0.78 | 0.34 | 0.443 | 16 | 0.493 | 16 |
Weights | 0.170 | 0.101 | 0.189 | 0.133 | 0.067 | 0.076 | 0.136 | 0.128 |
Code | Cluster I | Cluster III | F P |
---|---|---|---|
SACPn | 0.78 ± 0.40 | 0.81 ± 0.14 | 0.03 |
SACChla | 1.05 ± 0.03 | 0.83 ± 0.02 | 13.45 * |
SACChlb | 1.37 ± 0.68 | 0.59 ± 0.07 | 13.75 ** |
SACRWC | 0.86 ± 0.01 | 0.61 ± 0.02 | 23.54 ** |
SACREL | 2.12 ± 0.26 | 2.68 ± 0.64 | 4.00 |
SACMDA | 1.11 ± 0.92 | 1.17 ± 0.21 | 0.05 |
SACPro | 5.07 ± 0.46 | 3.01 ± 0.40 | 6.44 * |
SACProtein | 1.13 ± 0.01 | 1.07 ± 0.01 | 2.11 |
Model | Stepwise Regression | R2 | F Value | p Value |
---|---|---|---|---|
(I) | (D) = −0.238 + 0.106 × SACChlb + 0.209 × SACRWC + 0.015 × SACPro + 0.284 × SACProtein + 0.051 × SACPn | 0.930 | 85.033 ** | 0.000 |
(II) | (CSAC) = 0.045 + 0.078 × SACChlb + 0.180 × SACRWC −0.039 × SACREL + 0.013 × SACPro + 0.241 × SACProtein | 0.874 | 44.283 ** | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; Yu, Q.; Li, W.; Sun, Z.; Li, P. Salt–Alkali Tolerance Evaluation for Bermudagrass and Critical Indicator Screening at the Seedling Stage. Horticulturae 2024, 10, 825. https://doi.org/10.3390/horticulturae10080825
Tang L, Yu Q, Li W, Sun Z, Li P. Salt–Alkali Tolerance Evaluation for Bermudagrass and Critical Indicator Screening at the Seedling Stage. Horticulturae. 2024; 10(8):825. https://doi.org/10.3390/horticulturae10080825
Chicago/Turabian StyleTang, Lisi, Qikun Yu, Wen Li, Zongjiu Sun, and Peiying Li. 2024. "Salt–Alkali Tolerance Evaluation for Bermudagrass and Critical Indicator Screening at the Seedling Stage" Horticulturae 10, no. 8: 825. https://doi.org/10.3390/horticulturae10080825
APA StyleTang, L., Yu, Q., Li, W., Sun, Z., & Li, P. (2024). Salt–Alkali Tolerance Evaluation for Bermudagrass and Critical Indicator Screening at the Seedling Stage. Horticulturae, 10(8), 825. https://doi.org/10.3390/horticulturae10080825