Effects of Storage Duration and Temperature on Browning and Quality of Postharvest Bamboo Shoots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Treatments and Storage Conditions
2.3. Measurement of Color
2.4. Determination of Decay Ratio
2.5. Measurement of Weight Loss
2.6. Measurement of Texture
2.7. Measurement of Electrolyte Leakage
2.8. Measurements of Respiration Rate and Ethylene Production
2.9. Measurement of TPC
2.10. PAL Activity
2.11. PPO and POD Activities
2.12. Statistical Analysis
3. Results
3.1. Effects of Storage Duration and Temperature on Visual Appearance of Bamboo Shoots
3.2. Effects of Storage Duration and Temperature on Respiration Rates of Bamboo Shoots
3.3. Effects of Storage Duration and Temperature on Firmness and Cutting Force of Bamboo Shoots
3.4. Effects of Storage Duration and Temperature on Weight Loss and Electrolyte Leakage of Bamboo Shoots
3.5. Effects of Storage Duration and Temperature on TPC and PPO, POD, and PAL Activities of Bamboo Shoots
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Chen, J.; Wang, D.; Ye, F.; He, Y.; Hu, Z.; Zhao, G. A systematic review on the composition, storage, processing of bamboo shoots: Focusing the nutritional and functional benefits. J. Funct. Foods 2020, 71, 104015. [Google Scholar] [CrossRef]
- Li, D.; Limwachiranon, J.; Li, L.; Zhang, L.; Xu, Y.; Fu, M.; Luo, Z. Hydrogen peroxide accelerated the lignification process of bamboo shoots by activating the phenylpropanoid pathway and programmed cell death in postharvest storage. Postharvest Biol. Technol. 2019, 153, 79–86. [Google Scholar] [CrossRef]
- Zheng, J.; Li, S.; Xu, Y.; Zheng, X. Effect of oxalic acid on edible quality of bamboo shoots (Phyllostachys prominens) without sheaths during cold storage. LWT-Food Sci. Technol. 2019, 109, 194–200. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, X.; Cai, Z.; Yan, B. Effects of ethylene and 1-methylcyclopropene (1-MCP) on lignification of postharvest bamboo shoot. Food Chem. 2007, 105, 521–527. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, C.; Wu, F.; Cheng, J. Effect of nitric oxide on browning and lignification of peeled bamboo shoots. Postharvest Biol. Technol. 2010, 57, 72–76. [Google Scholar] [CrossRef]
- Yang, H.; Zheng, J.; Huang, C.; Zhao, X.; Chen, H.; Sun, Z. Effects of combined aqueous chlorine dioxide and chitosan coatings on microbial growth and quality maintenance of fresh-cut bamboo shoots (Phyllostachys praecox f. prevernalis.) during storage. Food Bioprocess Technol. 2015, 8, 1011–1019. [Google Scholar] [CrossRef]
- Li, C.; Suo, J.; Xuan, L.; Ding, M.; Zhang, H.; Song, L.; Ying, Y. Bamboo shoot-lignification delay by melatonin during low temperature storage. Postharvest Biol. Technol. 2019, 156, 110933. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, X.; Yan, B. Accumulation of lignin and involvement of enzymes in bamboo shoot during storage. Eur. Food Res. Technol. 2008, 226, 635–640. [Google Scholar] [CrossRef]
- Luo, Z.; Wu, X.; Xie, Y.; Chen, C. Alleviation of chilling injury and browning of postharvest bamboo shoot by salicylic acid treatment. Food Chem. 2012, 131, 456–461. [Google Scholar] [CrossRef]
- Liu, Z.; Li, L.; Luo, Z.; Zeng, F.; Jiang, L.; Tang, K. Effect of brassinolide on energy status and proline metabolism in postharvest bamboo shoot during chilling stress. Postharvest Biol. Technol. 2016, 111, 240–246. [Google Scholar] [CrossRef]
- Shen, Q.; Kong, F.; Wang, Q. Effect of modified atmosphere packaging on the browning and lignification of bamboo shoots. J. Food Eng. 2006, 77, 348–354. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, X.; Yan, B. Use of 1-methylcyclopropene for alleviating chilling injury and lignification of bamboo shoot (Phyllostachys praecox f. prevernalis) during cold storage. J. Sci. Food Agric. 2008, 88, 151–157. [Google Scholar] [CrossRef]
- Luo, Z.; Feng, S.; Pang, J.; Mao, L.; Shou, H.; Xie, J. Effect of heat treatment on lignification of postharvest bamboo shoots (Phyllostachys praecox f. prevernalis.). Food Chem. 2012, 135, 2182–2187. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Jiang, T.; Wang, Y.; Luo, Z. Effect of UV-C treatment on modulating antioxidative system and proline metabolism of bamboo shoots subjected to chilling stress. Acta Physiol. Plant. 2015, 37, 244. [Google Scholar] [CrossRef]
- Zeng, F.; Luo, Z.; Xie, J.; Feng, S. Gamma radiation control quality and lignification of bamboo shoots (Phyllostachys praecox f. prevernalis.) stored at low temperature. Postharvest Biol. Technol. 2015, 102, 17–24. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Sevillano, L.; Flores, F.B.; Bodbodak, S. Heat shock proteins as biochemical markers for postharvest chilling stress in fruits and vegetables. Sci. Hortic. 2013, 160, 54–64. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Bodbodak, S. Postharvest heat treatment for mitigation of chilling injury in fruits and vegetables. Food Bioprocess Technol. 2013, 7, 37–53. [Google Scholar] [CrossRef]
- Vega-Alvarez, M.; Salazar-Salas, N.Y.; López-Angulo, G.; Pineda-Hidalgo, K.V.; López-López, M.E.; Vega-García, M.O.; Delgado-Vargas, F.; López-Valenzuela, J.A. Metabolomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biol. Technol. 2020, 169, 111299. [Google Scholar] [CrossRef]
- Salazar-Salas, N.Y.; Chairez-Vega, D.A.; Vega-Alvarez, M.; González-Nuñez, D.G.; Pineda-Hidalgo, K.V.; Chávez-Ontiveros, J.; Delgado-Vargas, F.; Lopez-Valenzuela, J.A. Proteomic changes in mango fruit peel associated with chilling injury tolerance induced by quarantine hot water treatment. Postharvest Biol. Technol. 2022, 186, 111838. [Google Scholar] [CrossRef]
- Woolf, A.B. Reduction of chilling injury in stored ‘Hass’ avocado fruit by 38℃ water treatments. HortScience 1997, 32, 1247–1251. [Google Scholar] [CrossRef]
- Keith, R.W.; Le Tourneau, D.; Mahlum, D. Quantitative paper-chromatographic determination of phenols. J. Chromatogr. A 1958, 1, 534–536. [Google Scholar] [CrossRef]
- Zhou, Y.; Dahler, J.M.; Underhill, S.J.; Wills, R.B. Enzymes associated with blackheart development in pineapple fruit. Food Chem. 2003, 80, 565–572. [Google Scholar] [CrossRef]
- Johnson, L.B.; Cunningham, B.A. Peroxidase activity in healthy and leaf-rust-infected wheat leaves. Phytochemistry 1972, 11, 547–551. [Google Scholar] [CrossRef]
- Lee, C.Y.; Smith, N.L. Blanching effect on polyphenol oxidase activity in table beets. J. Food Sci. 1979, 44, 82–83. [Google Scholar] [CrossRef]
- Laurila, E.; Kervinen, R.; Ahvenainen, R. The inhibition of enzymatic browning in minimally processed vegetables and fruits. Postharvest News Inf. 1998, 9, 53–66. [Google Scholar]
- Tsouvaltzis, P.; Deltsidis, A.; Brecht, J.K. Hot water treatment and pre-processing storage reduce browning development in fresh-cut potato slices. HortScience 2011, 49, 1282–1286. [Google Scholar] [CrossRef]
- Whetten, R.; Sederoff, R. Lignin biosynthesis. Plant Cell 1995, 7, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A.; Barros, J. Lignin biosynthesis: Old roads revisited and new roads explored. Open Biol. 2019, 9, 190215. [Google Scholar] [CrossRef] [PubMed]
Storage Duration | Storage Temperature | L* | a* | b* | C* | h° |
---|---|---|---|---|---|---|
At harvest | 89.25 ± 0.38 | −0.66 ± 0.21 | 11.84 ± 0.44 | 11.86 ± 0.44 | 93.2 ± 1.00 | |
2W | 1 °C | 87.63 ± 0.89 a z | −0.1 ± 0.31 b | 11.75 ± 0.98 a | 11.76 ± 0.98 a | 90.54 ± 1.53 a |
3 °C | 87.55 ± 1.10 a | −0.01 ± 0.32 b | 11.40 ± 0.44 a | 11.41 ± 0.44 a | 90.03 ± 1.61 a | |
5 °C | 85.74 ± 1.19 b | 0.75 ± 0.45 a | 11.24 ± 0.93 a | 11.28 ± 0.93 a | 86.21 ± 2.46 b | |
3W | 1 °C | 87.66 ± 0.62 a | −0.24 ± 0.18 c | 11.62 ± 0.56 b | 11.62 ± 0.56 b | 91.16 ± 0.87 a |
3 °C | 86.09 ± 1.60 b | 0.38 ± 0.50 b | 11.81 ± 1.15 b | 11.83 ± 1.14 b | 88.11 ± 2.55 b | |
5 °C | 84.86 ± 1.37 c | 0.82 ± 0.48 a | 12.81 ± 0.79 a | 12.84 ± 0.79 a | 86.34 ± 2.14 c | |
4W | 1 °C | 86.66 ± 1.04 a | −0.04 ± 0.29 c | 12.88 ± 0.85 a | 12.88 ± 0.85 a | 90.22 ± 1.30 a |
3 °C | 85.75 ± 1.12 b | 0.37 ± 0.48 b | 12.35 ± 1.11 a | 12.36 ± 1.11 a | 88.38 ± 2.19 b | |
5 °C | 84.24 ± 1.41 c | 0.85 ± 0.49 a | 12.94 ± 1.07 a | 12.97 ± 1.08 a | 86.26 ± 1.98 c | |
Storage duration | *** | ns | *** | *** | ns | |
Storage temperature | *** | *** | * | * | *** | |
Interaction | ns y | ns | ** | ** | ns |
Storage Duration | Storage Temperature | L* | a* | b* | C* | h° |
---|---|---|---|---|---|---|
2W + 1D | 1 °C | 85.41 ± 1.69 a z | 0.94 ± 0.61 b | 14.64 ± 1.94 a | 14.68 ± 1.97 a | 86.45 ± 2.01 a |
3 °C | 83.15 ± 2.08 a | 1.24 ± 0.42 b | 11.95 ± 1.78 b | 12.02 ± 1.80 b | 84.15 ± 1.48 b | |
5 °C | 76.51 ± 4.61 b | 2.78 ± 1.32 a | 14.08 ± 2.87 a | 14.38 ± 3.00 a | 79.21 ± 4.07 c | |
3W + 1D | 1 °C | 86.6 ± 0.96 a | 0.21 ± 0.46 c | 13.68 ± 1.24 b | 13.69 ± 1.24 b | 89.18 ± 1.92 a |
3 °C | 84.86 ± 2.23 b | 0.93 ± 0.53 b | 14.44 ± 4.55 ab | 14.47 ± 4.57 ab | 86.48 ± 1.18 b | |
5 °C | 81.48 ± 3.10 c | 2.12 ± 1.08 a | 16.56 ± 3.62 a | 16.71 ± 3.71 a | 82.89 ± 2.29 c | |
4W + 1D | 1 °C | 85.88 ± 0.91 a | 0.52 ± 0.32 b | 15.22 ± 1.39 a | 15.23 ± 1.39 a | 88.06 ± 1.15 a |
3 °C | 81.77 ± 7.32 b | 1.10 ± 1.77 b | 15.54 ± 3.86 a | 15.64 ± 4.00 a | 86.77 ± 4.74 a | |
5 °C | 81.19 ± 4.33 b | 2.14 ± 1.34 a | 17.27 ± 3.31 a | 17.42 ± 3.44 a | 83.36 ± 2.99 b | |
Storage duration | ** | * | *** | ** | *** | |
Storage temperature | *** | *** | ** | ** | *** | |
Interaction | * | ns y | ns | ns | ns |
Storage | Storage | TPC | POD | PPO | PAL |
---|---|---|---|---|---|
Duration | Temperature | (μg·g−1 FW) | (U·g−1 FW) | (U·g−1 FW) | (U·g−1 FW) |
At harvest | 655.8 ± 48.7 | 1155 ± 570 | 349.2 ± 35.5 | - y | |
2W | 1 °C | 757.3 ± 153.5 a z | 1593 ± 224 a | 392.3 ± 30.5 ab | - |
3 °C | 745.5 ± 107.0 a | 1424 ± 177 a | 360.9 ± 27.2 b | ||
5 °C | 737.0 ± 114.6 a | 1537 ± 171 a | 443.7 ± 94.2 a | ||
3W | 1 °C | 848.7 ± 151.8 a | 1610 ± 160 a | 428.6 ± 74.9 b | 279.2 ± 37.5 b |
3 °C | 721.3 ± 86.6 a | 1602 ± 128 a | 528.6 ± 79.7 a | 299.5 ± 43.8 ab | |
5 °C | 672.7 ± 177.5 a | 1731 ± 442 a | 417.3 ± 44.9 b | 346.8 ± 44.5 a | |
4W | 1 °C | 763.6 ± 155.5 b | 2328 ± 171 a | 418.1 ± 59.2 a | 401.5 ± 19.9 a |
3 °C | 1030.9 ± 262.0 a | 2243 ± 239 a | 426.4 ± 32.6 a | 283.5 ± 59.8 b | |
5 °C | 664.8 ± 128.6 b | 1653 ± 251 b | 413.7 ± 21.4 a | 206.0 ± 33.5 c | |
Storage duration | ns x | *** | * | ns | |
Storage temperature | ns | ns | ns | ** | |
Interaction | * | ** | * | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, P.-R.; Hwang, S.-G.; Chen, C.-L.; Lin, H.-L. Effects of Storage Duration and Temperature on Browning and Quality of Postharvest Bamboo Shoots. Horticulturae 2024, 10, 616. https://doi.org/10.3390/horticulturae10060616
Wu P-R, Hwang S-G, Chen C-L, Lin H-L. Effects of Storage Duration and Temperature on Browning and Quality of Postharvest Bamboo Shoots. Horticulturae. 2024; 10(6):616. https://doi.org/10.3390/horticulturae10060616
Chicago/Turabian StyleWu, Pei-Rong, San-Gwang Hwang, Chang-Lin Chen, and Huey-Ling Lin. 2024. "Effects of Storage Duration and Temperature on Browning and Quality of Postharvest Bamboo Shoots" Horticulturae 10, no. 6: 616. https://doi.org/10.3390/horticulturae10060616
APA StyleWu, P. -R., Hwang, S. -G., Chen, C. -L., & Lin, H. -L. (2024). Effects of Storage Duration and Temperature on Browning and Quality of Postharvest Bamboo Shoots. Horticulturae, 10(6), 616. https://doi.org/10.3390/horticulturae10060616