Magnetohydrodynamic Turbulence in a Spherical Shell, Part 2: Emergent Magnetic Field from a Turbulent Geodynamo
Abstract
1. Introduction
2. Magnetic Field Inside a Spherical Shell with Dirichlet Boundary Conditions
2.1. Galerkin Expansion Basis Functions
2.2. Dirichlet Conditions on Both Boundaries
3. The Magnetic Field
3.1. Magnetic Field and Electric Current Inside the Spherical Shell
3.2. Magnetic Field Outside the Spherical Shell
3.3. Connecting the Geomagnetic Field to the Outer Core Poloidal Field
3.4. The Dipole Field and Its Turbulent Fluctuations
3.5. Estimating Volume-Averaged Magnetic Helicity in the Outer Core
3.6. Magnetic Energy Spectrum and IGRF Power Spectrum
4. Discussion
5. Conclusions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shebalin, J.V. Magnetohyrodynamic Turbulence in a Spherical Shell: Galerkin Models, Boundary Conditions, and the Dynamo Problem. Fluids 2025, 10, 24. [Google Scholar] [CrossRef]
- Shebalin, J.V. The Statistical Mechanics of Ideal Magnetohydrodynamic Turbulence and a Solution of the Dynamo Problem. Fluids 2024, 9, 46. [Google Scholar] [CrossRef]
- Shebalin, J.V. Magnetic Helicity and the Geodynamo. Fluids 2021, 6, 99. [Google Scholar] [CrossRef]
- Chandrasekhar, S. On Force-Free Magnetic Fields. Proc. Nat. Acad. Sci. USA 1956, 42, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, S.; Kendall, P.C. On Force-Free Magnetic Fields. Astrophys. J. 1957, 12, 457–460. [Google Scholar] [CrossRef]
- Mininni, P.D.; Montgomery, D. Magnetohydrodynamic activity inside a sphere. Phys. Fluids 2006, 18, 116602. [Google Scholar] [CrossRef]
- Mininni, P.D.; Montgomery, D.; Turner, L. Hydrodynamic and magnetohydrodynamic computations inside a rotating sphere. New J. Phys. 2007, 9, 303–330. [Google Scholar] [CrossRef]
- Shebalin, J.V. Broken ergodicity, magnetic helicity, and the MHD dynamo. Geophys. Astrophys. Fluid Dyn. 2013, 107, 353–375. [Google Scholar] [CrossRef]
- Lee, T.D. On some statistical properties of Hydrodynamical and magneto-hydrodynamical fields. Q. Appl. Math. 1952, 10, 69–74. [Google Scholar] [CrossRef]
- Shebalin, J.V. Broken ergodicity and coherent structure in homogeneous turbulence. Phys. D 1989, 37, 173–191. [Google Scholar] [CrossRef]
- Shebalin, J.V. Broken ergodicity in magnetohydrodynamic turbulence. Geophys. Astrophys. Fluid Dyn. 2013, 107, 411–466. [Google Scholar] [CrossRef]
- Glatzmaier, G.A.; Roberts, P.H. A three-dimensional self-consistent computer simulation of a geomagnetic field reversal. Nature 1995, 377, 203–209. [Google Scholar] [CrossRef]
- Glatzmaier, G.A.; Roberts, P.H. A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle. Phys. Earth Planet. Int. 1995, 91, 63–75. [Google Scholar] [CrossRef]
- Civet, F.; Thébault, E.; Verhoeven, O.; Langlais, B.; Saturnino, D. Electrical conductivity of the Earth’s mantle from the first Swarm magnetic field measurements. Geophys. Res. Lett. 2015, 42, 3338–3346. [Google Scholar] [CrossRef]
- Grayver, A.V.; Munch, F.D.; Kuvshinov, A.V.; Khan, A.; Sabaka, T.J.; Tøffner-Clausen, L. Joint inversion of satellite-detected tidal and magnetospheric signals constrains electrical conductivity and water content of the upper mantle and transition zone. Geophys. Res. Lett. 2017, 44, 6074–6081. [Google Scholar] [CrossRef]
- Alken, P.; Thébault, E.; Beggan, C.D.; Aubert, J.; Baerenzung, J.; Brown, W.J.; Califf, S.; Chulliat, A.; Cox, G.A.; Finlay, C.C.; et al. International Geomagnetic Reference Field: The 13th generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Shebalin, J.V. Mantle Electrical Conductivity and the Magnetic Field at the Core-Mantle Boundary. Fluids 2021, 6, 403. [Google Scholar] [CrossRef]
- Garnero, G.; Richardson, C. The mysterious, massive structures in Earth’s deep mantle. Phys. Today 2024, 77, 37–43. [Google Scholar] [CrossRef]
- Khinchin, A.I. Mathematical Foundations of Statistical Mechanics; Dover: New York, NY, USA, 1949; pp. 137–145. [Google Scholar]
- Pathria, R.K. Statistical Mechanics, 2nd ed.; Elsevier: Oxford, UK, 1972. [Google Scholar]
- Landau, L.D.; Lishitz, E.M. Statistical Physics, Part 1, 3rd ed.; Pergamon: Oxford, UK, 1980. [Google Scholar]
- Frisch, U.; Pouquet, A.; Leorat, J.; Mazure, A. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. J. Fluid Mech. 1975, 68, 769–778. [Google Scholar] [CrossRef]
- Fyfe, D.; Montgomery, D. High beta turbulence in two-dimensional magneto-hydrodynamics. J. Plasma Phys. 1976, 16, 181–191. [Google Scholar] [CrossRef]
- Shebalin, J.V. Dynamo action in dissipative, forced, rotating MHD turbulence. Phys. Plasmas 2016, 23, 062318. [Google Scholar] [CrossRef]
- Shebalin, J.V. Magnetohydrodynamic turbulence and the geodynamo. Phys. Earth Planet. Inter. 2018, 285, 59–75. [Google Scholar] [CrossRef]
- Holme, R. Large-Scale Flow in the Core. In Treatise on Geophysics 8: Core Dynamics; Olson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 107–130. [Google Scholar]
- Olson, P. Overview. In Core Dynamics; Schubert, G., Olson, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; p. 6. [Google Scholar]
- Barrera, R.G.; Estévez, G.A.; Giraldo, J. Vector spherical harmonics and their application to magnetostatics. Eur. J. Phys. 1995, 6, 287–294. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics, 3rd ed.; Wiley: New York, NY, USA, 1999; pp. 18, 37–38. [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 5th ed.; Academic Press: New York, NY, USA, 1995; pp. 1085–1088. [Google Scholar]
- Winch, D.E.; Ivers, D.J.; Turner, J.P.R.; Stening, R.J. Geomagnetism and Schmidt quasi-normalization. Geophys. J. Int. 2005, 160, 487–504. [Google Scholar] [CrossRef]
- Kolmogorov, A.N. The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers. Dokl. Akad. Nauk SSSR 1941, 30, 299–303, reprinted in Proc. R. Soc. Lond. A 1991, 434, 9–13. [Google Scholar]
- Arfken, G.B.; Weber, H.J. Mathematical Methods for Physicists, 6th ed.; Academic Press: New York, NY, USA, 2005; pp. 557–560, 725–732. [Google Scholar]
- Moulik, P.; Ekström, G. Radial structure of the Earth: (II) Model features and interpretations. Phys. Earth Planet. Int. 2025, 361, 107320. [Google Scholar] [CrossRef]
- Kuang, W.; Bloxham, J. An Earth-like numerical dynamo model. Nature 1997, 389, 371–374. [Google Scholar] [CrossRef]
- Roberts, P.H.; Glatzmaier, G.A. Geodynamo theory and simulations. Rev. Mod. Phys. 2000, 72, 1081–1124. [Google Scholar] [CrossRef]
- Christensen, U.R.; Wicht, J. Numerical Dynamo Simulations. In Core Dynamics; Schubert, G., Olson, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 245–282. [Google Scholar]
- Jones, C.A. Planetary Magnetic Fields and Fluid Dynamos. Annu. Rev. Fluid Mech. 2011, 43, 583–614. [Google Scholar] [CrossRef]
- Aubert, J. State and evolution of the geodynamo from numerical models reaching the physical conditions of Earth’s core. Geophys. J. Int. 2023, 235, 468–487. [Google Scholar] [CrossRef]
- Dormy, E. Rapidly Rotating Magnetohydrodynamics and the Geodynamo. Annu. Rev. Fluid Mech. 2025, 57, 335–362. [Google Scholar] [CrossRef]
- Nataf, H.-C.; Schaeffer, N. Turbulence in the Core. In Treatise on Geophysics 8: Core Dynamics, 2nd ed.; Olson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 161–181. [Google Scholar]
- Tolmachev, D.; Chertovskih, R.; Jeyabalan, S.R.; Zheligovsky, V. Predictability of Magnetic Field Reversals. Mathematics 2024, 12, 490. [Google Scholar] [CrossRef]
- Landeau, M.; Fournier, A.; Nataf, H.-C.; Cébron, D.; Schaeffer, N. Sustaining Earth’s magnetic dynamo. Geophys. J. Int. 2010, 181, 806–817. [Google Scholar] [CrossRef]
- Malkus, W.V.R. Precession of the Earth as the Cause of Geomagnetism. Science 1968, 160, 259–264. [Google Scholar] [CrossRef]
- Wei, X. The Combined Effect of Precession and Convection on the Dynamo Action. Astrophys. J. 2016, 827, 123. [Google Scholar] [CrossRef]
- Botana, J.; Urbach, B.S.; Moffett-Smith, C.M.; Gilbert, Q.K.; McGarvey, E.W. Uranium at the conditions of the Earth’s inner core: Fe-U forms and implications. Phys. B 2025, 707, 417181. [Google Scholar] [CrossRef]
- Hollenbach, D.F.; Herndon, J.M. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field. Proc. Nat. Acad. Sci. USA 2001, 98, 11085–11090. [Google Scholar] [CrossRef] [PubMed]
- Tkalćixcx, H.; Belonoshko, A.B.; Muir, J.B.; Mattesini, M.; Moresi, L.; Waszek, L. Imaging the top of the Earth’s innercore: A present-day flow model. Sci. Rep. 2024, 14, 8999. [Google Scholar]
- Shalimov, S.L. On effect of precession-induced flows in the liquid core for early Earth’s history. Nonlinear Process. Geophys. 2006, 13, 525–529. [Google Scholar] [CrossRef]
- Frasson, T.; Schaeffer, N.; Nataf, H.-C.; Labrosse, S. Geomagnetic dipole stability and zonal flows controlled by mantle heat flux heterogeneities. Geophys. J. Int. 2025, 240, 1481–1504. [Google Scholar] [CrossRef]
- Sheyko, A.; Finlay, C.C.; Jackson, A. Magnetic reversals from planetary dynamo waves. Nature 2016, 539, 551. [Google Scholar] [CrossRef]
- Dumberry, M.; Mound, J. Inner core-mantle gravitational locking and the super-rotation of the inner core. Geophys. J. Int. 2010, 181, 806–817. [Google Scholar] [CrossRef]
- Aubert, J.; Finlay, C.C.; Fournier, A. Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 2013, 502, 219. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Vidale, J.E. Seismological observation of Earth’s oscillating inner core. Sci. Adv. 2022, 8, eabm9916. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Song, X. Multidecadal variation of the Earth’s inner-core rotation. Nat. Geosci. 2023, 16, 182–187. [Google Scholar] [CrossRef]
- Wang, W.; Vidale, J.E.; Pang, G.; Koper, K.D.; Wang, R. Inner core backtracking by seismic waveform change reversals. Nature 2024, 631, 340–354. [Google Scholar] [CrossRef]
- Sreenivasan, B.; Jones, C.A. Structure and dynamics of the polar vortex in the Earth’s core. Geophys. Res. Lett. 2005, 32, L20301. [Google Scholar] [CrossRef]
- Finlay, C.C.; Gillet, N.; Aubert, J.; Livermore, P.W.; Jault, D. Gyres, jets and waves in the Earth’s core. Nat. Rev. Earth Environ. 2023, 4, 377–392. [Google Scholar] [CrossRef]
n = | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
1.8638 | 3.4929 | 5.1612 | 6.8434 | 8.5316 | 10.2231 | 11.9165 | 13.6110 | 15.3063 | 17.0022 | |
2 | 2.1497 | 3.6788 | 5.2927 | 6.9440 | 8.6129 | 10.2912 | 11.9750 | 13.6623 | 15.3520 | 17.0433 |
3 | 2.5042 | 3.9411 | 5.4851 | 7.0931 | 8.7339 | 10.3928 | 12.0625 | 13.7391 | 15.4204 | 17.1050 |
4 | 2.8910 | 4.2636 | 5.7330 | 7.2884 | 8.8935 | 10.5273 | 12.1785 | 13.8410 | 15.5112 | 17.1869 |
5 | 3.2898 | 4.6294 | 6.0300 | 7.5271 | 9.0903 | 10.6938 | 12.3225 | 13.9678 | 15.6244 | 17.2890 |
6 | 3.6911 | 5.0227 | 6.3684 | 7.8062 | 9.3227 | 10.8915 | 12.4940 | 14.1190 | 15.7595 | 17.4111 |
7 | 4.0909 | 5.4310 | 6.7396 | 8.1218 | 9.5890 | 11.1194 | 12.6923 | 14.2942 | 15.9162 | 17.5528 |
8 | 4.4882 | 5.8457 | 7.1347 | 8.4695 | 9.8870 | 11.3762 | 12.9167 | 14.4929 | 16.0943 | 17.7140 |
9 | 4.8828 | 6.2618 | 7.5452 | 8.8441 | 10.2145 | 11.6608 | 13.1664 | 14.7145 | 16.2932 | 17.8943 |
10 | 5.2749 | 6.6767 | 7.9642 | 9.2399 | 10.5685 | 11.9718 | 13.4405 | 14.9586 | 16.5127 | 18.0935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shebalin, J.V. Magnetohydrodynamic Turbulence in a Spherical Shell, Part 2: Emergent Magnetic Field from a Turbulent Geodynamo. Fluids 2025, 10, 220. https://doi.org/10.3390/fluids10090220
Shebalin JV. Magnetohydrodynamic Turbulence in a Spherical Shell, Part 2: Emergent Magnetic Field from a Turbulent Geodynamo. Fluids. 2025; 10(9):220. https://doi.org/10.3390/fluids10090220
Chicago/Turabian StyleShebalin, John V. 2025. "Magnetohydrodynamic Turbulence in a Spherical Shell, Part 2: Emergent Magnetic Field from a Turbulent Geodynamo" Fluids 10, no. 9: 220. https://doi.org/10.3390/fluids10090220
APA StyleShebalin, J. V. (2025). Magnetohydrodynamic Turbulence in a Spherical Shell, Part 2: Emergent Magnetic Field from a Turbulent Geodynamo. Fluids, 10(9), 220. https://doi.org/10.3390/fluids10090220