Moderate-Temperature Carbon Capture Using Thermally Pre-Treated Dolomite: A Novel Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorbent Preparation
2.1.1. Sorbent Activation
2.1.2. CO2 Concentration Effect and Multicycle Tests
2.1.3. CO2 Sorption Repeatability Analysis
2.2. Characterization Methods
2.2.1. Inductively Coupled Plasma Optical Emission Spectroscopy
2.2.2. Scanning Electron Microscopy
2.2.3. Surface Area and Porosity Analyses
2.2.4. Powder X-Ray Diffraction
2.2.5. Fourier-Transform Infra-Red Spectroscopy
2.2.6. Raman Spectroscopy
2.2.7. X-Ray Photoelectron Spectroscopy
2.2.8. Ultraviolet-Visible Spectroscopy
3. Results and Discussion
3.1. Inductively Coupled Plasma Optical Emission Spectroscopy Results
3.2. Scanning Electron Microscopy Results
3.3. Thermal Decomposition of Dolomite
3.3.1. Thermogravimetric Analysis Results
3.3.2. Powder X-Ray Diffraction Results
3.4. Surface Area and Porosity Analyses Results
3.5. The Effect of Time on the Calcination of Dolomite
3.6. Sorption Performance, CO2 Concentration Effect, and Multicycle Tests
3.6.1. The Sorption Performance of the Thermally Pre-Treated Dolomite
3.6.2. Multicycle Tests of the Thermally Pre-Treated Dolomite Sorbent
3.7. Microstructural and Spectroscopic Characterizations
3.7.1. Fourier-Transform Infra-Red Spectroscopy
3.7.2. Powder X-Ray Diffraction
3.7.3. Raman Spectroscopy
3.7.4. X-Ray Photoelectron Spectroscopy
3.7.5. Ultraviolet-Visible Spectroscopy
4. Role of Crystalline Defects
5. Proposed Carbon-Capture Mechanism
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ICCC | Integrated carbon capture and conversion |
CCU | Carbon capture and utilization |
DFM | Dual-function material |
DRM | Dry reforming of methane |
ICP-OES | Inductively coupled plasma optical emission spectroscopy |
TSS | Temperature-swing sorption |
SEM-EDS | Scanning electron microscopy–energy-dispersive spectroscopy |
XRD | X-ray diffraction |
ICDD | International Centre for Diffraction Data |
BET | Brunauer–Emmett–Teller |
BJH | Barrett–Joyner–Halenda |
FT-IR | Fourier-Transform Infra-Red |
XPS | X-ray photoelectron spectroscopy |
UV-vis | Ultraviolet-visible spectroscopy |
TGA | Thermogravimetric analysis |
HOMO | Highest occupied molecular orbital |
LUMO | Lowest unoccupied molecular orbital |
References
- Li, F.; Hemmati, A.; Rashidi, H. Industrial CO2 absorption into methyldiethanola-mine/piperazine in place of monoethanolamine in the absorption column. Process Saf. Environ. Prot. 2020, 142, 83–91. [Google Scholar] [CrossRef]
- Skoufa, Z.; Antzara, A.; Milios, I.; Heracleous, E.; Lemonidou, A.A. CaO-Based Sorbents for Post Combustion CO2 Capture via Carbonate Looping. In Energy, Transportation and Global Warming; Springer: Cham, Switzerland, 2016; pp. 571–589. [Google Scholar] [CrossRef]
- Samanta, A.; Zhao, A.; Shimizu, G.K.H.; Sarkar, P.; Gupta, R. Post-combustion CO2 capture using solid sorbents: A review. Ind. Eng. Chem. Res. 2012, 51, 1438–1463. [Google Scholar] [CrossRef]
- Abanades, J.C.; Anthony, E.J.; Lu, D.Y.; Salvador, C.; Alvarez, D. Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE J. 2004, 50, 1614–1622. [Google Scholar] [CrossRef]
- Chen, J.; Duan, L.; Sun, Z. Review on the Development of Sorbents for Calcium Looping. Energy Fuels 2020, 34, 7806–7836. [Google Scholar] [CrossRef]
- Heidari, M.; Tahmasebpoor, M.; Antzaras, A.; Lemonidou, A.A. CO2 capture and fluidity per-formance of CaO-based sorbents: Effect of Zr, Al and Ce additives in tri-, bi- and mono-metallic configurations. Process Saf. Environ. Prot. 2020, 144, 349–365. [Google Scholar] [CrossRef]
- Elvira, G.B.; Francisco, G.C.; Víctor, S.M.; Alberto, M.L.R. MgO-based adsorbents for CO2 adsorption: Influence of structural and textural properties on the CO2 adsorption performance. J. Environ. Sci. 2017, 57, 418–428. [Google Scholar] [CrossRef]
- Su, Y.; Han, R.; Gao, J.; Wei, S.; Sun, F.; Zhao, G. Novel method for regeneration/reactivation of spent dolomite-based sorbents from calcium looping cycles. Chem. Eng. J. 2019, 360, 148–156. [Google Scholar] [CrossRef]
- Fedunik-Hofman, L.; Bayon, A.; Hinkley, J.; Lipiński, W.; Donne, S.W. Friedman method kinetic analysis of CaO-based sorbent for high-temperature thermochemical energy storage. Chem. Eng. Sci. 2019, 200, 236–247. [Google Scholar] [CrossRef]
- Gruene, P.; Belova, A.G.; Yegulalp, T.M.; Farrauto, R.J.; Castaldi, M.J. Dispersed calcium oxide as a reversible and efficient CO2 sorbent at intermediate temperatures. Ind. Eng. Chem. Res. 2011, 50, 4042–4049. [Google Scholar] [CrossRef]
- Abanades, J.C.; Alvarez, D. Conversion limits in the reaction of CO2 with lime. Energy Fuels 2003, 17, 308–315. [Google Scholar] [CrossRef]
- Sarrión, B.; Perejón, A.; Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Valverde, J.M. Role of cal-cium looping conditions on the performance of natural and synthetic Ca-based materials for energy storage. J. CO2 Util. 2018, 28, 374–384. [Google Scholar] [CrossRef]
- Benitez-Guerrero, M.; Valverde, J.M.; Sanchez-Jimenez, P.E.; Perejon, A.; Perez-Maqueda, L.A. Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concen-trated Solar Power plants. Sol. Energy 2017, 153, 188–199. [Google Scholar] [CrossRef]
- Lan, P.; Wu, S. Synthesis of a Porous Nano-CaO/MgO-Based CO2 Adsorbent. Chem. Eng. Technol. 2014, 37, 580–586. [Google Scholar] [CrossRef]
- Radfarnia, H.R.; Iliuta, M.C. Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation. Chem. Eng. J. 2013, 232, 280–289. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, W.; Sun, J.; Li, M.; Yang, X.; Zhang, Y.; Xu, M. Incorporation of CaO into novel Nd2O3 inert solid support for high temperature CO2 capture. Chem. Eng. J. 2015, 273, 333–343. [Google Scholar] [CrossRef]
- Ridha, F.N.; Manovic, V.; Macchi, A.; Anthony, M.A.; Anthony, E.J. Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles. Fuel Process. Technol. 2013, 116, 284–291. [Google Scholar] [CrossRef]
- Li, Y.-J.; Zhao, C.-S.; Duan, L.-B.; Liang, C.; Li, Q.-Z.; Zhou, W.; Chen, H.-C. Cyclic calcina-tion/carbonation looping of dolomite modified with acetic acid for CO2 capture. Fuel Process. Technol. 2008, 89, 1461–1469. [Google Scholar] [CrossRef]
- Manovic, V.; Anthony, E.J. Carbonation of CaO-based sorbents enhanced by steam addition. Ind. Eng. Chem. Res. 2010, 49, 9105–9110. [Google Scholar] [CrossRef]
- Materić, V.; Symonds, R.; Lu, D.; Holt, R.; Manović, V. Performance of hydration reactivated Ca looping sorbents in a pilot-scale, oxy-fired dual fluid bed unit. Energy Fuels 2014, 28, 5363–5372. [Google Scholar] [CrossRef]
- Valverde, J.M.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A. Effect of heat pretreat-ment/recarbonation in the Ca-looping process at realistic calcination conditions. Energy Fuels 2014, 28, 4062–4067. [Google Scholar] [CrossRef]
- Hong, L.; Khan, A.; Pratsinis, S.E.; Smirniotis, P.G. Flame-made durable doped-CaO nanosorbents for CO capture. Energy Fuels 2009, 23, 1093–1100. [Google Scholar]
- Liu, W.G.; Low, N.W.L.; Feng, B.; Wang, G.; Da Costa, J.C.D. Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. Environ. Sci. Technol. 2010, 44, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, X.S.; Duan, Y.; King, D.L.; Singh, P.; Li, L. Roles of double salt formation and NaNO3 in Na2CO3-promoted MgO absorbent for intermediate temperature CO2 removal. Int. J. Greenh. Gas Control 2013, 12, 351–358. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Xiao, Y. Effect of NaNO3 on MgO-CaCO3 absorbent for CO2 capture at warm temperature. Energy Fuels 2013, 27, 7645–7653. [Google Scholar] [CrossRef]
- Gao, W.; Zhou, T.; Gao, Y.; Louis, B.; O’Hare, D.; Wang, Q. Molten salts-modified MgO-based ad-sorbents for intermediate-temperature CO2 capture: A review. J. Energy Chem. 2017, 26, 830–838. [Google Scholar] [CrossRef]
- Li, Z.S.; Cai, N.S.; Huang, Y.Y.; Han, H.J. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent. Energy Fuels 2005, 19, 1447–1452. [Google Scholar] [CrossRef]
- Radfarnia, H.R.; Sayari, A. A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol–gel technique. Chem. Eng. J. 2015, 262, 913–920. [Google Scholar] [CrossRef]
- Broda, M.; Müller, C.R. Synthesis of Highly Efficient, Ca-Based, Al2O3-Stabilized, Carbon Gel-Templated CO2 Sorbents. Adv. Mater. 2012, 24, 3059–3064. [Google Scholar] [CrossRef]
- Li, Z.S.; Cai, N.S.; Huang, Y.Y. Effect of preparation temperature on cyclic CO2 capture and multiple carbonation-calcination cycles for a new Ca-based CO2 sorbent. Ind. Eng. Chem. Res. 2006, 45, 1911–1917. [Google Scholar] [CrossRef]
- Barelli, L.; Bidini, G.; Di Michele, A.; Gallorini, F.; Petrillo, C.; Sacchetti, F. Synthesis and test of sorbents based on calcium aluminates for SE-SR. Appl. Energy 2014, 127, 81–92. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Gao, W.; Harada, T.; Qin, Q.; Zheng, Q.; Hatton, T.A.; Wang, Q. Alkali Carbonate Molten Salt Coated Calcium Oxide with Highly Improved Carbon Dioxide Capture Capacity. Energy Technol. 2017, 5, 1328–1336. [Google Scholar] [CrossRef]
- Takahashi, Y.; Sakamoto, R.; Kamimoto, M. Heat capacities and latent heats of LiNO3, NaNO3, and KNO3. Int. J. Thermophys. 1988, 9, 1081–1090. [Google Scholar] [CrossRef]
- Yang, Y.; Asta, M.; Laird, B.B. Solid-liquid interfacial premelting. Phys. Rev. Lett. 2013, 110, 096102. [Google Scholar] [CrossRef]
- Albrecht, K.O.; Wagenbach, K.S.; Satrio, J.A.; Shanks, B.H.; Wheelock, T.D. Development of a CaO-based CO2 sorbent with improved cyclic stability. Ind. Eng. Chem. Res. 2008, 47, 7841–7848. [Google Scholar] [CrossRef]
- Hu, Y.; Lu, H.; Liu, W.; Yang, Y.; Li, H. Incorporation of CaO into inert supports for enhanced CO2 capture: A review. Chem. Eng. J. 2020, 396, 125253. [Google Scholar] [CrossRef]
- Li, L.; King, D.L.; Nie, Z.; Howard, C. Magnesia-stabilized calcium oxide absorbents with im-proved durability for high temperature CO2 capture. Ind. Eng. Chem. Res. 2009, 48, 10604–10613. [Google Scholar] [CrossRef]
- Guo, H.; Xu, Z.; Jiang, T.; Zhao, Y.; Ma, X.; Wang, S. The effect of incorporation Mg ions into the crystal lattice of CaO on the high temperature CO2 capture. J. CO2 Util. 2020, 37, 335–345. [Google Scholar] [CrossRef]
- Teixeira, P.; Fernandes, A.; Ribeiro, F.; Pinheiro, C.I.C. Blending wastes of marble powder and dolomite sorbents for calcium-looping CO2 capture under realistic industrial calcination conditions. Materials 2021, 14, 4379. [Google Scholar] [CrossRef]
- Valverde, J.M.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A.; Quintanilla, M.A.S.; Perez-Vaquero, J. Role of crystal structure on CO2 capture by limestone derived CaO subjected to carbona-tion/recarbonation/calcination cycles at Ca-looping conditions. Appl. Energy 2014, 125, 264–275. [Google Scholar] [CrossRef]
- Sanchez-Jimenez, P.E.; Valverde, J.M.; Perez-Maqueda, L.A. Multicyclic conversion of limestone at Ca-looping conditions: The role of solid-sate diffusion controlled carbonation. Fuel 2014, 127, 131–140. [Google Scholar] [CrossRef]
- Valverde, J.M.; Perejon, A.; Medina, S.; Perez-Maqueda, L.A. Thermal decomposition of dolomite under CO2: Insights from TGA and in situ XRD analysis. Phys. Chem. Chem. Phys. 2015, 17, 30162–30176. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Thomas, P.S.; Ray, A.S.; Guerbois, J.P. A TG Analysis of the Effect of Calcination Condi-tions on the Properties of Reactive Magnesia. J. Therm. Anal. Calorim. 2007, 88, 145–149. [Google Scholar] [CrossRef]
- Sun, J.; Liu, W.; Li, M.; Yang, X.; Wang, W.; Hu, Y.; Chen, H.; Li, X.; Xu, M. Mechanical Modification of Naturally Occurring Limestone for High-Temperature CO2 Capture. Energy Fuels 2016, 30, 6597–6605. [Google Scholar] [CrossRef]
- Song, G.; Zhu, X.; Chen, R.; Liao, Q.; Ding, Y.D.; Chen, L. Influence of the precursor on the porous structure and CO2 adsorption characteristics of MgO. RSC Adv. 2016, 6, 19069–19077. [Google Scholar] [CrossRef]
- Dunstan, M.T.; Donat, F.; Bork, A.H.; Grey, C.P.; Müller, C.R. CO2 Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances. Chem. Rev. 2021, 121, 12681–12745. [Google Scholar] [CrossRef]
- Luo, T.; Liu, S.; Luo, C.; Qi, X.; Lu, B.; Zhang, L. Effect of different organic compounds on the preparation of CaO-based CO2 sorbents derived from wet mixing combustion synthesis. Chin. J. Chem. Eng. 2021, 36, 157–169. [Google Scholar] [CrossRef]
- Afandi, N.; Satgunam, M.; Mahalingam, S.; Manap, A.; Nagi, F.; Liu, W.; Johan, R.B.; Turan, A.; Tan, A.W.-Y.; Yunus, S. Review on the modifications of natural and industrial waste CaO based sorbent of calcium looping with enhanced CO2 capture capacity. Heliyon 2024, 10, e24119. [Google Scholar] [CrossRef]
- Rajamathi, R.; Bhojaraj; Nethravathi, C. Porous CaO-MgO Nanostructures for CO2 Capture. ACS Appl. Nano Mater. 2021, 4, 10969–10975. [Google Scholar] [CrossRef]
- Xu, Z.; Jiang, T.; Zhang, H.; Zhao, Y.; Ma, X.; Wang, S. Efficient MgO-doped CaO sorbent pellets for high temperature CO2 capture. Front. Chem. Sci. Eng. 2021, 15, 698–708. [Google Scholar] [CrossRef]
- Wang, K.; Gu, F.; Clough, P.T.; Zhao, P.; Anthony, E.J. Porous MgO-stabilized CaO-based pow-ders/pellets via a citric acid-based carbon template for thermochemical energy storage in con-centrated solar power plants. Chem. Eng. J. 2020, 390, 124163. [Google Scholar] [CrossRef]
- Morales-Mendoza, J.E.; Jasso-Salcedo, A.B.; Domínguez-Arvizu, J.L.; Ibarra-Rodriguez, L.I.; Hernández-Majalca, B.C.; Bueno-Escobedo, J.L.; Salami, H.A.; Alalade, I.G.; Gaxiola-Cebreros, F.A.; Pérez-Hernández, L.; et al. CO2 sorption and multicycle stability of dolomite promoted with Ba and Sr metals for sorption enhanced hydrogen production. Int. J. Hydrogen Energy, 2025, in press. [CrossRef]
- Herce, C.; Stendardo, S.; Cortés, C. Increasing CO2 carrying capacity of dolomite by means of thermal stabilization by triggered calcination. Chem. Eng. J. 2015, 262, 18–28. [Google Scholar] [CrossRef]
- Wardhani, S.; Prasetia, F.; Khunur, M.M.; Purwonugroho, D.; Prananto, Y.P. Effect of CO2 Flow Rate and Carbonation Temperature in the Synthesis of Crystalline Precipitated Calcium Carbonate (PCC) from Limestone. Indones. J. Chem. 2018, 18, 573–579. [Google Scholar] [CrossRef]
- Widiarti, N.; Holilah, H.; Bahruji, H.; Nugraha, R.E.; Suprapto, S.; Ni’mah, Y.L.; Prasetyoko, D. Coprecipitation and hydrothermal synthesis of CaO from dolomite in the presence of Sapindus rarak extract for biodiesel production: Catalysts characterization and optimization. RSC Adv. 2024, 14, 23332–23340. [Google Scholar] [CrossRef] [PubMed]
- Koga, N.; Criado, J.M. The influence of mass transfer phenomena on the kinetic analysis for the thermal decomposition of calcium carbonate by constant rate thermal analysis (CRTA) under vacuum. Int. J. Chem. Kinet. 1998, 30, 737–744. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, L.; Yang, S.; Xiao, Y. Investigation of natural CaO-MgO sorbent for CO2 capture. Asia-Pac. J. Chem. Eng. 2013, 8, 906–915. [Google Scholar] [CrossRef]
- Li, X.; Xu, J.; Zhou, L.; Wang, F.; Gao, J.; Chen, C.; Ning, J.; Ma, H. Liquid-phase oxidation of toluene by molecular oxygen over copper manganese oxides. Catal. Lett. 2006, 110, 255–260. [Google Scholar] [CrossRef]
- Goldsmith, J.R.; Graf, D.L. Structural and Compositional Variations in Some Natural Dolomites. J. Geol. 1958, 66, 678–693. [Google Scholar] [CrossRef]
- Silaban, A.; Narcida, M.; Harrison, D.P. Characteristics of the reversible reaction between CO2(g) and calcined dolomite. Chem. Eng. Commun. 1996, 146, 149–162. [Google Scholar] [CrossRef]
- Yoosuk, B.; Udomsap, P.; Puttasawat, B. Hydration–dehydration technique for property and activity improvement of calcined natural dolomite in heterogeneous biodiesel production: Structural transformation aspect. Appl. Catal. A Gen. 2011, 395, 87–94. [Google Scholar] [CrossRef]
- Resio, L.C. Dolomite thermal behaviour: A proposal to establish a definitive decomposition mechanism in a convective air atmosphere. Open Ceram. 2023, 15, 100405. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Kudlacz, K.; Ruiz-Agudo, E. The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses. Am. Mineral. 2012, 97, 38–51. [Google Scholar] [CrossRef]
- Manovic, V.; Anthony, E.J. Thermal Activation of CaO-Based Sorbent and Self-Reactivation during CO2 Capture Looping Cycles. Environ. Sci. Technol. 2008, 42, 4170–4174. [Google Scholar] [CrossRef] [PubMed]
- German, R.M. Thermodynamics of Sintering, Sintering of Advanced Materials; Woodhead Publishing: Cambridge, UK, 2010; pp. 3–32. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Gupta, H.; Fan, L.S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Ind. Eng. Chem. Res. 2002, 41, 4035–4042. [Google Scholar] [CrossRef]
- Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8, 123–134. [Google Scholar] [CrossRef]
- Motelica, L.; Oprea, O.C.; Vasile, B.S.; Ficai, A.; Ficai, D.; Andronescu, E.; Holban, A.M. Antibacterial Activity of Solvothermal Obtained ZnO Nanoparticles with Different Morphology and Photo-catalytic Activity against a Dye Mixture: Methylene Blue, Rhodamine B and Methyl Orange. Int. J. Mol. Sci. 2023, 24, 5677. [Google Scholar] [CrossRef]
- Saleem, M. Effect of zinc acetate concentration on the structural and optical properties of ZnO thin films deposited by Sol-Gel method. Int. J. Phys. Sci. 2012, 7, 2971–2979. [Google Scholar] [CrossRef]
- Alsaad, A.M.; Ahmad, A.A.; Al-Bataineh, Q.M.; Bani-Salameh, A.A.; Abdullah, H.S.; Qattan, I.A.; Albataineh, Z.M.; Telfah, A.D. Optical, Structural, and Crystal Defects Characterizations of Dip Synthesized (Fe-Ni) Co-Doped ZnO Thin Films. Materials 2020, 13, 1737. [Google Scholar] [CrossRef] [PubMed]
- Zamora, D.A. Flash Calcined Magnesium Oxide Sorbents for CO2 Adsorption and Catalytic Enhancement of the Water-Gas Shift Reaction. Ph.D. Thesis, UNSW Sydney, Kensington, Australia, 2021. [Google Scholar] [CrossRef]
- Sánchez-Jiménez, P.E.; Valverde, J.M.; Perejón, A.; De La Calle, A.; Medina, S.; Pérez-Maqueda, L.A. Influence of Ball Milling on CaO Crystal Growth during Limestone and Dolomite Calcination: Effect on CO2 Capture at Calcium Looping Conditions. Cryst. Growth Des. 2016, 16, 7025–7036. [Google Scholar] [CrossRef]
- Busca, G.; Lorenzelli, V. Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces. Mater. Chem. 1982, 7, 89–126. [Google Scholar] [CrossRef]
- Anderson, J.A.; Rochester, C.H. Infrared studies of probe molecules adsorbed on calcium oxide. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1986, 82, 1911–1922. [Google Scholar] [CrossRef]
- Barros, M.C.; Bello, P.M.; Bao, M.; Torrado, J.J. From waste to commodity: Transforming shells into high purity calcium carbonate. J. Clean. Prod. 2009, 17, 400–407. [Google Scholar] [CrossRef]
- Stanienda-Pilecki, K. Effects of Dolomitization Processes in the Triassic Limestone of Tarnów Opolski Deposit; Silesian University of Technology Press: Gliwice, Poland, 2011; Available online: https://www.researchgate.net/publication/261045819_Effects_of_dolomitization_processes_in_the_Triassic_limestone_of_Tarnow_Opolski_Deposit_Przejawy_dolomityzacji_w_wapieniach_triasowych_zloza_’Tarnow_Opolski’_Silesian_University_of_Technology_Press_Gl (accessed on 28 November 2024).
- Stanienda-Pilecki, K. Diagenesis of the Triassic Limestone from the Opole Silesia in the Aspect of Magnesian Calcite Presence; Silesian University of Technology Press: Gliwice, Poland, 2013; Available online: https://www.researchgate.net/publication/261048993_Diagenesis_of_the_Triassic_limestone_from_the_Opole_Silesia_in_the_aspect_of_magnesian_calcite_presence_Diageneza_triasowych_wapieni_Slaska_Opolskiego_w_aspekcie_obecnosci_kalcytu_magnezowego (accessed on 28 November 2024).
- Majchrzak-Kucęba, I.; Bukalak-Gaik, D. Regeneration performance of metal–organic frameworks: TG-Vacuum tests. J. Therm. Anal. Calorim. 2016, 125, 1461–1466. [Google Scholar] [CrossRef]
- Zeng, H.; Qu, X.; Xu, D.; Luo, Y. Porous Adsorption Materials for Carbon Dioxide Capture in Industrial Flue Gas. Front. Chem. 2022, 10, 939701. [Google Scholar] [CrossRef]
- De La Calle Martos, A.; Valverde, J.M.; Sanchez-Jimenez, P.E.; Perejón, A.; García-Garrido, C.; Perez-Maqueda, L.A. Effect of dolomite decomposition under CO2 on its multicycle CO2 capture behaviour under calcium looping conditions. Phys. Chem. Chem. Phys. 2016, 18, 16325–16336. [Google Scholar] [CrossRef] [PubMed]
- Valverde, J.M.; Sanchez-Jimenez, P.E.; Perez-Maqueda, L.A. Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone. Appl. Energy 2015, 138, 202–215. [Google Scholar] [CrossRef]
- Naeem, M.A.; Armutlulu, A.; Imtiaz, Q.; Donat, F.; Schäublin, R.; Kierzkowska, A.; Müller, C.R. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents. Nat. Commun. 2018, 9, 2408. [Google Scholar] [CrossRef]
- Luo, C.; Zheng, Y.; Wu, Q.-L.; Ding, N.; Zheng, C.-G. Cyclic reaction characters of novel CaO/MgO high temperature CO2 sorbents. J. Eng. Thermophys. 2011, 32, 1957–1960. [Google Scholar]
- Hassanzadeh, A.; Abbasian, J. Regenerable MgO-based sorbents for high-temperature CO2 removal from syngas: 1. Sorbent development, evaluation, and reaction modeling. Fuel 2010, 89, 1287–1297. [Google Scholar] [CrossRef]
- Duan, Y.; Luebke, D.; Pennline, H.H.; Duan, Y.; Luebke, D.; Pennline, H.H. Efficient Theoretical Screening of Solid Sorbents for CO2 Capture Applications. Int. J. Clean Coal Energy 2012, 1, 1–11. [Google Scholar] [CrossRef]
- Dolabella, S.; Borzì, A.; Dommann, A.; Neels, A. Lattice Strain and Defects Analysis in Nanostructured Semiconductor Materials and Devices by High-Resolution X-Ray Diffraction: Theoretical and Practical Aspects. Small Methods 2022, 6, 2100932. [Google Scholar] [CrossRef]
- Ishikawa, K.; Fujima, N.; Komura, H. First-order Raman scattering in MgO microcrystals. J. Appl. Phys. 1985, 57, 973–975. [Google Scholar] [CrossRef]
- Galvan-Ruiz, M.; Baños, L.; Rodriguez-Garcia, M.E. Lime characterization as a food additive. Sens. Instrumen. Food Qual. 2007, 1, 169–175. [Google Scholar] [CrossRef]
- Schmid, T.; Dariz, P. Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca(OH)2 and CaCO3. J. Raman Spectrosc. 2015, 46, 141–146. [Google Scholar] [CrossRef]
- Dekermenjian, M.; Ruediger, A.P.; Merlen, A. Raman spectroscopy inves-tigation of magnesium oxide nanoparticles. RSC Adv. 2023, 13, 26683–26689. [Google Scholar] [CrossRef]
- El-Sayed, E.M.; Hamad, H.A.; Ali, R.M. Journey from ceramic waste to highly efficient toxic dye adsorption from aqueous solutions via one-pot synthesis of CaSO4 rod-shape with silica. J. Mater. Res. Technol. 2020, 9, 16051–16063. [Google Scholar] [CrossRef]
- Campbell, I.H.; Fauchet, P.M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986, 58, 739–741. [Google Scholar] [CrossRef]
- Parker, J.C.; Siegel, R.W. Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO2. Appl. Phys. Lett. 1990, 57, 943. [Google Scholar] [CrossRef]
- Wellner, A.; Paillard, V.; Bonafos, C.; Coffin, H.; Claverie, A.; Schmidt, B.; Heinig, K.H. Stress measurements of germanium nanocrystals embedded in silicon oxide. J. Appl. Phys. 2003, 94, 5639–5642. [Google Scholar] [CrossRef]
- Hoogewijs, R.; Fiermans, L.; Vennik, J. Electronic relaxation processes in the KLL′ auger spectra of the free magnesium atom, solid magnesium and MgO. J. Electron Spectrosc. Relat. Phenom. 1977, 11, 171–183. [Google Scholar] [CrossRef]
- Wang, J.; Mueller, D.N.; Crumlin, E.J. Recommended strategies for quantifying oxygen vacancies with X-ray photoelectron spectroscopy. J. Eur. Ceram. Soc. 2024, 44, 116709. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.; Zhan, W.; Guo, Y.; Guo, Y.; Lu, G.; Baylet, A.; Giroir-Fendler, A. Catalytic oxi-dation of vinyl chloride emission over LaMnO3 and LaB0.2Mn0.8O3 (B = Co, Ni, Fe) catalysts. Appl. Catal. B 2013, 129, 509–516. [Google Scholar] [CrossRef]
- Yan, X.; Li, Y.; Sun, C.; Zhang, C.; Yang, L.; Fan, X.; Chu, L. Enhanced H2 production from steam gasification of biomass by red mud-doped Ca-Al-Ce bi-functional material. Appl. Energy 2022, 312, 118737. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; He, Z.; Zhao, J.; Wang, D. Microtubular Fe/Mn-promoted CaO-Ca12Al14O33 bi-functional material for H2 production from sorption enhanced water gas shift. Appl. Catal. B 2022, 314, 121474. [Google Scholar] [CrossRef]
- Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Thompson, T.L.; Diwald, O.; Yates, J.T. CO2 as a probe for monitoring the surface defects on TiO2(110)-temperature-programmed desorption. J. Phys. Chem. B 2003, 107, 11700–11704. [Google Scholar] [CrossRef]
- Rawool, S.A.; Yadav, K.K.; Polshettiwar, V. Defective TiO2 for photocatalytic CO2 conversion to fuels and chemicals. Chem. Sci. 2021, 12, 4267. [Google Scholar] [CrossRef]
- Zhu, C.; Huang, H.; Hu, H.; Fang, J.; Mao, J. Modulation of oxygen vacancies and hot electrons promotes highly efficient CO2 photoreduction towards C2H6. Nano Res. 2025, 18, 94907275. [Google Scholar] [CrossRef]
- Wang, Y.; Memon, M.Z.; Xie, Q.; Gao, Y.; Li, A.; Fu, W.; Wu, Z.; Dong, Y.; Ji, G. Study on CO2 sorption performance and sorption kinetics of Ce- and Zr-doped CaO-based sorbents. Carbon Capture Sci. Technol. 2022, 2, 100033. [Google Scholar] [CrossRef]
- Lee, C.H.; Choi, S.W.; Yoon, H.J.; Kwon, H.J.; Lee, H.C.; Jeon, S.G.; Lee, K.B. Na2CO3-doped CaO-based high-temperature CO2 sorbent and its sorption kinetics. Chem. Eng. J. 2018, 352, 103–109. [Google Scholar] [CrossRef]
- Zheng, Y.; Ge, Z.; Sun, H.; Wang, L.; Zhang, S.; Lin, X.; Chen, Q.; Chen, H. The role of oxygen vacancy in CaO-Ca12Al14O33 materials derived from hydrocalumite for enhanced CO2 capture cyclic performance. Chem. Eng. J. 2024, 481, 147955. [Google Scholar] [CrossRef]
- Pacchioni, G. Physisorbed and chemisorbed CO2 at surface and step sites of the MgO (100) surface. Surf. Sci. 1993, 281, 207–219. [Google Scholar] [CrossRef]
- Jensen, M.B.; Pettersson, L.G.M.; Swang, O.; Olsbye, U. CO2 sorption on MgO and CaO surfaces: A comparative quantum chemical cluster study. J. Phys. Chem. B 2005, 109, 16774–16781. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Williams, C.T.; Ebner, A.D.; Ritter, J.A. In situ FTIR spectroscopic analysis of carbonate transformations during adsorption and desorption of CO2 in K-promoted HTlc. Chem. Mater. 2010, 22, 3519–3526. [Google Scholar] [CrossRef]
- Li, X.; An, M.; Zhu, Y.; Ma, H. First-principles study adsorption properties of CO2 molecule on CaO(100) surfaces. In Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences, Jinan, China, 10–11 October 2015. [Google Scholar] [CrossRef]
- Liu, L.; Hong, D.; Feng, Y.; Guo, X. Promoted CaO-Based CO2 Sorbents by First-Principles Cal-Culations. Ranshao Kexue Yu Jishu/J. Combust. Sci. Technol. 2017, 23, 412–417. [Google Scholar]
- Solis, B.H.; Cui, Y.; Weng, X.; Seifert, J.; Schauermann, S.; Sauer, J.; Shaikhutdinov, S.; Freund, H.-J. Initial stages of CO2 adsorption on CaO: A combined experimental and computational study. Phys. Chem. Chem. Phys. 2017, 19, 4231–4242. [Google Scholar] [CrossRef]
- Yan, X.; Duan, C.; Yu, S.; Dai, B.; Sun, C.; Chu, H. Revealing the mechanism of oxygen vacancy defect for CO2 adsorption and diffusion on CaO: DFT and experimental study. J. CO2 Util. 2024, 79, 102648. [Google Scholar] [CrossRef]
- Krödel, M.; Landuyt, A.; Abdala, P.M.; Müller, C.R. Mechanistic Understanding of CaO-Based Sorbents for High-Temperature CO2 Capture: Advanced Characterization and Prospects. ChemSusChem 2020, 13, 6259–6272. [Google Scholar] [CrossRef]
- Hu, J.; Jiang, Y.; Gao, Q.; Zhao, Y.; Dai, S.; Li, X.; Wei, W. Material engineering of porous calcium oxide for boosting CO2 capture. Chem. Eng. J. 2025, 505, 159237. [Google Scholar] [CrossRef]
- Miranda-Pizarro, J.; Perejón, A.; Valverde, J.M.; Pérez-Maqueda, L.A.; Sánchez-Jiménez, P.E. CO2 capture performance of Ca-Mg acetates at realistic Calcium Looping conditions. Fuel 2017, 196, 497–507. [Google Scholar] [CrossRef]
- Wang, K.; Yin, Z.; Zhao, P.; Han, D.; Hu, X.; Zhang, G. Effect of Chemical and Physical Treatments on the Properties of a Dolomite Used in Ca Looping. Energy Fuels 2015, 29, 4428–4435. [Google Scholar] [CrossRef]
- Wang, K.; Hu, X.; Zhao, P.; Yin, Z. Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture. Appl. Energy 2016, 165, 14–21. [Google Scholar] [CrossRef]
- Wang, K.; Gu, F.; Clough, P.T.; Zhao, P.; Anthony, E.J. CO2 Capture Performance of Gluconic Acid Modified Limestone-Dolomite Mixtures under Realistic Conditions. Energy Fuels 2019, 33, 7550–7560. [Google Scholar] [CrossRef]
- Han, R.; Xing, S.; Wu, X.; Pang, C.; Lu, S.; Su, Y.; Liu, Q.; Song, C.; Gao, J. Relevant influence of alkali carbonate doping on the thermochemical energy storage of Ca-based natural minerals during CaO/CaCO3 cycles. Renew. Energy 2022, 181, 267–277. [Google Scholar] [CrossRef]
- Srinivasan, S.; Dodson, D.; Charles, M.B.J.; Wallen, S.L.; Albarelli, G.; Kaushik, A.; Hickman, N.; Chaudhary, G.R.; Stefanakos, E.; Dhau, J. Energy storage in earth-abundant dolomite minerals. Appl. Sci. 2020, 10, 6679. [Google Scholar] [CrossRef]
- Wang, F.; Kuzuya, T.; Hirai, S.; Li, J.; Li, T. Carbon dioxide absorption and release properties of pyrolysis products of dolomite calcined in vacuum atmosphere. Sci. World J. 2014, 2014, 862762. [Google Scholar] [CrossRef]
- Hildenbrand, N.; Readman, J.; Dahl, I.M.; Blom, R. Sorbent enhanced steam reforming (SESR) of methane using dolomite as internal carbon dioxide absorbent: Limitations due to Ca(OH)2 formation. Appl. Catal. A Gen. 2006, 303, 131–137. [Google Scholar] [CrossRef]
- Oliveira, C.C.; Hori, C.E. Hydrogen production from sorption enhanced steam reforming of ethanol using bifunctional Ni and Ca-based catalysts doped with Mg and Al. Int. J. Hydrogen Energy 2023, 48, 30263–30281. [Google Scholar] [CrossRef]
- Zeng, P.; Dou, B.; Zhang, H.; Wu, K.; Zhao, L.; Luo, C.; Chen, H.; Xu, Y. Chemical looping steam reforming of ethanol without and with in-situ CO2 capture. Int. J. Hydrogen Energy 2022, 47, 6552–6568. [Google Scholar] [CrossRef]
Crystallite Size (nm) | |||||
---|---|---|---|---|---|
Sorbent | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) | CaO | MgO |
Fresh dolomite | 0.6 | 0.002 | 13 | - | - |
PCD240 | 5 | 0.01 | 8 | 50 | 29 |
PCD60 | 26 | 0.06 | 9 | 41 | 25 |
Pristine CaO | 16 | 0.02 | 6.6 | 47 | - |
Sorbent | Dislocation Density (1010 m−2) |
---|---|
CaO | |
PCD60 | 60 |
PCD240 | 40 |
Pristine CaO | 45 |
Sorbent | CaO/MgO Ratio | Calcination Conditions | Sorption Conditions | Regeneration Conditions | Cycles | First–Last Cycle Uptake (gCO2/gsorbent) | References |
---|---|---|---|---|---|---|---|
Ball-milled dolomite | Not mentioned | RT-900 °C 300 °C/min, 70% CO2/30% air | 650 °C, 15% CO2, 85% air | 900 °C, 70% CO2, 30% air | 20 | 0.40–0.27 | [73] |
Acetic acid-treated dolomite | Not mentioned | 900 °C, air, 2 h during preparation; in TGA RT-900 °C 300 °C/min, 70% CO2/30% air | 650 °C, 15% CO2, 85% air | 900 °C, 70% CO2, 30% air | 20 | 0.29–0.12 | [117] |
Dolomite | 1.64 | 800 °C, 3 h | 690 °C, 15% CO2 | 800 °C, 100% N2 | 30 | 0.41–0.17 | [118] |
Citric acid-treated dolomite | 1.64 | 600 °C, 100% N2, 2 h and switch 800 °C, air, 3 h | 690 °C, 15% CO2 | 950 °C, 100% CO2 | 20 | 0.44–0.25 | [119] |
Dolomite | 2.03 | 800 °C, 100% N2 | 700 °C, 15% CO2 | 800 °C, 100% N2 | 20 | 0.41–0.27 | [39] |
Gluconic acid-treated dolomite | 1.64 | 800 °C, air, 2 h | 700 °C, 15% CO2 | 950 °C, 100% CO2 | 10 | 0.45–0.40 | [120] |
Dolomite | 1.45 | Not mentioned | 650 °C, 30% CO2, 10% H2O | 850 °C, 100% N2 | 50 | 0.45–0.26 | [25] |
Dolomite | 55.61 wt% CaCO3, 44.2 wt% MgCO3 | RT- 900 °C, 50%CO2/50% N2 and switch 900 °C, 100%N2, 5 min | 600 °C, 50% CO2 | 900 °C, 100% N2 | 15 | 0.21–0.17 | [53] |
Dolomite | 23.63 wt% Ca, 9.63 wt% Mg | 850 °C, N2, 1 h during preparation; in TGA RT-725 °C 300 °C/min, N2, 10 min | 850 °C, 100% CO2 | 725 °C, 100% N2 | 20 | 0.45–0.40 | [121] |
Dolomite | 3.46 | RT- 800 °C, 100% N2, 6 °C/min | 700 °C, 100% CO2 | 750 °C, 100% N2 | 8 | 0.23–0.18 | [122] |
Dolomite | 1.93 | 800 °C, vacuum | 400 °C, 100% CO2 | 800 °C, vacuum | 3 | 0.51–0.30 | [123] |
PCD60Act | 1.64 | 900 °C, air, 1 h during preparation; | 450 °C, 90% CO2 | 650 °C, 100% argon | 15 | 0.25–0.17 | This work |
in TGA RT- 650 °C, 100% Ar, 30 min | |||||||
PCD60Act | 1.64 | 900 °C, air, 1 h during preparation; | 650 °C, 90% CO2 | 650 °C, 100% argon | 15 | 0.44–0.37 | This work |
in TGA RT- 650 °C, 100% Ar, 30 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alalade, I.G.; Morales-Mendoza, J.E.; Jasso-Salcedo, A.B.; Domínguez-Arvizu, J.L.; Hernández-Majalca, B.C.; Salami, H.A.; Bueno-Escobedo, J.L.; Ibarra-Rodriguez, L.I.; López-Ortiz, A.; Collins-Martínez, V.H. Moderate-Temperature Carbon Capture Using Thermally Pre-Treated Dolomite: A Novel Approach. C 2025, 11, 37. https://doi.org/10.3390/c11020037
Alalade IG, Morales-Mendoza JE, Jasso-Salcedo AB, Domínguez-Arvizu JL, Hernández-Majalca BC, Salami HA, Bueno-Escobedo JL, Ibarra-Rodriguez LI, López-Ortiz A, Collins-Martínez VH. Moderate-Temperature Carbon Capture Using Thermally Pre-Treated Dolomite: A Novel Approach. C. 2025; 11(2):37. https://doi.org/10.3390/c11020037
Chicago/Turabian StyleAlalade, Iyiade G., Javier E. Morales-Mendoza, Alma B. Jasso-Salcedo, Jorge L. Domínguez-Arvizu, Blanca C. Hernández-Majalca, Hammed A. Salami, José L. Bueno-Escobedo, Luz I. Ibarra-Rodriguez, Alejandro López-Ortiz, and Virginia H. Collins-Martínez. 2025. "Moderate-Temperature Carbon Capture Using Thermally Pre-Treated Dolomite: A Novel Approach" C 11, no. 2: 37. https://doi.org/10.3390/c11020037
APA StyleAlalade, I. G., Morales-Mendoza, J. E., Jasso-Salcedo, A. B., Domínguez-Arvizu, J. L., Hernández-Majalca, B. C., Salami, H. A., Bueno-Escobedo, J. L., Ibarra-Rodriguez, L. I., López-Ortiz, A., & Collins-Martínez, V. H. (2025). Moderate-Temperature Carbon Capture Using Thermally Pre-Treated Dolomite: A Novel Approach. C, 11(2), 37. https://doi.org/10.3390/c11020037