Assessment of Frozen Stored Silver Carp Surimi Gel Quality Using Synthetic Data-Driven Machine Learning (SDDML) Model
Abstract
1. Introduction
2. Results and Discussion
2.1. Gel Strength and Textural Properties
2.2. Cooking Loss and Expressible Moisture
2.3. Rheological Properties
2.3.1. Small-Amplitude Oscillatory Shear (SAOS) Test
2.3.2. Hysteresis Loop Assessment
2.4. Synthetic Data-Driven Machine Learning (SDDML) Models
2.4.1. Identify the Appropriate ML Model for Data Synthesis
2.4.2. Synthetic Data Generation and Validation
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Surimi Gel Making
4.3. Gel Strength Test
4.4. Texture Profile Analysis (TPA) Test
4.5. Cooking Loss and Expressible Moisture
4.6. Rheological Test
4.7. Multiple Machine Learning Models Training
4.8. Synthetic Data Generation and Validation
- Initial Model Training: A Random Forest Regressor (RFR) was trained on the original, limited dataset of input-output pairs (x_original and y_original);
- Modeling the Input and Output Distribution: A Kernel Density Estimation model was independently fitted to both the input and output values of the original data, and generated new input and output values (x_new and y_new) that resided in regions supported by the original data;
- Finding Absolute Error: The trained RFR was used to predict the output for x_new to gain y_pred. The absolute error was calculated between the y_pred and y_new for the same x_new;
- Defining Threshold: The validation threshold (τ) was defined as a fraction of the original output’s standard deviation (SD) as follows, where the fit value was adjustable to reach a desired bias between y_pred and y_new:τ = fit value × SD;
- 5.
- Validation Loop: If absolute error ≤ τ, the x_new and y_new were deemed consistent with the RFR’s understanding of the input-output relationship and were accepted. If absolute error > τ, the y_new was rejected, as the discrepancy between the KDE-generated output and the RFR-predicted output is too large, and returned to step 2;
- 6.
- Termination Condition: The loop iterates, batch-wise, until the number of accepted samples reaches the exact target.
4.9. Data Analysis and Model Program
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SC | Silver Carp |
FSC | Frozen Silver Carp |
SDDML | Synthetic Data-Driven Machine Learning |
WHC | Water-holding Capacity |
MMF | Manufactured Microfiber |
TG | Transglutaminase |
CLG | Collagen |
RSM | Response-Surface Modeling |
ML | Machine Learning |
SVR | Support Vector Regression |
ARD | Automatic Relevance Determination for Bayesian Ridge |
MLP | Multilayer Perceptron |
XGB | Extreme Gradient Boosting |
KDE | Kernel Density Estimation |
TPA | Texture Profile Analysis |
SAOS | Small-amplitude Oscillatory Shear |
EM | Expressible Moisture |
MD-MTD | Multi-distribution Global Trend Diffusion |
RFR | Random Forest Regressor |
SD | Standard Deviation |
HSD | Honestly Significant Difference |
QAs | Quality Attributes |
SEM | Standard Error of the Mean |
References
- Chapman, D.C.; Hoff, D.H. Chapter 1: Introduction. In Invasive Asian Carps in North America; American Fisheries Society, AFS Symposium: Bethesda, MD, USA, 2011; Volume 74. [Google Scholar] [CrossRef]
- Sun, X.D.; Holley, R.A. Factors influencing gel formation by myofibrillar proteins in Muscle Foods. Compr. Rev. Food Sci. Food Saf. 2010, 10, 33–51. [Google Scholar] [CrossRef]
- Yang, N.; Fan, X.; Yu, W.; Huang, Y.; Yu, C.; Konno, K.; Dong, X. Effects of microbial transglutaminase on gel formation of frozen-stored longtail southern cod (patagonotothen ramsayi) mince. LWT 2020, 128, 109444. [Google Scholar] [CrossRef]
- Wang, Q.; Jiao, X.; Yan, B.; Meng, L.; Cao, H.; Huang, J.; Zhao, J.; Zhang, H.; Chen, W.; Fan, D. Inhibitory effect of microwave heating on cathepsin L-induced degradation of myofibrillar protein gel. Food Chem. 2021, 357, 129745. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Shen, H.; Pan, D.; Bu, G. Gel properties of surimi from silver carp (Hypophthalmichthys molitrix) as affected by heat treatment and soy protein isolate. Food Hydrocoll. 2008, 22, 1513–1519. [Google Scholar] [CrossRef]
- Xiong, Z.; Shi, T.; Jin, W.; Bao, Y.; Monto, A.R.; Yuan, L.; Gao, R. Gel performance of surimi induced by various thermal technologies: A Review. Crit. Rev. Food Sci. Nutr. 2022, 64, 3075–3090. [Google Scholar] [CrossRef]
- Lee, S.; Jo, K.; Jeong, H.G.; Choi, Y.-S.; Kyoung, H.; Jung, S. Freezing-induced denaturation of myofibrillar proteins in frozen meat. Crit. Rev. Food Sci. Nutr. 2022, 64, 1385–1402. [Google Scholar] [CrossRef]
- Arsiccio, A.; Pisano, R. The ice-water interface and protein stability: A Review. J. Pharm. Sci. 2020, 109, 2116–2130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ertbjerg, P. On the origin of Thaw loss: Relationship between freezing rate and protein denaturation. Food Chem. 2019, 299, 125104. [Google Scholar] [CrossRef] [PubMed]
- Lund, M.N.; Heinonen, M.; Baron, C.P.; Estévez, M. Protein oxidation in muscle foods: A Review. Mol. Nutr. Food Res. 2010, 55, 83–95. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Tueksuban, J. Changes in physico-chemical properties and gel-forming ability of lizardfish (Saurida tumbil) during post-mortem storage in ice. Food Chem. 2003, 80, 535–544. [Google Scholar] [CrossRef]
- Cheng, W.; Sun, D.W.; Pu, H.; Wei, Q. Interpretation and rapid detection of secondary structure modification of actomyosin during frozen storage by near-infrared hyperspectral imaging. J. Food Eng. 2019, 246, 200–208. [Google Scholar] [CrossRef]
- Benjakul, S.; Visessanguan, W.; Thongkaew, C.; Tanaka, M. Effect of frozen storage on chemical and gel-forming properties of fish commonly used for surimi production in Thailand. Food Hydrocoll. 2005, 19, 197–207. [Google Scholar] [CrossRef]
- Yu, Q.; Liu, J.; Liu, Y.; Zheng, Y.; Pi, R.; Mubango, E.; Tan, Y.; Luo, Y.; Hong, H. Inhibitive effect of cryoprotectants on the oxidative and structural changes in myofibrillar proteins of unwashed mince from silver carp during frozen storage. Food Res. Int. 2022, 161, 111880. [Google Scholar] [CrossRef]
- Lu, G.; Wang, C.; Zhao, J.; Liao, X.; Wang, J.; Luo, M.; Zhu, L.; Bernatzhez, L.; Li, S. Evolution and genetics of Bighead and silver carps: Native population conservation versus Invasive Species Control. Evol. Appl. 2020, 13, 1351–1362. [Google Scholar] [CrossRef]
- Rungruangsak-Torrissen, K.; Stien, L.H.; Daae, B.S.; Vågseth, T.; Thorsheim, G.B.; Tobin, D.; Ritola, O. Different dietary levels of protein to lipid ratio affected digestive efficiency, skeletal growth, and muscle protein in rainbow trout families. Sch. Res. Exch. 2009, 2009, 1–13. [Google Scholar] [CrossRef]
- Cardoso, P.G.; Gonçalves, O.; Cavalheri, T.; Amorim, V.E.; Cao, W.; Alexandrino, D.A.; Jia, Z.; Carvalho, M.F.; Vaz-Pires, P.; Ozório, R.O. Combined effects of temperature and dietary lipid level on body composition, growth, and freshness profile in European Seabass, Dicentrarchus labrax. Animals 2023, 13, 1068. [Google Scholar] [CrossRef] [PubMed]
- Geirsdottir, M.; Hlynsdottir, H.; Thorkelsson, G.; Sigurgisladottir, S. Solubility and viscosity of herring (Clupea harengus) proteins as affected by freezing and frozen storage. J. Food Sci. 2007, 72, C376–C380. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yu, X.; Dong, X.; Yu, C. Improvement of Surimi Gel from Frozen-Stored Silver Carp. Gels 2024, 10, 374. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Tayeb, P.; Joyce, M.; Tyagi, P.; Kehoe, M.; Dimic-Misic, K.; Pal, L. Rheology of nanocellulose-rich aqueous suspensions: A Review. BioResources 2017, 12, 9556–9661. [Google Scholar] [CrossRef]
- Miwa, N. Innovation in the food industry using microbial transglutaminase: Keys to success and future prospects. Anal. Biochem. 2020, 597, 113638. [Google Scholar] [CrossRef]
- Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol. 2020, 161, 550–560. [Google Scholar] [CrossRef]
- Kang, J.-K.; Lee, Y.-J.; Son, C.-Y.; Park, S.-J.; Lee, C.-G. Alternative assessment of machine learning to polynomial regression in response surface methodology for predicting decolorization efficiency in textile wastewater treatment. Chemosphere 2025, 370, 143996. [Google Scholar] [CrossRef]
- Dou, B.; Zhu, Z.; Merkurjev, E.; Ke, L.; Chen, L.; Jiang, J.; Zhu, Y.; Liu, J.; Zhang, B.; Wei, G.-W. Machine learning methods for small data challenges in molecular science. Chem. Rev. 2023, 123, 8736–8780. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Sun, C.; Yang, S.; Tian, Y.; Tian, J. State of charge and temperature joint estimation based on ultrasonic reflection waves for lithium-ion battery applications. Batteries 2023, 9, 335. [Google Scholar] [CrossRef]
- Plesovskaya, E.; Ivanov, S. An empirical analysis of KDE-based generative models on small datasets. Procedia Comput. Sci. 2021, 193, 442–452. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, N.; Yu, W.; Jin, Z.; Jiang, P.; Yu, C.; Dong, X. Effects of microbial Transglutaminase on textural, water distribution, and microstructure of frozen-stored longtail Southern Cod (Patagonotothen ramsayi) fish mince gel. J. Texture Stud. 2022, 53, 844–853. [Google Scholar] [CrossRef]
- Alemu, T. Texture profile and design of food product. J. Agric. Hortic. Res. 2023, 6, 272–281. [Google Scholar] [CrossRef]
- Peleg, M. The instrumental texture profile analysis revisited. J. Texture Stud. 2019, 50, 362–368. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; You, J.; Xiong, S.; Yin, T. Short-term frozen storage enhances cross-linking that was induced by transglutaminase in surimi gels from silver carp (Hypophthalmichthys molitrix). Food Chem. 2018, 257, 216–222. [Google Scholar] [CrossRef]
- Zhu, J.; Cheng, Y.; Ouyang, Z.; Yang, Y.; Ma, L.; Wang, H.; Zhang, Y. 3D printing surimi enhanced by surface crosslinking based on dry-spraying transglutaminase, and its application in dysphagia diets. Food Hydrocoll. 2023, 140, 108600. [Google Scholar] [CrossRef]
- Gaspar, A.L.; de Góes-Favoni, S.P. Action of microbial transglutaminase (MTGase) in the modification of Food Proteins: A Review. Food Chem. 2015, 171, 315–322. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, X.; Wang, Y.; Yu, C.; Prakash, S.; Zhu, B.; Dong, X. Role of dietary fiber and flaxseed oil in altering the physicochemical properties and 3D printability of COD protein composite gel. J. Food Eng. 2022, 327, 111053. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, Q.; Wei, S.; Xia, Q.; Pan, Y.; Ji, H.; Deng, C.; Hao, J.; Liu, S. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from Golden Pompano (Trachinotus ovatus). Food Chem. 2022, 371, 131046. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Li, Y.; Tao, L.; Liang, D.; Zheng, H.-T. Are we ready for a new paradigm shift? A survey on visual deep MLP. Patterns 2022, 3, 100520. [Google Scholar] [CrossRef] [PubMed]
- Petcharat, T.; Chaijan, M.; Karnjanapratum, S. Effect of furcellaran incorporation on gel properties of sardine surimi. Int. J. Food Sci. Technol. 2021, 56, 5957–5967. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R2 is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
Storage Time (Months) | Treatment | Springiness (Mean ± SEM, n = 3) | Cohesiveness (Mean ± SEM, n = 3) | Resilience (Mean ± SEM, n = 3) |
---|---|---|---|---|
0 | Control | 0.901 ± 0.003 A | 0.773 ± 0.001 C | 0.405 ± 0.002 D |
0.1 wt% TG | 0.881 ± 0.014 A | 0.794 ± 0.003 BC | 0.440 ± 0.003 BC | |
1 | Control | 0.881 ± 0.013 A | 0.777 ± 0.007 C | 0.434 ± 0.007 BC |
0.1 wt% TG | 0.937 ± 0.012 A | 0.815 ± 0.009 AB | 0.482 ± 0.007 A | |
2 | Control | 0.913 ± 0.004 A | 0.775 ± 0.003 C | 0.443 ± 0.003 B |
0.1 wt% TG | 0.939 ± 0.017 A | 0.825 ± 0.003 A | 0.496 ± 0.006 A | |
3 | Control | 0.907 ± 0.003 A | 0.793 ± 0.003 BC | 0.430 ± 0.001 BCD |
0.1 wt% TG | 0.917 ± 0.005 A | 0.823 ± 0.003 A | 0.497 ± 0.003 A | |
6 | Control | 0.903 ± 0.004 A | 0.773 ± 0.003 C | 0.417 ± 0.003 CD |
0.1 wt% TG | 0.902 ± 0.007 A | 0.817 ± 0.003 AB | 0.487 ± 0.003 A |
Quality Attributes (QAs) | Performance Summary | ML Methods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Linear Regression | Polynomial Regression ** | Ridge Regression ** | SVR | Decision Tree | Random Forest | Gradient Boosting | Bayesian Ridge ** | ARD | MLP | XGB | ||
Gel Strength | Mean± SD | 0.272 ± 0.325 | 0.369 ± 0.340 | 0.402 ± 0.248 | 0.304 ± 0.302 | 0.403 ± 0.265 | 0.464± 0.218 | 0.406 ± 0.264 | 0.406 ± 0.264 | 0.410 ± 0.264 | 0.005 ± 0.618 | 0.409 ± 0.262 |
Best Case | 0.620 | 0.824 | 0.724 | 0.732 | 0.825 | 0.804 | 0.824 | 0.729 | 0.734 | 0.728 | 0.825 | |
Hardness | Mean± SD | 0.054 ± 0.311 | 0.492 ± 0.297 | 0.502 ± 0.256 | 0.493 ± 0.273 | 0.588 ± 0.252 | 0.605± 0.220 | 0.588 ± 0.255 | 0.508 ± 0.262 | 0.526 ± 0.247 | 0.115 ± 0.804 | 0.586 ± 0.259 |
Best Case | 0.467 | 0.837 | 0.817 | 0.885 | 0.862 | 0.889 | 0.862 | 0.826 | 0.817 | 0.885 | 0.873 | |
Chewiness | Mean± SD | −0.173 ± 0.220 | 0.199 ± 0.409 | 0.270 ± 0.272 | 0.577 ± 0.263 | 0.595 ± 0.278 | 0.617± 0.196 | 0.606 ± 0.240 | 0.266 ± 0.288 | 0.260 ± 0.425 | −0.120 ± 0.981 | 0.584 ± 0.327 |
Best Case | 0.122 | 0.595 | 0.642 | 0.897 | 0.919 | 0.906 | 0.919 | 0.642 | 0.641 | 0.890 | 0.919 |
QAs | Size of Synthetic Dataset Added to Experimental Data (42) in Training | |||||
---|---|---|---|---|---|---|
0 | 60 | 120 | 240 | 600 | 1200 | |
Gel Strength | 0.464 ± 0.218 A | 0.470 ± 0.209 A | 0.471 ± 0.216 A | 0.476 ± 0.206 A | 0.481 ± 0.215 A | 0.485 ± 0.208 A |
Hardness | 0.605 ± 0.220 A | 0.646 ± 0.193 B | 0.645 ± 0.195 B | 0.648 ± 0.195 B | 0.646 ± 0.197 B | 0.646 ± 0.196 B |
Chewiness | 0.617 ± 0.196 A | 0.670 ± 0.137 B | 0.671 ± 0.143 B | 0.679 ± 0.136 B | 0.679 ± 0.134 B | 0.678 ± 0.137 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Chen, S.; Tong, T.; Yu, C. Assessment of Frozen Stored Silver Carp Surimi Gel Quality Using Synthetic Data-Driven Machine Learning (SDDML) Model. Gels 2025, 11, 810. https://doi.org/10.3390/gels11100810
Yang J, Chen S, Tong T, Yu C. Assessment of Frozen Stored Silver Carp Surimi Gel Quality Using Synthetic Data-Driven Machine Learning (SDDML) Model. Gels. 2025; 11(10):810. https://doi.org/10.3390/gels11100810
Chicago/Turabian StyleYang, Jingyi, Shuairan Chen, Tianjian Tong, and Chenxu Yu. 2025. "Assessment of Frozen Stored Silver Carp Surimi Gel Quality Using Synthetic Data-Driven Machine Learning (SDDML) Model" Gels 11, no. 10: 810. https://doi.org/10.3390/gels11100810
APA StyleYang, J., Chen, S., Tong, T., & Yu, C. (2025). Assessment of Frozen Stored Silver Carp Surimi Gel Quality Using Synthetic Data-Driven Machine Learning (SDDML) Model. Gels, 11(10), 810. https://doi.org/10.3390/gels11100810