β-Caryophyllene-Loaded Microemulsion-Based Topical Hydrogel: A Promising Carrier to Enhance the Analgesic and Anti-Inflammatory Outcomes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pseudo-Ternary Phase Diagram
2.2. Characterisation of the Microemulsions
2.3. Transmission Electron Microscopy
2.4. Gel Attributes and Rheology
2.5. Skin Permeation and Skin Retention
2.6. Dermatokinetics
2.7. Carrageenan-Induced Rat Paw Oedema
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Preparation of Microemulsions
4.2.2. Characterisation of the Microemulsions
4.2.3. Optical Clarity, Conductivity, pH, and Refractive Index
4.2.4. Micromeritics and Zetapotential
4.2.5. Drug Entrapment and Drug Loading
4.2.6. Transmission Electron Microscopy
4.2.7. Development of Microemulsion Gel and Gel Characteristics
4.2.8. Rheology
4.2.9. Skin Permeation and Skin Retention Studies
4.2.10. Dermatokinetics
4.2.11. Carrageenan-Induced Rat Paw Oedema
4.2.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An Advanced Mode of Drug Delivery System. 3 Biotech 2014, 5, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raza, K.; Negi, P.; Takyar, S.; Shukla, A.; Amarji, B.; Katare, O.P. Novel Dithranol Phospholipid Microemulsion for Topical Application: Development, Characterization and Percutaneous Absorption Studies. J. Microencapsul. 2011, 28, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Suhail, N.; Alzahrani, A.K.; Basha, W.J.; Kizilbash, N.; Zaidi, A.; Ambreen, J.; Khachfe, H.M. Microemulsions: Unique properties, pharmacological applications, and targeted drug delivery. Front. Nanotechnol. 2021, 3, 754889. [Google Scholar] [CrossRef]
- Singh, A.; Thotakura, N.; Kumar, R.; Singh, B.; Sharma, G.; Katare, O.P.; Raza, K. PLGA-Soya Lecithin Based Micelles for Enhanced Delivery of Methotrexate: Cellular Uptake, Cytotoxic and Pharmacokinetic Evidences. Int. J. Biol. Macromol. 2017, 95, 750–756. [Google Scholar] [CrossRef] [PubMed]
- Katare, O.; Raza, K.; Singh, B.; Dogra, S. Novel Drug Delivery Systems in Topical Treatment of Psoriasis: Rigors and Vigors. Indian J. Dermatol. Venereol. Leprol. 2010, 76, 612–621. [Google Scholar] [CrossRef]
- Raza, K. Nanotechnology-Based Drug Delivery Products: Need, Design, Pharmacokinetics and Regulations. Curr. Pharm. Des. 2019, 24, 5085. [Google Scholar] [CrossRef]
- Raza, K.; Kumar, P.; Kumar, N.; Malik, R. Pharmacokinetics and Biodistribution of the Nanoparticles. In Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids, 1st ed.; Nimesh, S., Chandra, R., Gupta, N., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 165–186. [Google Scholar] [CrossRef]
- Gulati, N.; Gupta, H. Parenteral Drug Delivery: A Review. Recent Pat. Drug Deliv. Formul. 2011, 5, 133–145. [Google Scholar] [CrossRef]
- Gushiken, L.F.S.; Beserra, F.P.; Hussni, M.F.; Gonzaga, M.T.; Ribeiro, V.P.; de Souza, P.F.; Campos, J.C.L.; Massaro, T.N.C.; Hussni, C.A.; Takahira, R.K.; et al. Beta-Caryophyllene as an Antioxidant, Anti-Inflammatory and Re-Epithelialization Activities in a Rat Skin Wound Excision Model. Oxid. Med. Cell. Longev. 2022, 2022, 9004014. [Google Scholar] [CrossRef]
- Parisotto-Peterle, J.; Bidone, J.; Lucca, L.G.; de Araújo, G.M.S.; Falkembach, M.C.; da Silva Marques, M.; Horn, A.P.; dos Santos, M.K.; da Veiga, V.F.; Limberger, R.P.; et al. Healing Activity of Hydrogel Containing Nanoemulsified β-Caryophyllene. Eur. J. Pharm. Sci. 2020, 148, 105318. [Google Scholar] [CrossRef]
- Mödinger, Y.; Knaub, K.; Dharsono, T.; Wacker, R.; Meyrat, R.; Land, M.H.; Petraglia, A.L.; Schön, C. Enhanced Oral Bioavailability of β-Caryophyllene in Healthy Subjects Using the VESIsorb® Formulation Technology, a Novel Self-Emulsifying Drug Delivery System (SEDDS). Molecules 2022, 27, 2860. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Raza, K.; Kumar, M.; Kumar, P.; Malik, R.; Sharma, G.; Kaur, M.; Katare, O.P. Topical Delivery of Aceclofenac: Challenges and Promises of Novel Drug Delivery Systems. BioMed Res. Int. 2014, 2014, 406731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhibber, T.; Wadhwa, S.; Chadha, P.; Sharma, G.; Katare, O.P. Phospholipid Structured Microemulsion as Effective Carrier System with Potential in Methicillin Sensitive Staphylococcus Aureus (MSSA) Involved Burn Wound Infection. J. Drug Target. 2015, 23, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, P. Skin Biopsy Analysis in Diabetic Neuropathy. In Diabetic Neuropathy; Elsevier: Amsterdam, The Netherlands, 2022; pp. 79–90. [Google Scholar]
- Shakeel, F.; Baboota, S.; Ahuja, A.; Ali, J.; Aqil, M.; Shafiq, S. Nanoemulsions as Vehicles for Transdermal Delivery of Aceclofenac. AAPS PharmSciTech 2007, 8, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, S.K.; Kaur, G.; Bhasin, K.K. Tween-Embedded Microemulsions—Physicochemical and Spectroscopic Analysis for Antitubercular Drugs. AAPS PharmSciTech 2010, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Negi, P.; Sharma, I.; Hemrajani, C.; Rathore, C.; Bisht, A.; Raza, K.; Katare, O.P. Thymoquinone-Loaded Lipid Vesicles: A Promising Nanomedicine for Psoriasis. BMC Complement. Altern. Med. 2019, 19, 334. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.H.; Hussein, A.A. Oral Nanoemulsions of Candesartan Cilexetil: Formulation, Characterisation and in Vitro Drug Release Studies. AAPS Open 2017, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.S.; Alam, M.S.; Alam, N.; Anwer, T.; Safhi, M.M.A. Accelerated Stability Testing of a Clobetasol Propionate-Loaded Nanoemulsion as per ICH Guidelines. Sci. Pharm. 2013, 81, 1089–1100. [Google Scholar] [CrossRef] [Green Version]
- Aswathanarayan, J.B.; Vittal, R.R. Nanoemulsions and Their Potential Applications in Food Industry. Front. Sustain. Food Syst. 2019, 3, 95. [Google Scholar] [CrossRef] [Green Version]
- Mahbubul, I.M. Stability and Dispersion Characterization of Nanofluid. In Stability and Dispersion Characterization of Nanofluid: Micro and Nano Technologies, 1st ed.; William Andrew: Norwich, NY, USA, 2019; pp. 47–112. [Google Scholar] [CrossRef]
- Sargam, Y.; Wang, K.; Tsyrenova, A.; Liu, F.; Jiang, S. Effects of Anionic and Nonionic Surfactants on the Dispersion and Stability of NanoSiO2 in Aqueous and Cement Pore Solutions. Cem. Concr. Res. 2021, 144, 106417. [Google Scholar] [CrossRef]
- Sawant, A.; Kamath, S.; Kg, H.; Kulyadi, G.P. Solid-in-Oil-in-Water Emulsion: An Innovative Paradigm to Improve Drug Stability and Biological Activity. AAPS PharmSciTech 2021, 22, 199. [Google Scholar] [CrossRef] [PubMed]
- Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron Microscopy of Nanoemulsions: An Essential Tool for Characterisation and Stability Assessment. Micron 2012, 43, 85–103. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Dhankar, G.; Thakur, K.; Raza, K.; Katare, O.P. Benzyl Benzoate-Loaded Microemulsion for Topical Applications: Enhanced Dermatokinetic Profile and Better Delivery Promises. AAPS PharmSciTech 2016, 17, 1221–1231. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Mahmood, A.; Ibrahim, M.A.; Hussain, Z.; Ashraf, M.U.; Salem-Bekhit, M.M.; Elbagory, I. Development and Evaluation of Sodium Alginate/Carbopol 934P-Co-Poly (Methacrylate) Hydrogels for Localized Drug Delivery. Polymers 2023, 15, 311. [Google Scholar] [CrossRef]
- sasutjarit, R.; Sirivat, A.; Vayumhasuwan, P. Viscoelastic Properties of Carbopol 940 Gels and Their Relationships to Piroxicam Diffusion Coefficients in Gel Bases. Pharm. Res. 2005, 22, 2134–2140. [Google Scholar] [CrossRef]
- Raza, K.; Singh, B.; Mahajan, A.; Negi, P.; Bhatia, A.; Katare, O.P. Design and Evaluation of Flexible Membrane Vesicles (FMVs) for Enhanced Topical Delivery of Capsaicin. J. Drug Target. 2011, 19, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Yasir Siddique, M.; Nazar, M.F.; Mahmood, M.; Saleem, M.A.; Alwadai, N.; Almuslem, A.S.; Alshammari, F.H.; Haider, S.; Akhtar, M.S.; Hussain, S.Z.; et al. Microemulsified Gel Formulations for Topical Delivery of Clotrimazole: Structural and In Vitro Evaluation. Langmuir 2021, 37, 13767–13777. [Google Scholar] [CrossRef]
- Negi, P.; Singh, B.; Sharma, G.; Beg, S.; Raza, K.; Katare, O.P. Phospholipid Microemulsion-Based Hydrogel for Enhanced Topical Delivery of Lidocaine and Prilocaine: QbD-Based Development and Evaluation. Drug Deliv. 2016, 23, 951–967. [Google Scholar] [CrossRef]
- Laothaweerungsawat, N.; Neimkhum, W.; Anuchapreeda, S.; Sirithunyalug, J.; Chaiyana, W. Transdermal Delivery Enhancement of Carvacrol from Origanum vulgare L. Essential Oil by Microemulsion. Int. J. Pharm. 2020, 579, 119052. [Google Scholar] [CrossRef]
- Kumar, P.; Sharma, G.; Kumar, R.; Malik, R.; Singh, B.; Katare, O.P.; Raza, K. Enhanced Brain Delivery of Dimethyl Fumarate Employing Tocopherol-Acetate-Based Nanolipidic Carriers: Evidence from Pharmacokinetic, Biodistribution, and Cellular Uptake Studies. ACS Chem. Neurosci. 2017, 8, 860–865. [Google Scholar] [CrossRef]
- Alam, A.; Mustafa, G.; Agrawal, G.P.; Hashmi, S.; Khan, R.A.; Aba Alkhayl, F.F.; Ullah, Z.; Ali, M.S.; Elkirdasy, A.F.; Khan, S. A Microemulsion-Based Gel of Isotretinoin and Erythromycin Estolate for the Management of Acne. J. Drug Deliv. Sci. Technol. 2022, 71, 103277. [Google Scholar] [CrossRef]
- de Almeida Borges, V.R.; Ribeiro, A.F.; de Souza Anselmo, C.; Cabral, L.M.; de Sousa, V.P. Development of a High Performance Liquid Chromatography Method for Quantification of Isomers β-Caryophyllene and α-Humulene in Copaiba Oleoresin Using the Box-Behnken Design. J. Chromatogr. B 2013, 940, 35–41. [Google Scholar] [CrossRef]
- Brady, J.; Drig, T.; Lee, P.I.; Li, J.X. Polymer Properties and Characterization. In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice, 2nd ed.; Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., Mantri, R.V., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 181–223. [Google Scholar] [CrossRef]
- Sharma, G.; Kaur, B.; Thakur, K.; Mahajan, A.; Amarji, B.; Singh, M.P.; Katare, O.P. Pluronic F127-tailored lecithin organogel of acyclovir: Preclinical evidence of antiviral activity using BALB/c murine model of cutaneous HSV-1 infection. Drug Deliv. Transl. Res. 2022, 12, 213–228. [Google Scholar] [CrossRef] [PubMed]
- Raza, K.; Singh, B.; Lohan, S.; Sharma, G.; Negi, P.; Yachha, Y.; Katare, O.P. Nano-Lipoidal Carriers of Tretinoin with Enhanced Percutaneous Absorption, Photostability, Biocompatibility and Anti-Psoriatic Activity. Int. J. Pharm. 2013, 456, 65–72. [Google Scholar] [CrossRef]
- Sharma, G.; Goyal, H.; Thakur, K.; Raza, K.; Katare, O.P. Novel Elastic Membrane Vesicles (EMVs) and Ethosomes-Mediated Effective Topical Delivery of Aceclofenac: A New Therapeutic Approach for Pain and Inflammation. Drug Deliv. 2016, 23, 3135–3145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thotakura, N.; Kumar, P.; Wadhwa, S.; Raza, K.; Katare, P. Dermatokinetics as an Important Tool to Assess the Bioavailability of Drugs by Topical Nanocarriers. Curr. Drug Metab. 2017, 18, 404–411. [Google Scholar] [CrossRef]
- Raza, K.; Singh, B.; Singla, S.; Wadhwa, S.; Garg, B.; Chhibber, S.; Katare, O.P. Nanocolloidal Carriers of IsotretinoinAntimicrobial Activity against Propionibacterium Acnes and Dermatokinetic Modeling. Mol. Pharm. 2013, 10, 1958–1963. [Google Scholar] [CrossRef]
- Mahmood, A.; Rapalli, V.K.; Gorantla, S.; Waghule, T.; Singhvi, G. Dermatokinetic Assessment of Luliconazole-Loaded Nanostructured Lipid Carriers (NLCs) for Topical Delivery: QbD-Driven Design, Optimization, and in Vitro and Ex Vivo Evaluations. Drug Deliv. Transl. Res. 2022, 12, 1118–1135. [Google Scholar] [CrossRef]
Formulation Code | β-caryophylline (mg) | IPM (g) | Tween 80 (g) | Phospholipid (mg) | Propylene Glycol (mg) | Normal saline (g) |
---|---|---|---|---|---|---|
ME1 | 200 (1%) | 2 (10%) | 9.23 (46.15%) | 185 (0.925%) | 185 (0.925%) | 8.2 (41%) |
ME2 | 200 (1%) | 2 (10%) | 7.30 (36.5%) | 150 (0.750%) | 150 (0.750%) | 10.2 (51%) |
ME3 | 200 (1%) | 2.2 (10%) | 13.27 (66.35) | 265 (1.325%) | 265 (1.325%) | 3.8 (19%) |
Code | % Transmittance | Refractive Index | pH | Conductivity (µS) | Globule Size (nm) | PDI | Zeta Potential (mV) | % EE | % DL |
---|---|---|---|---|---|---|---|---|---|
ME1 | 95.97 ± 0.17 | 1.39 ± 0.04 | 6.23 ± 0.18 | 23.92 ± 0.97 * | 83.46 ± 1.93 * | 0.198 * | −7.94 ± 0.04 * | 71.52 ± 1.98 * | 15.77 ± 1.52 * |
ME2 | 92.19 ± 0.21 | 1.38 ± 0.01 | 6.19 ± 0.13 | 43.18 ± 1.15 * | 95.07 ± 0.15 * | 0.225 * | −3.09 ± 0.02 * | 87.33 ± 2.17 * | 23.08 ± 1.14 * |
ME3 | 98.73 ± 0.19 * | 1.46 ± 0.03 * | 6.31 ± 0.25 | 19.09 ± 0.11 * | 79.18 ± 0.27 * | 0.274 * | −0.18 ± 0.01 * | 68.01 ± 2.39 * | 12.98 ± 1.49 * |
Dermatokinetic Parameter | Conventional Gel | Microemulsion Gel | ||
---|---|---|---|---|
Epidermis | Dermis | Epidermis | Dermis | |
Kp (h−1) | 1.19 ± 0.02 | 0.96 ± 0.01 | 4.01 ± 0.13 | 3.21 ± 0.09 |
Cmax (µg/cm2) | 114.51 ± 2.03 | 138.80 ± 1.74 | 192.53 ± 2.69 | 39.11 ± 0.95 |
Tmax (h) | 3 | 3 | 2 | 2 |
AUC (µg/cm2 h) | 168.67 ± 9.33 | 408.50 ± 11.91 | 502.93 ± 24.67 | 758.35 ± 33.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharthi, S.; Ziora, Z.M.; Mustafa, G.; Chaubey, P.; El Kirdasy, A.F.; Alotaibi, G. β-Caryophyllene-Loaded Microemulsion-Based Topical Hydrogel: A Promising Carrier to Enhance the Analgesic and Anti-Inflammatory Outcomes. Gels 2023, 9, 634. https://doi.org/10.3390/gels9080634
Alharthi S, Ziora ZM, Mustafa G, Chaubey P, El Kirdasy AF, Alotaibi G. β-Caryophyllene-Loaded Microemulsion-Based Topical Hydrogel: A Promising Carrier to Enhance the Analgesic and Anti-Inflammatory Outcomes. Gels. 2023; 9(8):634. https://doi.org/10.3390/gels9080634
Chicago/Turabian StyleAlharthi, Sitah, Zyta Maria Ziora, Gulam Mustafa, Pramila Chaubey, Ahmed Farag El Kirdasy, and Ghallab Alotaibi. 2023. "β-Caryophyllene-Loaded Microemulsion-Based Topical Hydrogel: A Promising Carrier to Enhance the Analgesic and Anti-Inflammatory Outcomes" Gels 9, no. 8: 634. https://doi.org/10.3390/gels9080634
APA StyleAlharthi, S., Ziora, Z. M., Mustafa, G., Chaubey, P., El Kirdasy, A. F., & Alotaibi, G. (2023). β-Caryophyllene-Loaded Microemulsion-Based Topical Hydrogel: A Promising Carrier to Enhance the Analgesic and Anti-Inflammatory Outcomes. Gels, 9(8), 634. https://doi.org/10.3390/gels9080634