Abstract
A common and challenging issue in drug delivery is the premature release of drugs, which prevents them from reaching the target site. Finding suitable delivery materials has become a major research focus in the medical field. Cellulose-based hydrogels are a type of material with a three-dimensional network structure and good biocompatibility, offering significant advantages for drug delivery. This review begins with the raw materials of cellulose-based hydrogels and reviews their preparation methods and principles—including physical, chemical, and other special approaches—along with chemical modification strategies and their applications in medical drug delivery, such as drug carriers, drug release wound dressings, and so on. Special emphasis is placed on modification strategies to overcome the limitations of hydrogels, such as poor pH responsiveness, self-healing ability, and temperature sensitivity. It can be achieved by modifying the chemical chain itself, adding functional fillers, and constructing a dual network. Finally, the prospects of cellulose-based hydrogels in medical applications are discussed. Cellulose-based hydrogels, as drug delivery materials, are highly effective in biomedical applications and demonstrate significant potential for clinical translation in the field of precise drug release.