Development and Application of Droplet Digital PCR Assay for the Detection of Watermelon Silver Mottle Virus and Melon Yellow Spot Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Construction of Standard Plasmids
2.3. Primer and TaqMan Probe Design
2.4. TaqMan-Based RT-qPCR
2.5. RT-dPCR
2.6. Assessment of the Specificity of WSMoV and MYSV Primers and Probes
2.7. Assessment of Linearity, Reproducibility, and Detection Limits
2.8. Assessment of Naturally Infected Samples
2.9. Data Analysis
3. Results
3.1. Optimization of the Annealing Temperature of WSMoV and MYSV
3.2. Optimization of Primer and Probe Concentration Ratio for WSMoV and MYSV
3.3. Evaluation of the Specificity of Detection of MYSV and WSMoV
3.4. Assessment of Reproducibility of qPCR and ddPCR
3.5. Assessment of Linearity of qPCR and ddPCR
3.6. Assessment of Detection Limits of qPCR and ddPCR
3.7. RT-dPCR Detection of Field Samples of WSMoV and MYSV
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adachi-Fukunaga, S.; Tomitaka, Y.; Sakurai, T. Effects of melon yellow spot orthotospovirus infection on the preference and developmental traits of melon thrips, Thrips palmi, in cucumber. PLoS ONE 2020, 15, e0233722. [Google Scholar] [CrossRef]
- Sugiyama, M.K.Y.; Shimomura, K.; Yoshioka, Y.; Sakata, Y.; Fukino, N.; Noguchi, Y. Development of cucumber (Cucumis sativus L.) parental line ‘Kyuri Chukanbohon Nou 7 Go’ with resistance to melon yellow spot virus. Bull. Natl. Inst. Veg. Tea Sci. 2016, 15, 1–10. [Google Scholar]
- Iwaki, M.; Honda, Y.; Hanada, K.; Tochihara, H.; Yonaha, T.; Hokama, K.; Yokoyama, T. Silver mottle disease of watermelon caused by tomato spotted wilt virus. Plant Dis. 1984, 68, 1006–1008. [Google Scholar] [CrossRef]
- Yeh, S.D.; Lin, Y.C.; Cheng, Y.H.; Jih, C.L.; Chen, M.J.; Chen, C.C. Identification of tomato spotted wilt-like virus on watermelon in Taiwan. Plant Dis. 1992, 76, 835–840. [Google Scholar] [CrossRef]
- Jain, R.K.; Bag, S.; Umamaheswaran, K.; Mandal, B. Natural infection by tospoviruses of cucurbitaceous and fabaceous vegetable crops in India. J. Phytopathol. 2007, 155, 22–25. [Google Scholar] [CrossRef]
- Chiemsombat, P.; Gajanandana, O.; Warin, N.; Hongprayoon, R.; Bhunchoth, A.; Pongsapich, P. Biological and molecular characterization of tospoviruses in Thailand. Arch. Virol. 2008, 153, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Rao, X.; Liu, Y.; Wu, Z.; Li, Y. First report of natural infection of watermelon by Watermelon silver mottle virus in China. New Dis. Rep. 2011, 24, 12. [Google Scholar] [CrossRef]
- Che, H.Y.; Ma, Y.X.; Lin, Y.T.; Feng, T.Z.; Luo, D.Q.; Long, H.B. Virome Profiling, New virus identification and the prevalence and distribution of viruses infecting chieh-qua (Benincasa hispida Cogn. var. chieh-qua How) in China. Viruses 2023, 15, 1396. [Google Scholar] [CrossRef]
- Dong, Z.X.; Lin, C.C.; Chen, Y.K.; Chou, C.C.; Chen, T.C. Identification of an emerging cucumber virus in Taiwan using Oxford nanopore sequencing technology. Plant Methods 2022, 18, 143–155. [Google Scholar] [CrossRef]
- Uga, H.; Tsuda, S. A one-step reverse transcription-polymerase chain reaction system for the simultaneous detection and identification of multiple tospovirus infections. Phytopathology 2005, 95, 166–171. [Google Scholar] [CrossRef]
- Chen, T.C.; Lu, Y.Y.; Cheng, Y.H.; Li, J.T.; Yeh, Y.C.; Kang, Y.C.; Chang, C.P.; Huang, L.H.; Peng, J.C.; Yeh, S.D. Serological relationship between Melon yellow spot virus and watermelon silver mottle virus and differential detection of the two viruses in cucurbits. Arch. Virol. 2010, 155, 1085–1095. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, W.; Li, Y.; Rao, X. Development of polyclonal antibodies against nucleocapsid protein of watermelon silver mottle virus and their application to diagnostic. Acta Virol. 2014, 58, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Keremane, M.L.; Ramadugu, C.; Rodriguez, E.; Kubota, R.; Shibata, S.; Hall, D.G.; Roose, M.L.; Jenkins, D.; Lee, R.F. A rapid field detection system for citrus huanglongbing associated ‘Candidatus Liberibacter asiaticus’ from the psyllid vector, Diaphorina citri Kuwayama and its implications in disease management. Crop Prot. 2015, 68, 41–48. [Google Scholar] [CrossRef]
- Rao, X.; Sun, J. Development of SYBR Green I Based Real-Time RT-PCR assay for specific detection of watermelon silver mottle virus. Iran. J. Biotechnol. 2015, 13, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zeng, C.; Lou, B.H.; Pang, Q.L.; Su, Y.Q.; Song, Y.Q.; Lei, C.Y.; Li, Y.J.; Wen, Y.T. First report of Watermelon silver mottle orthotospovirus infecting Siraitia grosvenorii in China. Plant Dis. 2023, 107, 3323. [Google Scholar] [CrossRef]
- Dube, S.; Qin, J.; Ramakrishnan, R. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS ONE 2008, 3, e2876. [Google Scholar] [CrossRef]
- Monya, B. Digital PCR hits its stride. Nat. Methods 2012, 9, 541–544. [Google Scholar]
- Manoj, P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA Part A 2016, 27, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Dreo, T.; Pirc, M.; Ramsak, Z.; Pavsic, J.; Milavec, M.; Zel, J.; Gruden, K. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: A case study of fire blight and potato brown rot. Anal. Bioanal. Chem. 2014, 406, 6513–6528. [Google Scholar] [CrossRef]
- Dupas, E.; Legendre, B.; Olivier, V.; Poliakoff, F.; Manceau, C.; Cunty, A. Comparison of real-time PCR and droplet digital PCR for the detection of Xylella fastidiosa in plants. J. Microbiol. Methods 2019, 162, 86–95. [Google Scholar] [CrossRef] [PubMed]
- Hrycan, J.; Theilmann, J.; Mahovlic, A.; Boule, J.; Urbez-Torres, J.R. Health status of ready-to-plant grapevine nursery material in Canada regarding young vine decline fungi. Plant Dis. 2023, 107, 3708–3717. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Donovan, N.; Mantri, N. Review: The future of plant pathogen diagnostics in a nursery production system. Biosens. Bioelectron. 2019, 145, 111631. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Bai, R.L.; Zhao, Z.Y.; Tao, L.Y.; Ma, M.B.; Ji, Z.H.; Jian, M.M.; Ding, Z.; Dai, X.T.; Bao, F.K.; et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci. Rep. 2018, 38, BSR20181170. [Google Scholar] [CrossRef] [PubMed]
- Luigi, M.; Manglli, A.; Corrado, C.L.; Tiberini, A.; Costantini, E.; Ferretti, L.; Tomassoli, L.; Bertin, S. Development, validation, and application of reverse transcription Real-Time and droplet digital PCR assays for the detection of the Potyviruses watermelon mosaic virus and zucchini yellow mosaic virus in cucurbits. Plants 2023, 12, 2364. [Google Scholar] [CrossRef]
- Tian, Y.M.; Fei, J.; Luo, J.Y.; Chen, L.; Ye, J.; Du, W.; Yu, C. Development of a reverse-transcription droplet digital PCR method for quantitative detection of Cucumber green mottle mosaic virus. Heliyon 2023, 9, e12643. [Google Scholar] [CrossRef]
- Liu, Y.K.; Han, X.Y.; Zhang, X.R.; Liu, J.X.; Yao, L.G. Development of a droplet digital PCR assay for detection of group A porcine rotavirus. Front. Vet. Sci. 2023, 10, 1113537. [Google Scholar] [CrossRef]
- Card, S.D.; Pearson, M.N.; Clover, R.G.R. Plant pathogens transmitted by pollen. Australas. Plant Pathol. 2007, 36, 455–461. [Google Scholar] [CrossRef]
- Mou, D.F.; Chen, W.T.; Li, W.H.; Chen, T.C.; Tseng, C.H.; Huang, L.H.; Peng, J.C.; Yeh, S.D.; Tsai, C.W. Transmission mode of watermelon silver mottle virus by Thrips palmi. PLoS ONE 2021, 16, e0247500. [Google Scholar] [CrossRef]
- Oliver, J.E.; Whitfield, A.E. The Genus Tospovirus: Emerging Bunyaviruses that Threaten Food Security. Annu. Rev. Virol. 2016, 3, 101–124. [Google Scholar] [CrossRef]
- Kormelink, R.; Verchot, J.; Tao, X.; Desbiez, C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021, 13, 842. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Cho, I.S.; Ju, H.J.; Jeong, R.D. Development of a reverse transcription droplet digital PCR assay for sensitive detection of peach latent mosaic viroid. Mol. Cell. Probes 2021, 58, 101746. [Google Scholar] [CrossRef] [PubMed]
- Leichtfried, T.; Reisenzein, H.; Steinkellner, S.; Gottsberger, R.A. Transmission studies of the newly described apple chlorotic fruit spot viroid using a combined RT-qPCR and droplet digital PCR approach. Arch. Virol. 2020, 165, 2665–2671. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Han, Y.S.; Cho, I.S.; Jeong, R.D. Development and application of reverse transcription droplet digital PCR assay for sensitive detection of apple scar skin viroid during in vitro propagation of apple plantlets. Mol. Cell. Probes 2022, 61, 101789. [Google Scholar] [CrossRef] [PubMed]
Name | Concentration Plasmid Log (copies/µL) | ddPCR Inter-Assay Variation (Reproducibility) | qPCR Inter-Assay Variation (Reproducibility) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Rep.1 Log (copies/µL) | Rep.2 Log (copies/µL) | Rep.3 Log (copies/µL) | SD | CV | Rep.1 (Ct) | Rep.2 (Ct) | Rep.3 (Ct) | SD | CV | ||
WSMoV | 4.18 | 4.17 | 4.17 | 4.17 | 0.00 | 0.01% | 24.9 | 25.2 | 25.4 | 0.27 | 1.08% |
3.65 | 3.64 | 3.64 | 3.64 | 0.00 | 0.06% | 27.1 | 26.6 | 26.8 | 0.22 | 0.83% | |
3.20 | 3.20 | 3.20 | 3.20 | 0.00 | 0.07% | 28.2 | 28.5 | 28.2 | 0.15 | 0.54% | |
2.74 | 2.76 | 2.75 | 2.76 | 0.01 | 0.29% | 29.7 | 29.3 | 29.4 | 0.22 | 0.76% | |
2.30 | 2.30 | 2.32 | 2.28 | 0.02 | 0.74% | 30.8 | 31.5 | 32.5 | 0.84 | 2.64% | |
MYSV | 3.81 | 3.81 | 3.82 | 3.82 | 0.01 | 0.14% | 23.0 | 23.4 | 22.9 | 0.23 | 0.98% |
3.32 | 3.33 | 3.32 | 3.35 | 0.01 | 0.37% | 24.9 | 25.0 | 24.9 | 0.05 | 0.18% | |
2.93 | 2.93 | 2.92 | 2.92 | 0.01 | 0.18% | 26.4 | 26.6 | 26.3 | 0.15 | 0.57% | |
2.68 | 2.67 | 2.67 | 2.67 | 0.00 | 0.14% | 27.7 | 27.5 | 27.4 | 0.18 | 0.65% | |
2.54 | 2.52 | 2.53 | 2.52 | 0.01 | 0.38% | 28.4 | 28.6 | 28.8 | 0.24 | 0.84% |
Name | Input of Plasmid Copy Number | qPCR | dPCR |
---|---|---|---|
Hit Rate (Positive/Total) | Hit Rate (Positive/Total) | ||
WSMoV | 500 | 1.00 (24/24) | ND |
300 | 0.96 (23/24) | ND | |
200 | 0.88 (21/24) | ND | |
100 | 0.71 (17/24) | ND | |
50 | ND | 1.00 (24/24) | |
20 | ND | 0.96 (23/24) | |
10 | ND | 0.92 (22/24) | |
5 | ND | 0.75 (18/24) | |
2 | ND | 0.38 (9/24) | |
1 | ND | 0.13 (3/24) | |
NTC | 0.00 (0/24) | 0.00 (0/24) | |
LOD | 225 | 18 | |
MYSV | 500 | 1.00 (24/24) | ND |
300 | 1.00 (24/24) | ND | |
200 | 0.96 (23/24) | ND | |
100 | 0.83 (20/24) | ND | |
50 | ND | 1.00 (24/24) | |
20 | ND | 1.00 (24/24) | |
10 | ND | 0.96 (23/24) | |
5 | ND | 0.92 (22/24) | |
2 | ND | 0.38 (9/24) | |
1 | ND | 0.13 (3/24) | |
NTC | 0.00 (0/24) | 0.00 (0/24) | |
LOD | 168 | 9 |
WSMoV | MYSV | |||||
---|---|---|---|---|---|---|
Positive | Negative | Total | Positive | Negative | Total | |
qPCR | 37 | 25 | 62 | 30 | 32 | 62 |
ddPCR | 57 | 5 | 62 | 32 | 30 | 62 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Liu, M.; Li, W.; Wang, M.; Xiu, J.; Peng, B.; Hu, Y.; Kang, B.; Liu, L.; Gu, Q. Development and Application of Droplet Digital PCR Assay for the Detection of Watermelon Silver Mottle Virus and Melon Yellow Spot Virus. Horticulturae 2024, 10, 199. https://doi.org/10.3390/horticulturae10030199
Wu H, Liu M, Li W, Wang M, Xiu J, Peng B, Hu Y, Kang B, Liu L, Gu Q. Development and Application of Droplet Digital PCR Assay for the Detection of Watermelon Silver Mottle Virus and Melon Yellow Spot Virus. Horticulturae. 2024; 10(3):199. https://doi.org/10.3390/horticulturae10030199
Chicago/Turabian StyleWu, Huijie, Mei Liu, Wenyang Li, Min Wang, Junqing Xiu, Bin Peng, Yanping Hu, Baoshan Kang, Liming Liu, and Qinsheng Gu. 2024. "Development and Application of Droplet Digital PCR Assay for the Detection of Watermelon Silver Mottle Virus and Melon Yellow Spot Virus" Horticulturae 10, no. 3: 199. https://doi.org/10.3390/horticulturae10030199
APA StyleWu, H., Liu, M., Li, W., Wang, M., Xiu, J., Peng, B., Hu, Y., Kang, B., Liu, L., & Gu, Q. (2024). Development and Application of Droplet Digital PCR Assay for the Detection of Watermelon Silver Mottle Virus and Melon Yellow Spot Virus. Horticulturae, 10(3), 199. https://doi.org/10.3390/horticulturae10030199