Production of 2,3-Butanediol by S. cerevisiae L7 in Fed-Batch Fermentation with Optimized Culture Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Cultivation
2.2. Single-Factor Experiment
2.3. Plackett–Burman Design
2.4. The Steepest Climb Test Design
2.5. Central Composite Design
2.6. Fed-Batch Fermentation
2.7. Analytical Methods
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effects of Single Factors on the Production of 2,3-BD
3.2. Factors with Significant Effects on 2,3-BD Production of S. cerevisiae L7
3.3. Optimal Conditions for 2,3-BD Production
3.4. Effects of Interactive Factors
3.5. Fed-Batch Fermentation of 2,3-BD in a Rotary Shake-Flask
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kong, H.G.; Shin, T.S.; Kim, T.H.; Ryu, C.-M. Stereoisomers of the bacterial volatile compound 2,3-Butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front. Plant Sci. 2018, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Yue, W.; Genji, Y.; Bowen, W.; Yaozu, M.; Yang, Z.; Tian, M.; Hailian, Z.; Chuanwu, X.; Yi, C.; Chunyan, L. Papermaking wastewater treatment coupled to 2,3-butanediol production by engineered psychrotrophic Raoultella terrigena. J. Hazard. Mater. 2023, 458, 131994. [Google Scholar] [CrossRef]
- Narisetty, V.; Amraoui, Y.; Abdullah, A.; Ahmad, E.; Agrawal, D.; Parameswaran, B.; Pandey, A.; Goel, S.; Kumar, V. High yield recovery of 2,3-butanediol from fermented broth accumulated on xylose rich sugarcane bagasse hydrolysate using aqueous two-phase extraction system. Bioresour. Technol. 2021, 337, 125463. [Google Scholar] [CrossRef]
- Veeravalli, S.; Varshavi, D.; Scott, F.H.; Varshavi, D.; Pullen, F.S.; Veselkov, K.; Phillips, I.R.; Everett, J.R.; Shephard, E.A. Treatment of wild-type mice with 2,3-butanediol, a urinary biomarker of Fmo5 (-/-) mice, decreases plasma cholesterol and epididymal fat deposition. Front. Physiol. 2022, 13, 859681. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, Y.G.; Jin, Y.S.; Rao, C.V. Metabolic engineering of non-pathogenic microorganisms for 2,3-butanediol production. Appl. Microbiol. Biotechnol. 2021, 105, 5751–5767. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, J.; Seo, S.O.; Kim, K.H.; Jin, Y.S.; Seo, J.H. Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnol. Biofuels 2016, 9, 265. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Kim, J.W.; Lee, Y.G.; Park, Y.C.; Seo, J.H. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Appl. Microbiol. Biotechnol. 2017, 101, 2241–2250. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Wang, M.-J.; Gan, X.-F.; Luo, C.-B. Cleaner 2,3-butanediol production from unpretreated lignocellulosic biomass by a newly isolated Klebsiella pneumoniae PX14. Chem. Eng. J. 2023, 455, 140479. [Google Scholar] [CrossRef]
- Yamada, R.; Wakita, K.; Mitsui, R.; Nishikawa, R.; Ogino, H. Efficient production of 2,3-butanediol by recombinant Saccharomyces cerevisiae through modulation of gene expression by cocktail delta-integration. Bioresour. Technol. 2017, 245, 1558–1566. [Google Scholar] [CrossRef]
- Ruiz-Roldan, L.; Rojo-Bezares, B.; Lozano, C.; Lopez, M.; Chichon, G.; Torres, C.; Saenz, Y. Occurrence of Pseudomonas spp. in raw vegetables: Molecular and Phenotypical analysis of their Antimicrobial Resistance and Virulence-Related Traits. Int. J. Mol. Sci. 2021, 22, 12626. [Google Scholar] [CrossRef]
- Sun, R.; Kang, J.; Wang, X.; Xiu, B.; Ping, W.; Ge, J. Enhancement of 2,3-Butanediol production by Klebsiella pneumoniae: Emphasis on the Mediation of sRNA-SgrS on the Carbohydrate Utilization. Fermentation 2022, 8, 359. [Google Scholar] [CrossRef]
- Jantama, K.; Polyiam, P.; Khunnonkwao, P.; Chan, S.; Sangproo, M.; Khor, K.; Jantama, S.S.; Kanchanatawee, S. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium. Metab. Eng. 2015, 30, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, S.; Sun, Y.; Liu, D.; Kang, J.; Ye, Z.; Song, G.; Ge, J. Effect of Short-Chain Fatty Acids on the yield of 2,3-Butanediol by Saccharomyces cerevisiae W141: The synergistic effect of acetic acid and dissolved oxygen. Fermentation 2023, 9, 236. [Google Scholar] [CrossRef]
- Kim, S.; Hahn, J.S. Efficient production of 2,3-butanediol in Saccharomyces cerevisiae by eliminating ethanol and glycerol production and redox rebalancing. Metab. Eng. 2015, 31, 94–101. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, X.; Tong, T.; Ge, J. Biotechnology. Acetic acid acting as a signaling molecule in the quorum sensing system increases 2,3-butanediol production in Saccharomyces cerevisiae. Prep. Biochem. Biotechnol. 2022, 52, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Vikromvarasiri, N.; Noda, S.; Shirai, T.; Kondo, A. Investigation of two metabolic engineering approaches for (R,R)-2,3-butanediol production from glycerol in Bacillus subtilis. J. Biol. Eng. 2023, 17, 3. [Google Scholar] [CrossRef]
- Anvari, M.; Safari Motlagh, M.R. Enhancement of 2,3-butanediol production by Klebsiella oxytoca PTCC 1402. J. Biomed. Biotechnol. 2011, 2011, 636170. [Google Scholar] [CrossRef] [Green Version]
- Xin, F.; Basu, A.; Weng, M.C.; Yang, K.-L.; He, J. Production of 2,3-Butanediol from Sucrose by a Klebsiella Species. BioEnergy Res. 2015, 9, 15–22. [Google Scholar] [CrossRef]
- Lee, S.-M.; Oh, B.-R.; Park, J.M.; Yu, A.; Heo, S.-Y.; Hong, W.-K.; Seo, J.-W.; Kim, C.H. Optimized production of 2,3-butanediol by a lactate dehydrogenase-deficient mutant of Klebsiella pneumoniae. Biotechnol. Bioprocess Eng. 2014, 18, 1210–1215. [Google Scholar] [CrossRef]
- Psaki, O.; Maina, S.; Vlysidis, A.; Papanikolaou, S.; de Castro, A.M.; Freire, D.M.G.; Dheskali, E.; Kookos, I.; Koutinas, A. Optimisation of 2,3-butanediol production by Enterobacter ludwigii using sugarcane molasses. Biochem. Eng. J. 2019, 152, 107370. [Google Scholar] [CrossRef]
- Dai, Z.; Huang, M.; Chen, Y.; Siewers, V.; Nielsen, J. Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Nat. Commun. 2018, 9, 3059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curiel, J.A.; Salvado, Z.; Tronchoni, J.; Morales, P.; Rodrigues, A.J.; Quiros, M.; Gonzalez, R. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Microb. Cell Factories 2016, 15, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malina, C.; Yu, R.; Bjorkeroth, J.; Kerkhoven, E.J.; Nielsen, J. Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proc. Natl. Acad. Sci. USA 2021, 118, e2112836118. [Google Scholar] [CrossRef] [PubMed]
- Songdech, P.; Ruchala, J.; Semkiv, M.V.; Jensen, L.T.; Sibirny, A.; Ratanakhanokchai, K.; Soontorngun, N. Overexpression of transcription factor ZNF1 of Glycolysis improves bioethanol productivity under High Glucose Concentration and enhances acetic acid tolerance of Saccharomyces cerevisiae. Biotechnol. J. 2020, 15, e1900492. [Google Scholar] [CrossRef]
- Muysson, J.; Miller, L.; Allie, R.; Inglis, D.L. The use of CRISPR-Cas9 genome editing to determine the importance of Glycerol Uptake in wine yeast during icewine fermentation. Fermentation 2019, 5, 93. [Google Scholar] [CrossRef]
- Roussel, M.R.; Lloyd, D. Observation of a chaotic multioscillatory metabolic attractor by real-time monitoring of a yeast continuous culture. FEBS J. 2007, 274, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Kim, J.W.; Kim, S.J.; Seo, S.O.; Lane, S.; Park, Y.C.; Jin, Y.S.; Seo, J.H. Enhanced production of 2,3-butanediol in pyruvate decarboxylase-deficient Saccharomyces cerevisiae through optimizing ratio of glucose/galactose. Biotechnol. J. 2016, 11, 1424–1432. [Google Scholar] [CrossRef]
- Alvarez-Guzmán, C.L.; Cisneros-de la Cueva, S.; Balderas-Hernández, V.E.; Smoliński, A.; De León-Rodríguez, A. Biohydrogen production from cheese whey powder by Enterobacter asburiae: Effect of operating conditions on hydrogen yield and chemometric study of the fermentative metabolites. Energy Rep. 2020, 6, 1170–1180. [Google Scholar] [CrossRef]
- Ji, X.J.; Huang, H.; Du, J.; Zhu, J.G.; Ren, L.J.; Li, S.; Nie, Z.K. Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresour. Technol. 2009, 100, 5214–5218. [Google Scholar] [CrossRef]
- Tsigoriyna, L.; Ganchev, D.; Petrova, P.; Petrov, K. Highly efficient 2,3-Butanediol production by Bacillus licheniformis via Complex optimization of nutritional and technological parameters. Fermentation 2021, 7, 118. [Google Scholar] [CrossRef]
- Joun, J.; Sirohi, R.; Sim, S.J. The effects of acetate and glucose on carbon fixation and carbon utilization in mixotrophy of Haematococcus pluvialis. Bioresour. Technol. 2023, 367, 128218. [Google Scholar] [CrossRef]
- Shi, J.; Huang, W.; Wan, N.; Wang, J. Effects of sodium acetate, glucose, and Chlorella powder as carbon source on enhanced treatment of phenolic compounds and NO2–-N in coal pyrolysis wastewater. Fuel 2023, 339, 126974. [Google Scholar] [CrossRef]
- Wang, X.X.; Hu, H.Y.; Liu, D.H.; Song, Y.Q. The implementation of high fermentative 2,3-butanediol production from xylose by simultaneous additions of yeast extract, Na2EDTA, and acetic acid. New Biotechnol. 2016, 33, 16–22. [Google Scholar] [CrossRef]
- Ji, X.J.; Huang, H.; Du, J.; Zhu, J.G.; Ren, L.J.; Hu, N.; Li, S. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresour. Technol. 2009, 100, 3410–3414. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Liu, L.; Wu, J. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens. Bioresour. Technol. 2013, 130, 256–260. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, L.; Jiang, J.; Guo, S.; Ping, W.; Ge, J. The response surface optimization of exopolysaccharide produced by Weissella confusa XG-3 and its rheological property. Prep. Biochem. Biotechnol. 2020, 50, 1014–1022. [Google Scholar] [CrossRef]
- Xing, H.; Du, R.; Zhao, F.; Han, Y.; Xiao, H.; Zhou, Z. Optimization, chain conformation and characterization of exopolysaccharide isolated from Leuconostoc mesenteroides DRP105. Int. J. Biol. Macromol. 2018, 112, 1208–1216. [Google Scholar] [CrossRef]
- Yu, D.; O’Hair, J.; Poe, N.; Jin, Q.; Pinton, S.; He, Y.; Huang, H. Conversion of food waste into 2,3-Butanediol via thermophilic fermentation: Effects of carbohydrate content and nutrient supplementation. Foods 2022, 11, 169. [Google Scholar] [CrossRef]
- Narisetty, V.; Zhang, L.; Zhang, J.; Sze Ki Lin, C.; Wah Tong, Y.; Loke Show, P.; Kant Bhatia, S.; Misra, A.; Kumar, V. Fermentative production of 2,3-Butanediol using bread waste—A green approach for sustainable management of food waste. Bioresour. Technol. 2022, 358, 127381. [Google Scholar] [CrossRef]
- Han, S.H.; Lee, J.E.; Park, K.; Park, Y.C. Production of 2,3-butanediol by a low-acid producing Klebsiella oxytoca NBRF4. New Biotechnol. 2013, 30, 166–172. [Google Scholar] [CrossRef]
No. | Factors | Coded Level | Central Point | Coded Level | Coefficient | Effect | T-Value | p-Value |
---|---|---|---|---|---|---|---|---|
+1 | 0 | −1 | ||||||
X1 | Glucose (g/L) | 130 | 120 | 110 | 0.2517 | 0.503 | 2.21 | 0.069 |
X2 | Peptone (g/L) | 17 | 15 | 13 | 0.3533 | 0.707 | 3.11 | 0.021 * |
X3 | (NH4)2SO4 (g/L) | 7 | 6 | 5 | 0.0417 | 0.083 | 0.37 | 0.726 |
X4 | Acetic acid (g/L) | 1.2 | 1.0 | 0.8 | −0.6183 | −1.237 | −5.44 | 0.002 ** |
X5 | Shaker speed (rpm) | 90 | 80 | 70 | 0.0367 | 0.073 | 0.32 | 0.758 |
Run | Acetic Acid (g L−1) | Glucose (g L−1) | Peptone (g L−1) | 2,3-BD Production (g/L) |
---|---|---|---|---|
Origin | 1 | 120 | 15 | 7.14 ± 0.08 |
1 | 0.95 | 125 | 16 | 7.39 ± 0.11 |
2 | 0.90 | 130 | 17 | 9.10 ± 0.15 |
3 | 0.85 | 135 | 18 | 9.28 ± 0.13 |
4 | 0.80 | 140 | 19 | 9.87 ± 0.09 |
5 | 0.75 | 145 | 20 | 11.83 ± 0.18 |
6 | 0.70 | 150 | 21 | 11.45 ± 0.21 |
7 | 0.65 | 155 | 22 | 11.17 ± 0.15 |
8 | 0.60 | 160 | 23 | 10.54 ± 0.16 |
Source | Coefficient | DF | SS | MS | F-Value | p-Value |
---|---|---|---|---|---|---|
Model | 9 | 47.15 | 5.24 | 15.15 | 0.0002 b | |
X1 | −0.7253 | 1 | 7.18 | 7.18 | 20.78 | 0.0014 b |
X2 | 0.5091 | 1 | 3.54 | 3.54 | 10.24 | 0.0108 b |
X4 | 0.1218 | 1 | 0.2026 | 0.2026 | 0.5860 | 0.4636 c |
X1X2 | −0.7200 | 1 | 4.15 | 4.15 | 11.99 | 0.0071 b |
X1X4 | −0.5100 | 1 | 2.08 | 2.08 | 6.02 | 0.0366 b |
X2X4 | −0.5400 | 1 | 2.33 | 2.33 | 6.75 | 0.0289 b |
X12 | −1.01 | 1 | 13.94 | 13.94 | 40.32 | 0.0001 b |
X22 | −1.02 | 1 | 14.34 | 14.34 | 41.45 | 0.0001 b |
X42 | −0.7207 | 1 | 7.09 | 7.09 | 20.50 | 0.0014 b |
Residual | 9 | 3.11 | 0.3458 | |||
Lack of Fit | 5 | 2.90 | 0.5805 | 11.06 | 0.0186 | |
Pure Error | 4 | 0.2099 | 0.0525 | |||
Total Error | 18 |
Timing of Additions | 2,3-BD Production (g/L) | Yield of 2,3-BD (g/g) | Single-Cell Production Intensity (g/g/g) |
---|---|---|---|
12 h | 16.96 ± 0.44 | 0.113 ± 0.003 | 2.162 ± 0.007 |
16 h | 15.57 ± 0.46 | 0.103 ± 0.003 | 1.983 ± 0.009 |
20 h | 15.08 ± 0.36 | 0.101 ± 0.002 | 1.997 ± 0.010 |
24 h | 12.40 ± 0.36 | 0.095 ± 0.003 | 1.875 ± 0.009 |
Additive Concentration (g/L) | 2,3-BD Production (g/L) | 2,3-BD Yield (g/g) | Single-Cell Production Intensity (g/g/g) |
---|---|---|---|
0.1 | 16.85 ± 0.57 | 0.112 ± 0.003 | 2.060 ± 0.008 |
0.2 | 21.83 ± 0.56 | 0.149 ± 0.004 | 2.764 ± 0.009 |
0.3 | 19.17 ± 0.49 | 0.131 ± 0.003 | 2.492 ± 0.012 |
0.4 | 16.68 ± 0.52 | 0.112 ± 0.004 | 2.154 ± 0.008 |
0.5 | 16.62 ± 0.52 | 0.111 ± 0.004 | 2.146 ± 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ao, G.; Sun, S.; Liu, L.; Guo, Y.; Tu, X.; Ge, J.; Ping, W. Production of 2,3-Butanediol by S. cerevisiae L7 in Fed-Batch Fermentation with Optimized Culture Conditions. Fermentation 2023, 9, 694. https://doi.org/10.3390/fermentation9070694
Ao G, Sun S, Liu L, Guo Y, Tu X, Ge J, Ping W. Production of 2,3-Butanediol by S. cerevisiae L7 in Fed-Batch Fermentation with Optimized Culture Conditions. Fermentation. 2023; 9(7):694. https://doi.org/10.3390/fermentation9070694
Chicago/Turabian StyleAo, Guoxu, Shanshan Sun, Lei Liu, Yuhao Guo, Xiujun Tu, Jingping Ge, and Wenxiang Ping. 2023. "Production of 2,3-Butanediol by S. cerevisiae L7 in Fed-Batch Fermentation with Optimized Culture Conditions" Fermentation 9, no. 7: 694. https://doi.org/10.3390/fermentation9070694
APA StyleAo, G., Sun, S., Liu, L., Guo, Y., Tu, X., Ge, J., & Ping, W. (2023). Production of 2,3-Butanediol by S. cerevisiae L7 in Fed-Batch Fermentation with Optimized Culture Conditions. Fermentation, 9(7), 694. https://doi.org/10.3390/fermentation9070694