A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix
Abstract
1. Introduction
2. Degradation of Pyrene by Mycobacterium sp.
3. Identification of Pyrene Metabolites Degraded by Mycobacterium sp. and Their Biotoxicity
4. Proposed Biodegradation Pathways
5. Future Perspectives and Challenges
- A knowledge gap between pyrene oxidation at the field site compared to laboratory conditions needs to be addressed for each product seeking commercial success.
- The degradation of pyrene by Mycobacterium strains generates many metabolites. Some of the metabolites and their bio-toxicity have been identified, while most of them need bio-toxicity assessment.
- The main biodegradation drawback is the limitation of the bioavailability of the target pollutant. Therefore, it is highly recommended to add a biosurfactant to increase the bioavailability.
- The literature revealed that the biodegradation of pyrene via consortium microbial gives a better result than a single strain. That is referred to diverse enzymes capable of oxidizing pyrene and its metabolites.
- There are several studies that applied successful synergetic biodegradation systems for pyrene degradation, such as biofuel cells and coupling of the advanced oxidation process and biodegradation system.
6. Conclusions
- Mycobacterium strains are efficient biological agents to degrade pyrene, that is, referring to their ability to produce many functional enzymes able to metabolite pyrene and its transformation molecules.
- Phenantharene-4,5-dicarboxylic acid, dihydroxy pyrene, phenanthrene-4-carboxylic acid, phthalic acid, and pyrene-4,5-dihydrodiol were the most frequent metabolites that were detected when Mycobacterium sp. strains were used for pyrene degradation.
- Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxypyrene, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-Dihydroxyphenanthrene, Monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mekonnen, M.M.; Hoekstra, A.Y. Sustainability: Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed]
- Qutob, M.; Rafatullah, M.; Qamar, M.; Alor, H.S.; Al Romaizan, A.N.; Hussein, M.A. A Review on Heterogeneous Oxidation of Acetaminophen Based on Micro and Nanoparticles Catalyzed by Di Ff Erent Activators. Nanotechnol. Rev. 2022, 11, 497–525. [Google Scholar] [CrossRef]
- Degefu, D.M.; Weijun, H.; Zaiyi, L.; Liang, Y.; Zhengwei, H.; Min, A. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Miraji, H.; Ripanda, A.; Moto, E. A Review on the Occurrences of Persistent Organic Pollutants in Corals, Sediments, Fish and Waters of the Western Indian Ocean. Egypt. J. Aquat. Res. 2021, 47, 373–379. [Google Scholar] [CrossRef]
- Gutierrez-Urbano, I.; Villen-Guzman, M.; Perez-Recuerda, R.; Rodriguez-Maroto, J.M. Removal of Polycyclic Aromatic Hydrocarbons (PAHs) in Conventional Drinking Water Treatment Processes. J. Contam. Hydrol. 2021, 243, 103888. [Google Scholar] [CrossRef]
- Dinç, B.; Çelebi, A.; Avaz, G.; Canlı, O.; Güzel, B.; Eren, B.; Yetis, U. Spatial Distribution and Source Identification of Persistent Organic Pollutants in the Sediments of the Yeşilırmak River and Coastal Area in the Black Sea. Mar. Pollut. Bull. 2021, 172, 112884. [Google Scholar] [CrossRef]
- IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. IARC Monogr. Eval. Carcinog. Risks Hum. 2010, 93, 9–38. [CrossRef]
- Hussain, K.; Hoque, R.R.; Balachandran, S.; Medhi, S.; Idris, M.G.; Rahman, M.; Hussain, F.L. Monitoring and Risk Analysis of PAHs in the Environment. In Handbook of Environmental Materials Management; Springer: New York, NY, USA, 2019; pp. 973–1007. [Google Scholar] [CrossRef]
- Yang, Y.; Woodward, L.A.; Li, Q.X.; Wang, J. Concentrations, Source and Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils from Midway Atoll, North Pacific Ocean. PLoS ONE 2014, 9, e86441. [Google Scholar] [CrossRef]
- EPA. National Recommended Water Quality Criteria—Human Health Criteria Table. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table (accessed on 24 May 2022).
- Nikolić, V.M.; Karić, S.D.; Nikolić, Ž.M.; Tošić, M.S.; Tasić, G.S.; Milovanovic, D.M.; Kaninski, M.P.M. Novel Photochemical Advanced Oxidation Process for the Removal of Polycyclic Aromatic Hydrocarbons from Polluted Concrete. Chem. Eng. J. 2017, 312, 99–105. [Google Scholar] [CrossRef]
- Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of Advanced Oxidation Processes and Biological Treatments for Wastewater Decontamination-A Review. Sci. Total Environ. 2011, 409, 4141–4166. [Google Scholar] [CrossRef]
- Azubuike, C.C.; Chikere, C.B.; Okpokwasili, G.C. Bioremediation Techniques–Classification Based on Site of Application: Principles, Advantages, Limitations and Prospects. World J. Microbiol. Biotechnol. 2016, 32, 180. [Google Scholar] [CrossRef] [PubMed]
- Quintella, C.M.; Mata, A.M.T.; Lima, L.C.P. Overview of Bioremediation with Technology Assessment and Emphasis on Fungal Bioremediation of Oil Contaminated Soils. J. Environ. Manag. 2019, 241, 156–166. [Google Scholar] [CrossRef]
- Chen, S.; Peng, J.; Duan, G. Enrichment of Functional Microbes and Genes during Pyrene Degradation in Two Different Soils. J. Soils Sediments 2016, 16, 417–426. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Biodegradation of High-Molecular Weight PAHs by Rhodococcus Wratislaviensis Strain 9: Overexpression of Amidohydrolase Induced by Pyrene and BaP. Sci. Total Environ. 2019, 651, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.J.; Cai, C.; Qiao, M.; Li, H.; Zhu, Y.G. Dynamic Changes in Functional Gene Copy Numbers and Microbial Communities during Degradation of Pyrene in Soils. Environ. Pollut. 2010, 158, 2872–2879. [Google Scholar] [CrossRef]
- Kim, S.J.; Kweon, O.; Jones, R.C.; Freeman, J.P.; Edmondson, R.D.; Cerniglia, C.E. Complete and Integrated Pyrene Degradation Pathway in Mycobacterium Vanbaalenii PYR-1 Based on Systems Biology. J. Bacteriol. 2007, 189, 464–472. [Google Scholar] [CrossRef]
- Percival, S.L.; Williams, D.W. Mycobacterium, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Heitkamp, M.A.; Franklin, W.; Cerniglia, C.E. Microbial Metabolism of Polycyclic Aromatic Hydrocarbons: Isolation and Characterization of a Pyrene-Degrading Bacterium. Appl. Environ. Microbiol. 1988, 54, 2549–2555. [Google Scholar] [CrossRef]
- Rehmann, K.; Noll, H.P.; Steinberg, C.E.W.; Kettrup, A.A. Pyrene Degradation by Mycobacterium sp. Strain KR2. Chemosphere 1998, 36, 2977–2992. [Google Scholar] [CrossRef]
- Zada, S.; Zhou, H.; Xie, J.; Hu, Z.; Ali, S.; Sajjad, W.; Wang, H. Bacterial Degradation of Pyrene: Biochemical Reactions and Mechanisms. Int. Biodeterior. Biodegrad. 2021, 162, 105233. [Google Scholar] [CrossRef]
- Haritash, A.K.; Kaushik, C.P. Biodegradation Aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- Elyamine, A.M.; Kan, J.; Meng, S.; Tao, P.; Wang, H.; Hu, Z. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. Int. J. Mol. Sci. 2021, 22, 8202. [Google Scholar] [CrossRef]
- Miller, C.D.; Hall, K.; Liang, Y.N.; Nieman, K.; Sorensen, D.; Issa, B.; Anderson, A.J.; Sims, R.C. Isolation and Characterization of Polycyclic Aromatic Hydrocarbon-Degrading Mycobacterium Isolates from Soil. Microb. Ecol. 2004, 48, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Zhu, Q.; Wu, Y.; Chen, H.; Lin, X. Characterization of a Polycyclic Aromatic Ring-Hydroxylation Dioxygenase from Mycobacterium sp. NJS-P. Chemosphere 2017, 185, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Costa, K.C.; Moskatel, L.S.; Meirelles, L.A.; Newman, D.K. PhdA Catalyzes the First Step of Phenazine-1-Carboxylic Acid Degradation in Mycobacterium Fortuitum. J. Bacteriol. 2018, 200, 10. [Google Scholar] [CrossRef] [PubMed]
- Wanapaisan, P.; Laothamteep, N.; Vejarano, F.; Chakraborty, J.; Shintani, M.; Muangchinda, C.; Morita, T.; Suzuki-Minakuchi, C.; Inoue, K.; Nojiri, H.; et al. Synergistic Degradation of Pyrene by Five Culturable Bacteria in a Mangrove Sediment-Derived Bacterial Consortium. J. Hazard. Mater. 2018, 342, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Xie, X.; Wang, X.; Lin, L.; Yang, L.; Luan, T.; Chen, B. Transcriptional Response of Mycobacterium sp. Strain A1-PYR to Multiple Polycyclic Aromatic Hydrocarbon Contaminations. Environ. Pollut. 2018, 243, 824–832. [Google Scholar] [CrossRef]
- Habe, H.; Kanemitsu, M.; Nomura, M.; Takemura, T.; Iwata, K.; Nojiri, H.; Yamane, H.; Omori, T. Isolation and Characterization of an Alkaliphilic Bacterium Utilizing Pyrene as a Carbon Source. J. Biosci. Bioeng. 2004, 98, 306–308. [Google Scholar] [CrossRef]
- McLellan, S.L.; Warshawsky, D.; Shann, J.R. The Effect of Polycyclic Aromatic Hydrocarbons on the Degradation of Benzo[a]Pyrene by Mycobacterium sp. Strain RJGII-Environ. Toxicol. Chem. 2002, 21, 253–259. [Google Scholar] [CrossRef]
- Churchill, P.F.; Morgan, A.C.; Kitchens, E. Characterization of a Pyrene-Degrading Mycobacterium sp. Strain CH-2. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2008, 43, 698–706. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, K.; Lee, D.H.; Cha, C.J. Comparative Genomic Analysis of Pyrene-Degrading Mycobacterium Species: Genomic Islands and Ring-Hydroxylating Dioxygenases Involved in Pyrene Degradation. J. Microbiol. 2018, 56, 798–804. [Google Scholar] [CrossRef]
- Wang, Z.; Sheng, H.; Xiang, L.; Bian, Y.; Herzberger, A.; Cheng, H.; Jiang, Q.; Jiang, X.; Wang, F. Different Performance of Pyrene Biodegradation on Metal-Modified Montmorillonite: Role of Surface Metal Ions from a Bioelectrochemical Perspective. Sci. Total Environ. 2022, 805, 150324. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, F.; Zhu, X.; Zeng, J.; Zhao, Q.; Jiang, X. Extracellular Polymeric Substances Govern the Development of Biofilm and Mass Transfer of Polycyclic Aromatic Hydrocarbons for Improved Biodegradation. Bioresour. Technol. 2015, 193, 274–280. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, H.; Chen, Y.; Lou, J.; Wu, L.; Xu, J. Salicylate and Phthalate Pathways Contributed Differently on Phenanthrene and Pyrene Degradations in Mycobacterium sp. WY10. J. Hazard. Mater. 2019, 364, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; Yang, W.; Sheng, H.; Wang, F.; Harindintwali, J.D.; Herath, H.M.S.K.; Zhang, Y. Humic Acid Enhanced Pyrene Degradation by Mycobacterium sp. NJS-1. Chemosphere 2021, 288, 132613. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Guo, C.; Liu, S.; Liang, X.; Lu, G.; Dang, Z. Pyrene Degradation by Mycobacterium Gilvum: Metabolites and Proteins Involved. Water Air Soil Pollut. 2019, 230, 67. [Google Scholar] [CrossRef]
- Chen, S.C.; Duan, G.L.; Ding, K.; Huang, F.Y.; Zhu, Y.G. DNA Stable-Isotope Probing Identifies Uncultivated Members of Pseudonocardia Associated with Biodegradation of Pyrene in Agricultural Soil. FEMS Microbiol. Ecol. 2018, 94, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Terzaghi, E.; Posada-Baquero, R.; Di Guardo, A.; Ortega-Calvo, J.J. Microbial Degradation of Pyrene in Holm Oak (Quercus Ilex) Phyllosphere: Role of Particulate Matter in Regulating Bioaccessibility. Sci. Total Environ. 2021, 786, 147431. [Google Scholar] [CrossRef]
- Sarma, S.J.; Pakshirajan, K. Surfactant Aided Biodegradation of Pyrene Using Immobilized Cells of Mycobacterium Frederiksbergense. Int. Biodeterior. Biodegrad. 2011, 65, 73–77. [Google Scholar] [CrossRef]
- Mahanty, B.; Pakshirajan, K.; Dasu, V.V. A Two Liquid Phase Partitioning Bioreactor System for the Biodegradation of Pyrene: Comparative Evaluation and Cost-Benefit Analysis. J. Chem. Technol. Biotechnol. 2010, 85, 349–355. [Google Scholar] [CrossRef]
- Dean-Ross, D.; Cerniglia, C.E. Degradation of Pyrene by Mycobacterium Flavescens. Appl. Microbiol. Biotechnol. 1996, 46, 307–312. [Google Scholar] [CrossRef]
- Vila, J.; López, Z.; Sabaté, J.; Minguillón, C.; Solanas, A.M.; Grifoll, M. Identification of a Novel Metabolite in the Degradation of Pyrene by Mycobacterium sp. Strain AP1: Actions of the Isolate on Two- and Three-Ring Polycyclic Aromatic Hydrocarbons. Appl. Environ. Microbiol. 2001, 67, 5497–5505. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Luan, T.; Zhou, H.; Lan, C.; Tam, N.F.Y. Metabolite Production in Degradation of Pyrene Alone or in a Mixture with Another Polycyclic Aromatic Hydrocarbon by Mycobacterium sp. Environ. Toxicol. Chem. 2006, 25, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Chen, B.; Lin, L.; Wang, X.; Tam, N.F.Y.; Luan, T. Pyrene Degradation Accelerated by Constructed Consortium of Bacterium and Microalga: Effects of Degradation Products on the Microalgal Growth. Environ. Sci. Technol. 2014, 48, 13917–13924. [Google Scholar] [CrossRef]
- Zhong, Y.; Luan, T.; Lin, L.; Liu, H.; Tam, N.F.Y. Production of Metabolites in the Biodegradation of Phenanthrene, Fluoranthene and Pyrene by the Mixed Culture of Mycobacterium sp. and Sphingomonas sp. Bioresour. Technol. 2011, 102, 2965–2972. [Google Scholar] [CrossRef]
- Lease, C.W.M.; Bentham, R.H.; Gaskin, S.E.; Juhasz, A.L. Isolation and Identification of Pyrene Mineralizing Mycobacterium spp. from Contaminated and Uncontaminated Sources. Appl. Environ. Soil Sci. 2011, 2011, 1–11. [Google Scholar] [CrossRef][Green Version]
- Schneider, J.; Grosser, R.; Jayasimhulu, K.; Xue, W.; Warshawsky, D. Degradation of Pyrene, Benz[a]Anthracene, and Benzo[a]Pyrene by Mycobacterium sp. Strain RJGII-135, Isolated from a Former Coal Gasification Site. Appl. Environ. Microbiol. 1996, 62, 13–19. [Google Scholar] [CrossRef]
- Fan, R.; Tian, H.; Wu, Q.; Yi, Y.; Yan, X.; Liu, B. Mechanism of Bio-Electrokinetic Remediation of Pyrene Contaminated Soil: Effects of an Electric Field on the Degradation Pathway and Microbial Metabolic Processes. J. Hazard. Mater. 2022, 422, 126959. [Google Scholar] [CrossRef]
- Lu, H.; Sun, J.; Zhu, L. The Role of Artificial Root Exudate Components in Facilitating the Degradation of Pyrene in Soil. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Liu, W.; Li, P.; Kong, L.; Ren, W.; Wu, H.; Tu, Y. Degradation of Pyrene by Immobilized Microorganisms in Saline-Alkaline Soil. J. Environ. Sci. 2012, 24, 1662–1669. [Google Scholar] [CrossRef]
- Deng, F.; Zhang, Z.; Yang, C.; Guo, C.; Lu, G.; Dang, Z. Pyrene Biodegradation with Layer-by-Layer Assembly Bio-Microcapsules. Ecotoxicol. Environ. Saf. 2017, 138, 9–15. [Google Scholar] [CrossRef]
- Toyama, T.; Furukawa, T.; Maeda, N.; Inoue, D.; Sei, K.; Mori, K.; Kikuchi, S.; Ike, M. Accelerated Biodegradation of Pyrene and Benzo[a]Pyrene in the Phragmites Australis Rhizosphere by Bacteria-Root Exudate Interactions. Water Res. 2011, 45, 1629–1638. [Google Scholar] [CrossRef]
- Mahanty, B.; Pakshirajan, K.; Venkata Dasu, V. Biodegradation of Pyrene by Mycobacterium Frederiksbergense in a Two-Phase Partitioning Bioreactor System. Bioresour. Technol. 2008, 99, 2694–2698. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Calvo, J.J.; Gschwend, P.M. Influence of Low Oxygen Tensions and Sorption to Sediment Black Carbon on Biodegradation of Pyrene. Appl. Environ. Microbiol. 2010, 76, 4430–4437. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Liao, C.; Yang, C.; Guo, C.; Dang, Z. Enhanced Biodegradation of Pyrene by Immobilized Bacteria on Modified Biomass Materials. Int. Biodeterior. Biodegrad. 2016, 110, 46–52. [Google Scholar] [CrossRef]
- Chang, B.V.; Chang, I.T.; Yuan, S.Y. Biodegradation of Phenanthrene and Pyrene from Mangrove Sediment in Subtropical Taiwan. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2008, 43, 233–238. [Google Scholar] [CrossRef]
- Zeng, J.; Lin, X.; Zhang, J.; Li, X. Isolation of Polycyclic Aromatic Hydrocarbons (PAHs)-Degrading Mycobacterium Spp. and the Degradation in Soil. J. Hazard. Mater. 2010, 183, 718–723. [Google Scholar] [CrossRef]
- Jacques, R.J.S.; Okeke, B.C.; Bento, F.M.; Teixeira, A.S.; Peralba, M.C.R.; Camargo, F.A.O. Microbial Consortium Bioaugmentation of a Polycyclic Aromatic Hydrocarbons Contaminated Soil. Bioresour. Technol. 2008, 99, 2637–2643. [Google Scholar] [CrossRef]
- Cerniglia, C.E. Degradation Of A Mixture Of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons By A Mycobacterium Strain Pyr-1. J. Soil Contam. 1995, 4, 77–91. [Google Scholar] [CrossRef]
- Sho, M.; Hamel, C.; Greer, C.W. Two Distinct Gene Clusters Encode Pyrene Degradation in Mycobacterium sp. Strain S65. FEMS Microbiol. Ecol. 2004, 48, 209–220. [Google Scholar] [CrossRef]
- López, Z.; Vila, J.; Ortega-Calvo, J.J.; Grifoll, M. Simultaneous Biodegradation of Creosote-Polycyclic Aromatic Hydrocarbons by a Pyrene-Degrading Mycobacterium. Appl. Microbiol. Biotechnol. 2008, 78, 165–172. [Google Scholar] [CrossRef][Green Version]
- Child, R.; Miller, C.D.; Liang, Y.; Sims, R.C.; Anderson, A.J. Pyrene Mineralization by Mycobacterium sp. Strain KMS in a Barley Rhizosphere. J. Environ. Qual. 2007, 36, 1260–1265. [Google Scholar] [CrossRef] [PubMed]
- Badejo, A.C.; Badejo, A.O.; Shin, K.H.; Chai, Y.G. A Gene Expression Study of the Activities of Aromatic Ring-Cleavage Dioxygenases in Mycobacterium Gilvum PYR-GCK to Changes in Salinity and PH during Pyrene Degradation. PLoS ONE 2013, 8, e58066. [Google Scholar] [CrossRef][Green Version]
- Ramirez, N.; Cutright, T.; Ju, L.K. Pyrene Biodegradatin in Aqueous Solutions and Soil Slurries by Mycobacteriurn PYR-1 and Enriched Consortium. Chemosphere 2001, 44, 1079–1086. [Google Scholar] [CrossRef]
- Vila, J.; Grifoll, M. Actions of Mycobacterium sp. Strain AP1 on the Saturated- and Aromatic-Hydrocarbon Fractions of Fuel Oil in a Marine Medium. Appl. Environ. Microbiol. 2009, 75, 6232–6239. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, I.Y.; Bartha, R. Solvent-Augmented Mineralization of Pyrene by a Mycobacterium sp. Appl. Environ. Microbiol. 1996, 62, 2311–2316. [Google Scholar] [CrossRef]
- Guo, C.; Dang, Z.; Wong, Y.; Tam, N.F. Biodegradation Ability and Dioxgenase Genes of PAH-Degrading Sphingomonas and Mycobacterium Strains Isolated from Mangrove Sediments. Int. Biodeterior. Biodegrad. 2010, 64, 419–426. [Google Scholar] [CrossRef]
- Seo, J.S.; Keum, Y.S.; Kim, K.; Li, Q.X. Degradation of Pyrene by Mycobacterium Aromativorans Strain JS19b1. J. Appl. Biol. Chem. 2010, 53, 323–329. [Google Scholar] [CrossRef]
- Kim, Y.H.; Freeman, J.P.; Moody, J.D.; Engesser, K.H.; Cerniglia, C.E. Effects of PH on the Degradation of Phenanthrene and Pyrene by Mycobacterium Vanbaalenii PYR-1. Appl. Microbiol. Biotechnol. 2005, 67, 275–285. [Google Scholar] [CrossRef]
- Liang, Y.; Gardner, D.R.; Miller, C.D.; Chen, D.; Anderson, A.J.; Weimer, B.C.; Sims, R.C. Study of Biochemical Pathways and Enzymes Involved in Pyrene Degradation by Mycobacterium sp. Strain KMS. Appl. Environ. Microbiol. 2006, 72, 7821–7828. [Google Scholar] [CrossRef]
- Sarma, P.M.; Duraja, P.; Deshpande, S.; Lal, B. Degradation of Pyrene by an Enteric Bacterium, Leclercia Adecarboxylata PS4040. Biodegradation 2010, 21, 59–69. [Google Scholar] [CrossRef]
- Zheng, T.; Liu, R.; Chen, J.; Gu, X.; Wang, J.; Li, L.; Hou, L.; Li, N.; Wang, Y. Fire Phoenix Plant Mediated Microbial Degradation of Pyrene: Increased Expression of Functional Genes and Diminishing of Degraded Products. Chem. Eng. J. 2021, 407, 126343. [Google Scholar] [CrossRef]
- Agrawal, N.; Shahi, S.K. Degradation of Polycyclic Aromatic Hydrocarbon (Pyrene) Using Novel Fungal Strain Coriolopsis Byrsina Strain APC5. Int. Biodeterior. Biodegrad. 2017, 122, 69–81. [Google Scholar] [CrossRef]
- Lu, J.; Guo, C.; Zhang, M.; Lu, G.; Dang, Z. Biodegradation of Single Pyrene and Mixtures of Pyrene by a Fusant Bacterial Strain F14. Int. Biodeterior. Biodegrad. 2014, 87, 75–80. [Google Scholar] [CrossRef]
- Al Farraj, D.A.; Hadibarata, T.; Yuniarto, A.; Syafiuddin, A.; Surtikanti, H.K.; Elshikh, M.S.; Al Khulaifi, M.M.; Al-Kufaidy, R. Characterization of Pyrene and Chrysene Degradation by Halophilic Hortaea sp. B15. Bioprocess Biosyst. Eng. 2019, 42, 963–969. [Google Scholar] [CrossRef]
- Ma, J.; Xu, L.; Jia, L. Characterization of Pyrene Degradation by Pseudomonas sp. Strain Jpyr-1 Isolated from Active Sewage Sludge. Bioresour. Technol. 2013, 140, 15–21. [Google Scholar] [CrossRef]
- Rathour, R.; Gupta, J.; Tyagi, B.; Kumari, T.; Thakur, I.S. Biodegradation of Pyrene in Soil Microcosm by Shewanella sp. ISTPL2, a Psychrophilic, Alkalophilic and Halophilic Bacterium. Bioresour. Technol. Rep. 2018, 4, 129–136. [Google Scholar] [CrossRef]
- Swati; Ghosh, P.; Thakur, I.S. Biodegradation of Pyrene by Pseudomonas sp. ISTPY2 Isolated from Landfill Soil: Process Optimisation Using Box-Behnken Design Model. Bioresour. Technol. Rep. 2019, 8, 100329. [Google Scholar] [CrossRef]
- Swati; Kumari, M.; Ghosh, P.; Thakur, I.S. Evaluation of a Biosurfactant Producing Bacterial Strain Pseudomonas sp. ISTPY2 for Efficient Pyrene Degradation and Landfill Soil Bioremediation through Soil Microcosm and Proteomic Studies. Bioresour. Technol. Rep. 2020, 12, 100607. [Google Scholar] [CrossRef]
- Jin, J.; Yao, J.; Zhang, Q.; Liu, J. Biodegradation of Pyrene by Pseudomonas sp. JPN2 and Its Initial Degrading Mechanism Study by Combining the Catabolic NahAc Gene and Structure-Based Analyses. Chemosphere 2016, 164, 379–386. [Google Scholar] [CrossRef]
- Fernández-López, C.; Posada-Baquero, R.; García, J.L.; Castilla-Alcantara, J.C.; Cantos, M.; Ortega-Calvo, J.J. Root-Mediated Bacterial Accessibility and Cometabolism of Pyrene in Soil. Sci. Total Environ. 2021, 760, 143408. [Google Scholar] [CrossRef]
- Kashyap, N.; Moholkar, V.S. Intensification of Pyrene Degradation by Native Candida Tropicalis MTCC 184 with Sonication: Kinetic and Mechanistic Investigation. Chem. Eng. Process. Process Intensif. 2021, 164, 108415. [Google Scholar] [CrossRef]
- Ghosh, I.; Jasmine, J.; Mukherji, S. Biodegradation of Pyrene by a Pseudomonas Aeruginosa Strain RS1 Isolated from Refinery Sludge. Bioresour. Technol. 2014, 166, 548–558. [Google Scholar] [CrossRef]
- Nzila, A.; Ramirez, C.O.; Musa, M.M.; Sankara, S.; Basheer, C.; Li, Q.X. Pyrene Biodegradation and Proteomic Analysis in Achromobacter Xylosoxidans, PY4 Strain. Int. Biodeterior. Biodegrad. 2018, 130, 40–47. [Google Scholar] [CrossRef]
- Umar, Z.D.; Nor Azwady, A.A.; Zulkifli, S.Z.; Muskhazli, M. Effective Phenanthrene and Pyrene Biodegradation Using Enterobacter sp. MM087 (KT933254) Isolated from Used Engine Oil Contaminated Soil. Egypt. J. Pet. 2018, 27, 349–359. [Google Scholar] [CrossRef]
- Ghosh, I.; Mukherji, S. Substrate Interaction Effects during Pyrene Biodegradation by Pseudomonas Aeruginosa RS1. J. Environ. Chem. Eng. 2017, 5, 1791–1800. [Google Scholar] [CrossRef]
- Gupta, B.; Puri, S.; Thakur, I.S.; Kaur, J. Enhanced Pyrene Degradation by a Biosurfactant Producing Acinetobacter Baumannii BJ5: Growth Kinetics, Toxicity and Substrate Inhibition Studies. Environ. Technol. Innov. 2020, 19, 100804. [Google Scholar] [CrossRef]
- Jiang, B.; Chen, Y.; Xing, Y.; Lian, L.; Shen, Y.; Zhang, B.; Zhang, H.; Sun, G.; Li, J.; Wang, X.; et al. Negative Correlations between Cultivable and Active-yet-Uncultivable Pyrene Degraders Explain the Postponed Bioaugmentation. J. Hazard. Mater. 2022, 423, 127189. [Google Scholar] [CrossRef]
- Yang, W.; Hadibarata, T.; Mahmoud, A.H.; Yuniarto, A. Biotransformation of Pyrene in Soil in the Presence of Earthworm Eisenia Fetida. Environ. Technol. Innov. 2020, 18, 100701. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Li, L.; Lin, C.; Dong, W.; Shen, W.; Yong, X.; Jia, H.; Wu, X.; Zhou, J. Anaerobic Biodegradation of Pyrene by Klebsiella sp. LZ6 and Its Proposed Metabolic Pathway. Environ. Technol. 2020, 41, 2130–2139. [Google Scholar] [CrossRef]
- Giménez, B.N.; Conte, L.O.; Alfano, O.M.; Schenone, A.V. Paracetamol Removal by Photo-Fenton Processes at near-Neutral PH Using a Solar Simulator: Optimization by D-Optimal Experimental Design and Toxicity Evaluation. J. Photochem. Photobiol. A Chem. 2020, 397, 112584. [Google Scholar] [CrossRef]
- Dabrowska, D.; Kot-Wasik, A.; Namieśnik, J. Pathways and Analytical Tools in Degradation Studies of Organic Pollutants. Crit. Rev. Anal. Chem. 2005, 35, 155–176. [Google Scholar] [CrossRef]
- Krivobok, S.; Kuony, S.; Meyer, C.; Louwagie, M.; Willison, J.C.; Jouanneau, Y. Identification of Pyrene-Induced Proteins in Mycobacterium sp. Strain 6PY1: Evidence for Two Ring-Hydroxylating Dioxygenases. J. Bacteriol. 2003, 185, 3828–3841. [Google Scholar] [CrossRef]
- Maruyama, T.; Ishikura, M.; Taki, H.; Shindo, K.; Kasai, H.; Haga, M.; Inomata, Y.; Misawa, N. Isolation and Characterization of O-Xylene Oxygenase Genes from Rhodococcus Opacus TKN14. Appl. Environ. Microbiol. 2005, 71, 7705–7715. [Google Scholar] [CrossRef] [PubMed]
- Pagnout, C.; Frache, G.; Poupin, P.; Maunit, B.; Muller, J.F.; Férard, J.F. Isolation and Characterization of a Gene Cluster Involved in PAH Degradation in Mycobacterium sp. Strain SNP11: Expression in Mycobacterium Smegmatis Mc2155. Res. Microbiol. 2007, 158, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kweon, O.; Freeman, J.P.; Jones, R.C.; Adjei, M.D.; Jhoo, J.W.; Edmondson, R.D.; Cerniglia, C.E. Molecular Cloning and Expression of Genes Encoding a Novel Dioxygenase Involved in Low- and High-Molecular-Weight Polycyclic Aromatic Hydrocarbon Degradation in Mycobacterium Vanbaalenii PYR-1. Appl. Environ. Microbiol. 2006, 72, 1045–1054. [Google Scholar] [CrossRef]
- Adamou, J.E.; Heinrichs, J.H.; Erwin, A.L.; Walsh, W.; Gayle, T.; Dormitzer, M.; Dagan, R.; Brewah, Y.A.; Barren, P.; Lathigra, R.; et al. Identification and Characterization of a Novel Family of Pneumococcal Proteins That Are Protective against Sepsis. Infect. Immun. 2001, 69, 949–958. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, Y.; Zhou, N. A Newly Defined Dioxygenase System from Mycobacterium Vanbaalenii PYR-1 Endowed with an Enhanced Activity of Dihydroxylation of High-Molecular-Weight Polyaromatic Hydrocarbons. Front. Environ. Sci. Eng. 2020, 14, 1–11. [Google Scholar] [CrossRef]
- Levieux, J.A.; Medellin, B.; Johnson, W.H.; Erwin, K.; Li, W.; Johnson, I.A.; Zhang, Y.J.; Whitman, C.P. Structural Characterization of the Hydratase-Aldolases, NahE and PhdJ: Implications for the Specificity, Catalysis, and N-Acetylneuraminate Lyase Subgroup of the Aldolase Superfamily. Biochemistry 2018, 57, 3524–3536. [Google Scholar] [CrossRef]
- Kumari, S.; Regar, R.K.; Bajaj, A.; Ch, R.; Satyanarayana, G.N.V.; Mudiam, M.K.R.; Manickam, N. Simultaneous Biodegradation of Polyaromatic Hydrocarbons by a Stenotrophomonas Sp: Characterization of Nid Genes and Effect of Surfactants on Degradation. Indian J. Microbiol. 2017, 57, 60–67. [Google Scholar] [CrossRef]
- Saito, A.; Iwabuchi, T.; Harayama, S. A Novel Phenanthrene Dioxygenase from Nocardioides sp. Strain KP7: Expression in Escherichia Coli. J. Bacteriol. 2000, 182, 2134–2141. [Google Scholar] [CrossRef]
- Walter, U.; Beyer, M.; Klein, J.; Rehm, H. Appeal Microbiology Biote Nology Degradation of Pyrene by Rhodococcus sp. UW1. Power 1991, 671–676. [Google Scholar]
- Sakshi; Singh, S.K.; Haritash, A.K. Catabolic Enzyme Activity and Kinetics of Pyrene Degradation by Novel Bacterial Strains Isolated from Contaminated Soil. Environ. Technol. Innov. 2021, 23, 101744. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Xie, J.; Wei, H.; Hu, Z.; Wang, H. Pyrene Biodegradation and Its Potential Pathway Involving Roseobacter Clade Bacteria. Int. Biodeterior. Biodegrad. 2020, 150, 104961. [Google Scholar] [CrossRef]
- Khanna, G.P.; Goyal, D.; Khanna, S. Pyrene Biodegradation by Bacillus Spp. Isolated from Coal Tar-Contaminated Soil. Bioremediat. J. 2011, 15, 12–25. [Google Scholar] [CrossRef]
- Vasconcelos, M.R.S.; Vieira, G.A.L.; Otero, I.V.R.; Bonugli-Santos, R.C.; Rodrigues, M.V.N.; Rehder, V.L.G.; Ferro, M.; Boaventura, S.; Bacci, M.; Sette, L.D. Pyrene Degradation by Marine-Derived Ascomycete: Process Optimization, Toxicity, and Metabolic Analyses. Environ. Sci. Pollut. Res. 2019, 26, 12412–12424. [Google Scholar] [CrossRef]
Strain | Functional Genes | Reference |
---|---|---|
Mycobacterium sp. | NidA, NidA3 | [15] |
Mycobacterium sp. 6PY1 | PdoB2, PdoA1, PdoA2 | [24] |
Mycobacterium sp. JLS | NidB and NidA | [25] |
Mycobacterium sp. MCS | NidA and NidB | |
Mycobacterium sp. NJS-P | PdoAB | [26] |
Mycobacterium sp. S65 | PdoAB | |
Mycobacterium fortuitum | PhdA and PhdB | [27] |
Mycobacterium sp. PO1 and PO2 | NidA, PhdA, and NidA3 | [28] |
Mycobacterium sp. AP1-PYR | NidAB and PdoA2B2 | [29] |
Mycobacterium sp. MHP-1 | NidAB | [30] |
Mycobacterium sp. RJGII-135 | NahAc, BphA1, OrtolC1C2 | [31] |
Mycobacterium sp. KMS | PdoF | [32] |
Mycobacterium vanbaalenii PYR-1 | NidB, NidA, NidB2, PhdF, PhdG, NidD, PhdJ, PhtAb, PhtAc, PhtAd, PhtB, NidA3, NidB3 | |
Mycobacterium gilvum PYR-GCK | AraC | |
Mycobacterium sp. gilvum PYR10 | NidAB and NidA3B3 | [33] |
Mycobacterium sp. Pallens PYR15 | NidAB and NidA3B3 |
Strains | Accession No./or Reference No. | Biodegradation Matrix | Degradation % | Incubation Time | pH | Temperature (°C) | Concentration of Pyrene | References | |
---|---|---|---|---|---|---|---|---|---|
Mycobacterium strains | * | Pyrene-containing soil | 80 | 35 days | Around 8 | 25 | 60 mg/kg | Ranging from 8.9 × 109 to 1.9 × 1010 copies/g | [15] |
Myco66F/Myco600R | FN690762 and FN690936 | Pyrene-spiked soils | 81 | 60 days | 5.84 | 25 | 50 mg/kg | * | [17] |
Mycobacterium vanbaalenii PYR-1 | NR_074572.1 | Phosphate-based minimal medium | 100 | 24 h | * | * | 25 µM | OD600 = 1.0 | [18] |
Mycobacterium sp. KR2 | * | Mineral salts medium | 60 | 8 days | 7 | 20 | 0.5 mg/mL | OD578 = 0.5–0.6 | [21] |
Mycobacterium sp. PO1 and PO2 | PO1 (NZ_BLTG00000000.1) PO2 (NZ_BLTH00000000.1) | Carbon-free mineral medium (CFMM) culture | 100 | 6 days | * | 30 | 100 mg/L | 108 CFU/mL | [28] |
Novosphingobium pentaromativorans PY1 | |||||||||
3-Ochrobactrum sp. PW1 | |||||||||
4-Bacillus sp. FW1 | |||||||||
Mycobacterium sp. NJS-1 | AB548662 | Metal-modified montmorillonite | 93.6 | 3 days | 7 | 28 | 15 mg/L | 1.6 × 107 CFU/mL | [34] |
Micrococcus sp. PHE9 | AB548663 | Biofilms extracellular polymeric substances-extracted bacteria | 58 | 18 days | * | 28 | 100 mg/L | 1.6 × 108 CFU/mL | [35] |
Mycobacterium sp. NJS-P | |||||||||
Mycobacterium sp. WY10 | NZ_CP018043.1 | Mineral salts medium | 83 | 72 h | * | 28 | 50 mg/L | OD600 = 1.0 3 × 108 CFU/mL | [36] |
Mycobacterium sp. NJS-1 | AB548662.1 | Mineral medium | 90 | 7 days | Acidic condition | 28 | 200 mg/L | 1.6 × 107 CFU/mL | [37] |
Mycobacterium gilvum CP13 | KF378755 | Mineral salts medium | 95 | 7 days | Alkaline environment | 35 | 50 mg/L | OD600 = 0.5 | [38] |
2-Mycobacterium sp. denovo930873 | * | Agricultural soil | 80 | 35 days | * | 25 | 100 mg/kg | * | [39] |
Mycobacterium gilvum VM552 | ATCC 43909 | Pyrene present on the leaf surface of holm oak (Quercus ilex) | 17 | 2 weeks | * | 23± 2 | * | 104 cells/g | [40] |
Mycobacterium frederiksbergense | Taxonomy ID: 117567 | Batch shake flask experiments | 100 | 200 h | 7 | 28 | 1000 mg/L | * | [41] |
Mycobacterium frederiksbergense | Taxonomy ID: 117567 | Slurry phase and surfactant-aided systems | 100 | 6 days | 7 | 28 | 400 mg/L | * | [42] |
Mycobacterium sp. flavescens PYR-1 | * | Mineral salts medium | 38.8 | 2 weeks | Natural and 4 | 24 | 50 µg/ml | 2.2 × 107 cells/mL | [43] |
Mycobacterium sp. AP1 | JX239754 | Pyrene-mineral salts medium | Decreased from 180 to 50 µg/mL around 72 | 6 days | * | 25 | 180 µg/ml | * | [44] |
Mycobacterium sp. A1-PYR | X93183 | PYR in liquid medium | 33 | 7 days | * | 30 | 10 mg/L | OD600 = 1.0 | [45] |
Selenastrum capricornutum | X93183 | Soil extract (SE) medium | 100 | 14 days | 7 | * | 10 mg/L | 1.0 × 107 CFU/mL | [46] |
Mycobacterium sp. A1-PYR | |||||||||
Mycobacterium sp. A1-PYR | X93183 | Pyrene-mineral salts medium | 50 | 7 days | * | 30 | 10 mg/L | OD600 = 1.0 | [47] |
Sphingomonas sp. PheB4 | |||||||||
1-Mycobacterium monacense B9-21-178 | AF107039.2 | Liquid Culture | 100 | 20 days | * | 30 | 250 mg/L | 105–106 cells/mL | [48] |
2-Mycobacterium sp. KMS | AY083217 | ||||||||
3-Mycobacterium sp. JLS | AF387804 | ||||||||
4-Mycobacterium gilvum VM0442 | AF544636.1 | ||||||||
5-Mycobacterium gilvum VM0552 | AF544635 | ||||||||
6-Mycobacterium gilvum VM0504 | AF544634 | ||||||||
7-Mycobacterium gilvum VM0505 | AF544633 | ||||||||
8-Mycobacterium sp. PYR GCK | AY694989 | ||||||||
9-Mycobacterium petroleiphilum | UEGS01000001.1 | ||||||||
10-Mycobacterium chlorophenolicus PCP-1 | X79094 | ||||||||
1-Mycobacterium sp. PYR GCK | AY694989 | 94.3 | |||||||
2-Mycobacterium gilvum VM0583 | AF544637.1 | ||||||||
3-Mycobacterium gilvum VM0442 | AF544636.1 | ||||||||
4-Mycobacterium gilvum VM0552 | AF544635 | ||||||||
5-Mycobacterium gilvum iVM0504 | AF544634 | ||||||||
6-Mycobacterium gilvum VM0505 | AF544633 | ||||||||
7-Mycobacterium sp. BB1 | X81891 | ||||||||
8-Mycobacterium sp. HE5 | AJ012738 | ||||||||
9-Mycobacterium mucogenicum | AY457073.1 | ||||||||
1-Mycobacterium sp. JLS | AF387804 | 95.5 | |||||||
2-Mycobacterium monacense B9-21-178 | AF107039.2 | ||||||||
3-Mycobacterium vaccae VM0588 | AF544639.1 | ||||||||
4-Mycobacterium vaccae VM0587 | AF544638.1 | ||||||||
5-Mycobacterium sp. KMS | AY083217 | ||||||||
6-Mycobacterium sp. MCS | AF387803.1 | ||||||||
7-Mycobacterium doricum DSM 44339 | AF547917.1 | ||||||||
8-Mycobacterium doricum | AF264700.1 | ||||||||
9-Mycobacterium duvalii | NR_026073.1 | ||||||||
10-Mycobacterium duvalii CIP 104539 | AF547918.1 | ||||||||
Mycobacterium sp. RJGII-135 | AY216464.1 | Minimal basal salts medium | 50 | 4–8 h | * | * | 0.5 µg/mL | * | [49] |
Mycobacterium sp. MHP-1 | AB180481 | Carbon-free minimal medium | 50 | 7 days | 9 | 30 | Final concentration at 0.1% [w/v] | 3.9 × 109 CFU/mL | [30] |
1-Mycobacterium sp. gilvum PYR10 | * | Minimal media containing pyrene | 95 | 6 days | * | * | 100 mg/L | * | [33] |
2-Mycobacterium sp. pallens PYR15 | |||||||||
1-Mycobacterium | * | Bio-electrokinetic remediation | 54.3 | 91 days | 8 | Room temperature | 286 mg/kg | 107–108 CFU/g soil | [50] |
2-Aeromicrobium | |||||||||
3-Arenimonas | |||||||||
4-Bacillus | |||||||||
5-Hydrogenophaga | |||||||||
6-Azoarcus | |||||||||
7-Luteimonas | |||||||||
Mycobacterium sp. | * | Soil placed into culture dishes | 54.3 ± 1.7 | 21 days | Soil pH 6.6 | * | 120.2 ± 1.76 mg/kg | * | [51] |
Mycobacterium sp. B2 | * | Saline alkaline soils | 83.2 | 30 days | Soil pH 8.75 | 28 | 100 mg/L | * | [52] |
Mycobacterium gilvum CP13 | KF378755.1 | Mineral salts medium by LBL bio-microcapsules | 95 | 3 days | 7 | * | 10 mg/L | OD600 = 2.0 | [53] |
Mycobacterium gilvum IPF | AB491971 | Pyrene-basal salts medium | 100 | 3 days | 7.0–7.3 | 28 | 100 mg/L | OD600 = 0.02 | [54] |
Mycobacterium frederiksbergense | Taxonomy ID: 117567 | Slurry phase system | 100 | 200 h | 7 | 28 | 50 mg/L | * | [55] |
Mycobacterium gilvum VM552 | NR_118915.1 | Aqueous medium | 100 | 20 min | 5.8 | 23 | 8.4 ng/ml | OD600 = 0.019 | [56] |
Mycobacterium gilvum CP13 | KF378755 | Aqueous solution + modified peanut hull powder | 98 | 7 days | 7 | 30 | 10 mg/L | OD600 = 2.0 × 107 CFU/mL | [57] |
1-Mycobacterium barrassi | * | Aqueous solution + sediments | 92 | 25 days | 7 | 30 | 50 µg/kg Pyrene + phenanthrene | * | [58] |
2-Dyella ginsengisoli | |||||||||
3-Rhodococcus equi | |||||||||
4-Bacillus pumilus | |||||||||
5-Bacillus weihenstephanensis | |||||||||
6-Labrys sp. | |||||||||
Mycobacterium strains (NJS-1 and NJS-P) | (AB548662) for NJS-1 and (AB548663) for NJS-P | Liquid culture minimal medium | 87.9 and 92 for NJS-1 and NJS-P, respectively. | 2 weeks | 6.5–7 | 30 | 100 mg/L | 106 cells/g | [59] |
1-Mycobacterium fortuitum | U92089.1 | Pyrene-containing soil | 96.3 | 70 days | 7 | 30 | 962.7 mg/kg | 2.0 × 108 CFU/g | [60] |
2-Bacillus cereus | |||||||||
3-Microbacterium sp. | |||||||||
4-Gordonia polyisoprenivorans | |||||||||
5-Microbacteriaceae bacterium | |||||||||
Mycobacterium sp. PYR-1 | * | Experimental Microcosms | 74 mixture of PAHs including pyrene | 6 days | * | 24 | 916.7 µg/400 µl | 4.5 × 107 cells/mL | [61] |
Mycobacterium sp. S65 | AF544230 | Mineral salts medium | 60 | 96 h | * | 30 | 1 mg/L | 1.0 × 107 CFU/mL | [62] |
Mycobacterium sp. AP1 | JX239754 | Mineral medium | 11.5 | 30 days | * | 26 | 0.20 nmol/mL | * | [63] |
Mycobacterium sp. KMS | AY083217 | Microcosm system | Little to no pyrene mineralization | 10 days | * | 20 | 20 mg/155 µL | 1.0 × 108 CFU/mL | [64] |
Mycobacterium gilvum PYR-GCK | NCBI Taxonomy ID 350054 | Fluctuating environmental conditions | 70 | 48 h | 6.5 | * | 1.0 M | OD545 = 2.95 | [65] |
Mycobacterium sp. PYR-1 | ATCC 2676 | Aqueous pyrene solution | 50 | 25 h | 6.6 | 24 | 120 µg/L | * | [66] |
Mycobacterium sp. AP1 | JX239754 | Marine medium | 75 | 60 days | * | 26 | 200 mg/L | 2.0 × 107 CFU/mL | [67] |
Mycobacterium sp. | * | Mineral salts solution, | 50 | 2 to 3 days | 7 | 30 | 250 µg/mL | * | [68] |
1-Sphingomonas | * | Mineral salt medium | 100 | 14 days | 7.2 | 20 ± 2 | 10 mg/L for each phenanthrene, fluoranthene, and pyrene | OD600 = 3.0 | [69] |
2-Mycobacterium | |||||||||
3-Rhodococcus | |||||||||
4-Paracoccus | |||||||||
5-Pseudomonas |
Scheme 4040 | Metabolites | References |
---|---|---|
Leclercia adecarboxylata PS4040 | 1,2-phenanthrenedicarboxylic acid 2-carboxybenzaldehyde Ortho-phthalic acid 1-hydroxypyrene | [73] |
Fire Phoenix plant (Festuca spp.) mediated microbial | Phthalic acid dehydroxylated pyrene 1-hydroxypyrene 1-hydroxy-2-naphthoic acid Salicylic acid Benzoic acid | [74] |
Coriolopsis byrsina strain APC5 | Pyruvic acid Benzoic acid Benzoic acid 2-hydroxy pentyl ester Phenanthrene Pthalic acid diisopropylester 4,5-dihydroxy pyrene | [75] |
Fusant bacterial strain F14 fusion between Sphingomonas sp. GY2B and Pseudomonas sp. GP3A | 4,5-dihydropyrene | [76] |
Hortaea sp. B15 | Phthalic acid 1-Hydroxy-2-naphthoic acid | [77] |
Pseudomonas sp. strain Jpyr-1 | Phthalate 3,4-dihydrodiol Phthalate 1-hydroxy-2-naphthalene carboxylic acid 4-phenanthrene-carboxylic acid | [78] |
Shewanella sp. ISTPL2 | 4,5-dihydroxypyrene 2-carboxybenzalpyruvate Phthalic acid Salicylic acid | [79] |
Pseudomonas sp. ISTPY2 | Pyrene 4,5-Dihydroxypyren. 1,2-dihydroxynaphthalene 2,3-dihydroxybenzoate Phthalate Catechol | [80] |
Pseudomonas sp. ISTPY2 | Phthalate 4,5-dioxygenase Aldehyde dehydrogenase | [81] |
Pseudomonas sp. JPN2 | 4,5-dihydroxy-4,5-dihydropyrene 4-phenanthrol 1-hydroxy-2-naphthoic acid Phthalate | [82] |
Pseudomonas putida G7. | 1-hydroxypyrene Phthalic acid Benzoic acid Silylated derivatives | [83] |
Candida tropicalis MTCC 184 | Menthyl salicylate (methyl ester of salicyclic acid) | [84] |
Pseudomonas aeruginosa strain RS1 | Phenanthrene 4,5-dicarboxylate 4-oxa-Pyrene-5-one Dihydroxypyrene 4-Phenanthroic acid 4,5-Dihydroxyphthalate 2,2-Dicarboxy-6,6-dihydroxybiphenyl 4-Phenanthroic acid 3,4-Dihydroxyphenanthrene | [85] |
Achromobacter xylosoxidans PY4 strain | Monohydroxy pyrene 1-methoxyl-2-H-benzo[h]chromene-2-carboxylic acid 9,10-phenanthrenequinone 1-methoxyl-trans-2′-carboxybenzalpyruvate Dibutyl-phthalate | [86] |
Enterobacter sp. MM087 (KT933254) | Pyrene cis-4,5-dihydrodiol. 3,4-dihydroxyphenathrene Phthalate Pyruvic acid Acetic acid Formic acid | [87] |
Pseudomonas aeruginosa RS1 | Maphthalene 1-methylnaphthalen. | [88] |
Acinetobacter baumannii BJ5 | Benzyl benzoate Butyl octyl phthalate Phenol −2,4-bis(1,1-dimethylethyl) Phenol, 2,4-di-tert-butyl-Ethyl benzoate n-Propyl acetate | [89] |
Sphingomonas sp. YT1005 | 4-phenanthrenol Protocatechuic acid Phthalic acid 1-hydroxy-2-naphthoic acid 2-methylnaphthalene 2-hydroxy-2-H-benzo[h]chromene-2-carboxylic acid Dihydroxyphenanthrene cis-4,5-pyrene dihydrodiol Salicylic acid trans-2′-carboxybenzalpyruvate | [90] |
Earthworm Eisenia fetida | Pyrene-4,5-dione Phenanthrene-4-carboxylic acid Phenanthrene-4,5-dicarboxylic acid Phenanthrene-4-carboxylic acid Protocatechuic acid | [91] |
Klebsiella sp. LZ6 | 4,5-dihydro-phenanthrene Dibenzo-p-dioxin 4-hydroxycinnamate acid | [92] |
Metabolites | Fathead Minnow LC50 (96 h) | Ames Mutagenicity | |||
---|---|---|---|---|---|
Prediction Value: −log (mol/L) | Prediction Value: (mg/L) | Prediction Value: Log10 (mol/L) | Experimental Result | Prediction Result | |
1,2-phenanthrenedicarboxylic acid | * | * | 0.86 | * | Mutagenicity Positive |
2-carboxybenzaldehyde | 4.30 | 7.49 | 0.29 | * | Mutagenicity Negative |
1-hydroxypyrene | 5.45 | 0.77 | 0.76 | * | Mutagenicity Positive |
Phthalic acid | 3.69 | 34.15 | 0.14 | Mutagenicity Negative | Mutagenicity Negative |
Benzoic acid | 3.21 | 75.43 | −0.05 | Mutagenicity Negative | Mutagenicity Negative |
Salicylic acid | 3.34 | 63.62 | −0.08 | * | Mutagenicity Negative |
1-hydroxy-2-naphthoic acid | 3.77 | 31.97 | 0.17 | * | Mutagenicity Negative |
Pyruvic acid | 2.08 | 734.13 | 0.41 | * | Mutagenicity Negative |
4,5-dihydroxy pyrene | 5.13 | 1.73 | 0.50 | * | Mutagenicity Negative |
4,5-dihydropyrene | 6.33 | 9.50 × 10−2 | 0.98 | * | Mutagenicity Positive |
n-Propyl acetate | 3.06 | 89.38 | 0.19 | * | Mutagenicity Negative |
4-phenanthrene-carboxylic acid | 4.52 | 6.65 | 0.71 | * | Mutagenicity Positive |
Protocatechuic acid | 3.73 | 28.53 | 0.30 | * | Mutagenicity Negative |
1,2-dihydroxynaphthalene | 4.55 | 4.49 | 0.28 | * | Mutagenicity Negative |
2,3-dihydroxybenzoate | 3.71 | 29.86 | −0.04 | * | Mutagenicity Negative |
Dibenzo-p-dioxin | 4.53 | 5.40 | 0.23 | Mutagenicity Negative | Mutagenicity Negative |
Catechol | 3.81 | 17.19 | 0.29 | Mutagenicity Negative | Mutagenicity Negative |
4,5-dihydroxy-4,5-dihydropyrene | 5.03 | 2.21 | 0.15 | Mutagenicity Negative | Mutagenicity Negative |
4-phenanthrol | 5.80 | 0.31 | 0.76 | Mutagenicity Positive | Mutagenicity Positive |
Phenanthrene 4,5-dicarboxylate | * | * | 0.22 | * | Mutagenicity Negative |
4-oxa-Pyrene-5-one | 5.01 | 2.18 | 0.22 | Mutagenicity Negative | Mutagenicity Negative |
4,5-Dihydroxyphthalate | 3.58 | 51.61 | 0.47 | * | Mutagenicity Negative |
3,4-Dihydroxyphenanthrene | 6.05 | 0.19 | 0.60 | * | Mutagenicity Positive |
Monohydroxy pyrene | 5.45 | 0.77 | 0.76 | * | Mutagenicity Positive |
9,10-phenanthrenequinone | 4.30 | 10.47 | 0.52 | Mutagenicity Negative | Mutagenicity Positive |
Dibutyl-phthalate | 5.30 | 1.40 | 0.18 | Mutagenicity Negative | Mutagenicity Negative |
Naphthalene | 4.20 | 8.15 | * | Mutagenicity Negative | * |
1-methylnaphthalen | 4.32 | 6.74 | * | Mutagenicity Negative | * |
Benzyl benzoate | 4.86 | 2.92 | −0.05 | * | Mutagenicity Negative |
Butyl octyl phthalate | 4.70 | 6.68 | 0.03 | * | Mutagenicity Negative |
Phenanthrene-4,5-dicarboxylic acid | * | * | 0.22 | * | Mutagenicity Negative |
Naphthalene-1,2-dicarboxylic acid | 3.93 | 25.69 | 0.10 | * | Mutagenicity Negative |
Primers | Sequences | Probable Functions | References |
---|---|---|---|
NidA3 | Forward 5′-CCTGATGCGACGACAATG-3′ | Fluoranthene/pyrene ring-hydroxylating oxygenase, α subunit | [15] |
Reverse 5′-GCAACCCTAGCCGACTCTT-3′ | |||
NidA | Forward 5′-TTCCCGAGTACGAGGGATAC-3′ | α Subunit pyrene dioxygenase | [17] |
Reverse 5′-TCACGTTGATGAACGACAAA-3′ | |||
NidB2 | * | Pyrene/phenanthrene ring-hydroxylating oxygenase, β subunit | [18] |
NidB3 | Reverse 5′-GCCGAGCTCGAATTCGGATCCTTAGATCCAGAATGACAG-3′ | Fluoranthene/pyrene ring-hydroxylating oxygenase,β subunit | |
PdoAB | Forward 5′-GTATCCATGGGCAACGCGGTCGCGGTGGAC-3′ | α Subunit pyrene dioxygenase | [26] |
Reverse 5′-ACGGATCCTCATCGAGCACCGCCGCGGAACTG-3′ | |||
PdoA1 | Forward 5′-GGCATATGCAAACGGAAACGACCGA-3′ | α Subunit pyrene dioxygenase | [95] |
Reverse 5′-GGGATATCTCAAGCACGCCCGCCGAATG-3′ | |||
PdoA2B2 | Forward 5′-GGCATATGTCTACTGTCGGTAAGAA-3′ | α Subunit pyrene dioxygenase | |
Reverse 5′-GGAGATCTTAGAAGAAGTTAGCCAG-3′ | |||
PdoB1 | Forward 5′-GGCATATGAACGCCGTTGCCGTGGA-3′ | Pyrene/phenanthrene ring-hydroxylating oxygenase, β subunit | |
Reverse 5′-GGGGATCCTACAGGACTACCGACAG-3′ | |||
PdoA2B2 | A2-Forward 5′-GGCATATGTCTACTGTCGGTAAGAA-3′ | Catalysis of hydroxylation of HMW and LMW polyaromatic hydrocarbons including pyrene. | |
B2-Reverse 5′-GGAGATCTTAGAAGAAGTTAGCCAG-3′ | |||
TolC1C2 | Forward 5′-TGAATCAGACCGACACATCAC-3′ | Small subunits of toluene dioxygenase | [62] |
Reverse 5′-TGTTACGGCGCAACGTATC-3′ | |||
NahAc | Forward 5′-GCCAAAAGCACCTGA-3′ | Naphthalene dioxygenase | |
Reverse 5′-TCTTCGTAAGTTCAGTATGCC-3′ | |||
BphA1 | Forward 5′-GTGCAGGGAGCCCCTGTGAAG-3′ | Large subunit of biphenyl dioxygenase | |
Reverse 5′-CAGGGCTTGAGCGTGGCCCAGC-3′ | |||
PdoB2 | Forward 5′-CCGCTGCGAGATGGAGAAC-3′ | β Subunit dioxygenase | [63] |
Reverse 5′-CGTGAGGGCGGATCTTCTG-3 | |||
PdoF | Forward 5′-GCACCACCTTCTGACCGTAA-3′ | Putative extradiol dioxygenase | [65] |
Reverse 5′-TTGGGTTTGAGGTGGGAACC-3′ | |||
PhdI | Forward 5′-TGACGAAGTGATGGGTGCTC-3′ | 1-Hydroxy-2-naphthoate dioxygenase | |
Reverse 5′-AGTGCCGTGTATTTCGTCGT-3′ | |||
NidAB | Forward 5′-CGCGGATCCATGCTGAGCAACGAACTCCGGCAGACCCTCC-3′ | α Subunit pyrene dioxygenase | [96] |
Reverse 5′-AAAACTGCAGATTCACATGATCAGGGCGAGGTTGTGTGTCATT-3′ | |||
NidB | Forward 5′-TCGTCACCAACTTCAAGTC-3′ | β Subunit of arene dioxygenase | |
Reverse 5′-GGTCTGATCAAGCAGCACAA-3′ | |||
AraC | Forward 5′-GGACTACCTCGGCGATATGA-3′ | Transcriptional regulatory protein, AraC family | |
Reverse 5′-TGTGGACGTGCTCTCCATAG-3′ | |||
PdoA2 | Forward 5′-ACGCAGAACTCCACAAGCTC-3′ | Phenanthrene ring-hydroxylating oxygenase, subunit | [97] |
Reverse 5′-ACTTCCATCGTGTCGTGTGA-3′ | |||
NidA3B3 | Forward 5′-ACATATGGCGCCTGATGCGACGACAATG-3′ | Fluoranthene/pyrene ring-hydroxylating oxygenase | [98] |
Reverse 5′-CAAGCTTTTAGATCCAGAATGACAGGTT-3′ | |||
PhtAb | Forward 5′-ATCGGATCCTTCTTACGAGTTGGGACTGTATCAAGC-3′ | Oxygenase reductase component | [99] |
Reverse 5′-AGGTCGAGAAAGCTTTTACTTACTCTCCTTTAATAAAGCCAATAG-3′ | |||
PhtB | Forward 5′-TGCCCTAAGTGTTTGTCCCGGGTCCTATGAGCT-3′ | Phthalate 3,4-dihydrodiol dehydrogenase | |
Reverse 5′-AGGTCGAGAAAGCTTTTACTTACTCTCCTTTAATAAAGCCAATAG-3′ | |||
PhtAd | Forward 5′-ATCGGATCCTTCTTACGAGTTGGGACTGTATCAAGC-3′ | Oxygenase reductase component | |
Reverse 5′-AAGCTTTTACTATATAGGAGCCGGTTGACT-3′ | |||
PhtAc | Forward 5′-TCATCACCACAGCCAGGATCCGATGGGCGGAGTTATAAA-3′ | Oxygenase ferredoxin component | [100] |
Reverse 5′-GCATTATGCGGCCGCAAGCTTTCATTCGTCTACGACTTC-3′ | |||
PhdJ | Forward 5′-5′-CGAGAGAGCATATGGTGCACGT-3′ | trans-2-Carboxylbenzalpyruvate hydratase-aldolase | [101] |
Reverse 5′-TCCTCAGGATCCGTGGTTCGAGAC-3’ | |||
NidD | Forward 5′-ATGATCAGCAACCTGA-3′ | Aldehyde dehydrogenase | [102] |
PhdG | * | Hydratase-aldolase | |
PhdA | Forward 5′-GGGAATTCCATATGTCGGTAGTCAGCGGGGAT-3′ | α and β subunits of other ring-hydroxylating dioxygenases | [103] |
Reverse 5′-CCGGAATTCGGTCGCAACTCATAAGACAGC-3′ | |||
PhdB | Forward 5′-CCGGAAT TCAAGGAGATATACATATGC TGAC TAC TG T TGACGAGAATC-3′ | ||
Reverse 5′-CGCGGATCCAGATCTGCCTGCGGGCTAGAAG AAGAACGC-3′ | |||
MT1743 | * | Catechol O-methyltransferase |
P1 | MW = 90.12 | P2 | MW = 142.15 | P3 | MW = 142.11 | P4 | MW = 141.10 | P5 | MW = 250.29 |
P6 | MW = 88.06 | P7 | MW = 166.13 | P8 | MW = 194.18 | P9 | MW = 122.12 | P10 | MW = 206.28 |
P11 | MW = 190.19 | P12 | MW = 150.13 | P13 | MW = 110.11 | P14 | MW = 154.12 | P15 | MW = 154.12 |
P16 | MW = 232.23 | P17 | MW = 198.13 | P18 | MW = 220.18 | P19 | MW = 138.12 | P20 | MW = 122.12 |
P21 | MW = 170.25 | P22 | MW = 160.17 | P23 | MW = 172.18 | P24 | MW = 200.15 | P25 | MW = 170.16 |
P26 | MW = 142.20 | P27 | MW = 220.18 | P28 | MW= 178.23 | P29 | MW = 128.17 | P30 | MW = 302.24 |
P31 | MW = 242.23 | P32 | MW = 242.23 | P33 | MW = 270.24 | P34 | MW = 216.19 | P35 | MW = 242.23 |
P36 | MW = 244.24 | P37 | MW = 188.18 | P38 | MW = 210.23 | P39 | MW = 278.30 | P40 | MW = 274.23 |
P41 | MW = 216.19 | P42 | MW = 208.21 | P43 | MW = 214.26 | P44 | MW = 222.24 | P45 | MW = 270.24 |
P46 | MW = 210.23 | P47 | MW = 266.25 | P48 | MW = 266.25 | P49 | MW = 210.23 | P50 | MW = 267.27 |
P51 | MW = 178.23 | P52 | MW = 194.23 | P53 | MW = 238.24 | P54 | MW = 255.25 | P55 | MW = 256.25 |
P56 | MW = 234.2 | P57 | MW = 220.27 | P58 | MW = 250.2 | P59 | MW = 241.22 | P60 | MW = 242.23 |
P61 | MW = 202 | P62 | MW = 238.2 | P63 | MW = 234.2 | P64 | MW = 238.2 | P65 | MW = 270.28 |
P66 | MW = 264.32 | P67 | MW = 220.22 | P68 | MW = 236.26 | P69 | MW = 218.25 | P70 | MW = 249.28 |
P71 | MW = 266.25 | P72 | MW = 208.25 | P73 | MW = 122.12 | P74 | MW = 218.25 | P75 | MW = 192.17 |
Organism | Active Enzyme/Gene | Proposed Pathways | References |
---|---|---|---|
Mycobacterium vanbaalenii PYR-1 | * | [18] | |
Mycobacterium vanbaalenii PYR-1 | PhdF, PhdG, PhdI, PhdJ, NidA3, NidAB, NidD, PhtAa, PhtB, and PhtAc | [22] | |
Mycobacterium vanbaalenii PYR-1 | NidAB, PhdE, PhtC, PdoA2B2, PhdF, PhdG, NidD, PhdJ, PhtAaB, PhtB, and PcaGH | [24] | |
Mycobacterium sp. KMS | |||
Coriolopis byrsina APC5 | * | ||
Mycobacterium spp. PO1 and PO2 | NidA, PhdA, and NidA3 | [28] | |
Mycobacterium sp. flavescens PYR-1 | * | [43] | |
Mycobacterium sp. A1-PYR | Monooxygenases and Dioxygenases | [45] | |
Many bacterial strains including Mycobacterium | * | [50] | |
Mycobacterium aromativorans Strain JS19b1 | * | [70] | |
Mycobacterium vanbaalenii PYR-1 | * | [71] | |
Leclerciaadecarboxylata PS4040 | * | [73] | |
Coriolopsis byrsina strain APC5 | laccase, LiP and MnP | [75] | |
Halophilic Hortaea sp. B15 | Dioxygenase | [77] | |
Pseudomonas sp. ISTPY2 | * | [80] | |
Achromobacterxylosoxidans PY4 strain | 4-hydroxyphenylpyruvate dioxygenase and homogentisate 1,2-dioxygenase | [86] | |
Enterobacter sp. MM087 (KT933254) | * | [87] | |
Consortium microbes | NidA, NidA3, and PAH-RHDα-GP) | [90] | |
Earthworm (Eisenia fetida) | Peroxidase, Laccase, Invertase, Glucosidase, Phosphatase, Phytase, Urease, Hydrolase, Chitinase, Nitrogenase, Aminopeptidase, and Arylsulfatase. | [91] | |
Rhodococcus sp. UW1 | * | [104] | |
Kocuria flava and Rhodococcus pyridinivorans | catechol 2,3-dioxygenase, dehydrogenase, and peroxidase | [105] | |
Ruegeria pomeroyi DSS-3, Dinoroseobacter shibae DFL 12, and Pelagibaca bermudensis HTCC2601 | PahE | [106] | |
Rhodococcus sp. | MboI, RsaI, and AluI. | [107] | |
Tolypocladium sp. strain CBMAI 1346and Xylaria sp. CBMAI 1464 | Many enzymes for example (phenol 2-monooxygenase, epoxide hydrolases, and some dioxygenases) | [108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qutob, M.; Rafatullah, M.; Muhammad, S.A.; Alosaimi, A.M.; Alorfi, H.S.; Hussein, M.A. A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix. Fermentation 2022, 8, 260. https://doi.org/10.3390/fermentation8060260
Qutob M, Rafatullah M, Muhammad SA, Alosaimi AM, Alorfi HS, Hussein MA. A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix. Fermentation. 2022; 8(6):260. https://doi.org/10.3390/fermentation8060260
Chicago/Turabian StyleQutob, Mohammad, Mohd Rafatullah, Syahidah Akmal Muhammad, Abeer M. Alosaimi, Hajer S. Alorfi, and Mahmoud A. Hussein. 2022. "A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix" Fermentation 8, no. 6: 260. https://doi.org/10.3390/fermentation8060260
APA StyleQutob, M., Rafatullah, M., Muhammad, S. A., Alosaimi, A. M., Alorfi, H. S., & Hussein, M. A. (2022). A Review of Pyrene Bioremediation Using Mycobacterium Strains in a Different Matrix. Fermentation, 8(6), 260. https://doi.org/10.3390/fermentation8060260