Fabrication and Properties of Chitosan/Calcium Polyphosphate Fibre Composite Biological Scaffold
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Sample Preparation
4.2.1. Preparation of CPPF
4.2.2. Preparation of CS/CPPF Composite Scaffold
4.3. Characterization
4.3.1. XRD Analysis of Scaffolding
4.3.2. Micro-Morphological Observation of Scaffolding
4.3.3. Fourier Infrared Analysis of Scaffolding
4.3.4. Analysis of the Mechanical Properties of Scaffolding
4.3.5. Water Contact Angle Testing
4.3.6. Scaffold Porosity and Density Testing
4.3.7. Testing of Water Absorption of Scaffolding
4.3.8. Testing of Scaffold Degradation Rates
4.3.9. Cell Viability Testing
4.3.10. Live/Dead Cell Staining Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuwono, L.A.; Siswanto; Sari, M.; Yusuf, Y.; Suciati, T.; Sari, Y.W.; Abdullah, C.A.C.; Aminatun. Fabrication and characterization of hydroxyapatite-polycaprolactone-collagen bone scaffold by electrospun nanofiber. Int. J. Polym. Mater. Polym. Biomat. 2023, 72, 1281–1293. [Google Scholar] [CrossRef]
- Kandil, H.; Ekram, B.; Abo-Zeid, M.A.M.; El-Hady, B.M.A.; Amin, A. Hydroxyapatite/hyperbranched polyitaconic acid/chitosan composite scaffold for bone tissue engineering. Polym. Compos. 2023, 44, 5633–5646. [Google Scholar] [CrossRef]
- Jodati, H.; Yilmaz, B.; Evis, Z. In vitro and in vivo properties of graphene-incorporated scaffolds for bone defect repair. Ceram. Int. 2021, 47, 29535–29549. [Google Scholar] [CrossRef]
- Jafarbeglou, M.; Meimandi-Parizi, A.; Derakhshandeh, A.; Khodakaram-Tafti, A.; Bigham-Sadegh, A.; Arkan, P.; Jafarbeglou, M. Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats. Int. J. Pharm. 2024, 666, 17. [Google Scholar] [CrossRef]
- Borsagli, F.; Rodrigues, J.S.; Aguiar, R.A.; Paiva, A.E.; Vasquez, J.F.B.; Ramos, W.T.D.; Allibrandini, P.; Rocha, E.P.A.; Goncalves, M.P.; de Souza, F.E. Low-cost luminescent scaffolds-based on thiol chitosans by microwave radiation for vertebral disc repair/theragnostic. Int. J. Biol. Macromol. 2022, 209, 2109–2118. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.M.C.; Ribeiro, N.; Nunes, C.M.M.; Rodrigues, A.F.M.; Sousa, A.; Olhero, S.M. Toughening robocast chitosan/biphasic calcium phosphate composite scaffolds with silk fibroin: Tuning printable inks and scaffold structure for bone regeneration. Biomater. Adv. 2022, 134, 15. [Google Scholar] [CrossRef]
- Dinatha, I.K.H.; Jamilludin, M.A.; Supii, A.I.; Wihadmadyatami, H.; Partini, J.; Yusuf, Y. Porous scaffold hydroxyapatite from sand lobster shells (Panulirus homarus) using polyethylene oxide/chitosan as polymeric porogen for bone tissue engineering. J. Biomed. Mater. Res. Part B 2023, 112, e35341. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Wang, W.H.; Li, Y.M.; Ma, Y.; Huang, Y.D.; Wang, J.F. Biological Macromolecule Hydrogel Based on Recombinant Type I Collagen/Chitosan Scaffold to Accelerate Full-Thickness Healing of Skin Wounds. Polymers 2023, 15, 19. [Google Scholar] [CrossRef]
- Ressler, A.; Mari, M.M.; Ohlsbom, R.; Ivankovi, T.; Hannula, M.; Frankberg, E.J.; Gebraad, A.; Pakarinen, T.K.; Hyttinen, J.; Miettinen, S. Multifunctional Sr, Mg, Ag-substituted octacalcium phosphate/carboxymethyl chitosan scaffolds: Antibacterial activity and osteogenic differentiation of human mesenchymal stem cells. Materialia 2024, 34, 102077. [Google Scholar] [CrossRef]
- Feng, S.; Peng, X.; Wu, Y.; Lei, N.; Cheng, C.; Deng, Y.; Yu, X. Europium-Doped 3D Dimensional Porous Calcium Phosphate Scaffolds as a Strategy for Facilitating the Comprehensive Regeneration of Bone Tissue: In Vitro and In Vivo. Acs Biomater. Sci. Eng. 2024, 10, 7086–7099. [Google Scholar] [CrossRef]
- Jana, S.; Florczyk, S.J.; Leung, M.; Zhang, M.Q. High-strength pristine porous chitosan scaffolds for tissue engineering. J. Mater. Chem. 2012, 22, 6291–6299. [Google Scholar] [CrossRef]
- Rezaei, F.S.; Sharifianjazi, F.; Esmaeilkhanian, A.; Salehi, E. Chitosan films and scaffolds for regenerative medicine applications: A review. Carbohydr. Polym. 2021, 273, 19. [Google Scholar] [CrossRef] [PubMed]
- Goy, R.C.; Britto, D.D.; Assis, O.B.G. A review of the antimicrobial activity of chitosan. Polímeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Kim, S. Competitive Biological Activities of Chitosan and Its Derivatives: Antimicrobial, Antioxidant, Anticancer, and Anti-Inflammatory Activities. Int. J. Polym. Sci. 2018, 2018, 13. [Google Scholar] [CrossRef]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; de la Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef]
- LogithKumar, R.; KeshavNarayan, A.; Dhivya, S.; Chawla, A.; Saravanan, S.; Selvamurugan, N. A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 2016, 151, 172–188. [Google Scholar] [CrossRef]
- Khazaei, M.; Bozorgi, M.; Rezakhani, L.; Bozorgi, A. Fabrication and characterization of nanohydroxyapatite/chitosan/ decellularized placenta scaffold for bone tissue engineering applications. Int. J. Biol. Macromol. 2024, 281, 9. [Google Scholar] [CrossRef]
- Li, J.; Du, Y.; Liang, H. Influence of molecular parameters on the degradation of chitosan by a commercial enzyme. Polym. Degrad. Stab. 2007, 92, 515–524. [Google Scholar] [CrossRef]
- Ma, P.F.; Wu, W.J.; Wei, Y.; Ren, L.; Lin, S.X.; Wu, J.H. Biomimetic gelatin/chitosan/polyvinyl alcohol/nano-hydroxyapatite scaffolds for bone tissue engineering. Mater. Des. 2021, 207, 11. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zhang, K.H.; Du, L.L.; Cheng, Z.J.; Zhang, T.X.; Ding, J.; Li, W.; Xu, B.S.; Zhu, M.F. Construction of chitosan scaffolds with controllable microchannel for tissue engineering and regenerative medicine. Mater. Sci. Eng. C-Mater. Biol. Appl. 2021, 126, 14. [Google Scholar] [CrossRef]
- Uyar, M.; Cakmak, S. Three-dimensional macro/micro-porous curcumin releasing polycaprolactone/chitosan nanofiber scaffolds as wound dressing. Colloid Surf. A-Physicochem. Eng. Asp. 2024, 688, 16. [Google Scholar] [CrossRef]
- Tuwalska, A.; Sionkowska, A.; Bryla, A.; Tylko, G.; Osyczka, A.M.; Laus, M.; Vojtová, L. A Biological Study of Composites Based on the Blends of Nanohydroxyapatite, Silk Fibroin and Chitosan. Materials 2022, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Abdian, N.; Zangbar, H.S.; Etminanfar, M.; Hamishehkar, H. 3D chitosan/hydroxyapatite scaffolds containing mesoporous SiO2-HA particles: A new step to healing bone defects. Int. J. Biol. Macromol. 2024, 278, 18. [Google Scholar] [CrossRef]
- Zhang, R.G.; Hu, J.B.; Chen, H.; Ding, Z.W.; Ouyang, Y.L.; Zhang, Q.Y.; Yan, Y.G. A novel degradable tricalcium silicate/calcium polyphosphate/polyvinyl alcohol organic-inorganic composite cement for bone filling. J. Biomater. Appl. 2021, 36, 772–788. [Google Scholar] [CrossRef] [PubMed]
- Shanjani, Y.; Hu, Y.X.; Pilliar, R.M.; Toyserkani, E. Mechanical characteristics of solid-freeform-fabricated porous calcium polyphosphate structures with oriented stacked layers. Acta Biomater. 2011, 7, 1788–1796. [Google Scholar] [CrossRef]
- Wang, J.; Fu, W.; Zhang, D.; Yu, X.; Li, J.; Wan, C. Evaluation of novel alginate dialdehyde cross-linked chitosan/calcium polyphosphate composite scaffolds for meniscus tissue engineering. Carbohydr. Polym. 2010, 79, 705–710. [Google Scholar] [CrossRef]
- Darvishnia, F.; Rabiee, S.M.; Sabour, D. Bioactivity evaluation of printable calcium polyphosphate/alginoplast cement for bone tissue engineering; In vitro study. Bioprinting 2022, 27, e00210. [Google Scholar] [CrossRef]
- Wang, Y.P.; Wang, X.; Li, L.; Gu, Z.P.; Yu, X.X. Controlled drug release from a novel drug carrier of calcium polyphosphate/chitosan/aldehyde alginate scaffolds containing chitosan microspheres. RSC Adv. 2014, 4, 24810–24815. [Google Scholar] [CrossRef]
- Wang, X.H.; Schröder, H.C.; Müller, W.E.G. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: Towards a new paradigm in tissue engineering. J. Mat. Chem. B 2018, 6, 2385–2412. [Google Scholar] [CrossRef]
- Müller, W.E.G.; Schröder, H.C.; Wang, X.H. Inorganic Polyphosphates As Storage for and Generator of Metabolic Energy in the Extracellular Matrix. Chem. Rev. 2019, 119, 12337–12374. [Google Scholar] [CrossRef]
- Hongmei, D.; Xu, P.; Xiaoshuang, Y.; Mengyue, H.; Chang, W.; Ningning, L.; Yihao, L.; Xixun, Y. The construction of a self-assembled coating with chitosan-grafted reduced graphene oxide on porous calcium polyphosphate scaffolds for bone tissue engineering. Biomed. Mater. 2022, 17, 045016. [Google Scholar]
- Indurkar, A.; Choudhary, R.; Rubenis, K.; Nimbalkar, M.; Sarakovskis, A.; Boccaccini, A.R.; Locs, J. Amorphous Calcium Phosphate and Amorphous Calcium Phosphate Carboxylate: Synthesis and Characterization. Acs Omega 2023, 8, 26782–26792. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.F.; Dang, Q.F.; Liu, C.S.; Niu, S.Y.; Zhao, Y.; Wang, S.Y.; Sang, F.; Su, J.Y.; Zhang, B.N.; Cha, D.S. Novel versatile 5-aminoisophthalic acid modified chitosan nanofiber pads for adsorption toward Congo red, methyl orange, crystal violet, and methylene blue. Chem. Eng. J. 2024, 500, 18. [Google Scholar] [CrossRef]
- Mondal, M.I.H.; Sarker, S.C.; Ahmed, F.; Pervez, M.N.; Saha, J. Fabrication of sustainable functional cotton fabric with silk sericin and chitosan for protective textiles. Heliyon 2024, 10, e39250. [Google Scholar] [CrossRef] [PubMed]
- Dornjak, L.; Ostoji, K.; Klaser, T.; Urli, I.; Rogina, A. Boric Acid Modified Chitosan Scaffolds Chemically Crosslinked by Genipin. Kemija u Industriji 2022, 71, 691–698. [Google Scholar]
- Alorbu, C.; Cai, L.L. Fungal resistance and leachability of genipin-crosslinked chitosan treated wood. Int. Biodeterior. Biodegrad. 2022, 169, 9. [Google Scholar] [CrossRef]
- Navas, A.F.N.; Araujo-Rodriguez, D.G.; Valencia-Llano, C.H.; Insuasty, D.; Delgado-Ospina, J.; Navia-Porras, D.P.; Zapata, P.A.; Albis, A.; Grande-Tovar, C.D. Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration. Molecules 2024, 29, 27. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Hao, J.; Ma, B.; Di, T.; Dong, H. Evaluation of the degradation, biocompatibility and osteogenesis behavior of lithium-doped calcium polyphosphate for bone tissue engineering. Bio-Med. Mater. Eng. 2019, 30, 23–36. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zhou, X.Y.; Jiang, J.H.; Zhao, T.H.; Dang, J.B.; Hu, R.B.; Shen, C.; Fan, Q.C.; Sun, D.H.; Zhang, M. Carboxymethyl chitosan-enhanced multi-level microstructured composite hydrogel scaffolds for bone defect repair. Carbohydr. Polym. 2025, 348, 13. [Google Scholar] [CrossRef]
- Xie, H.X.; Gu, Z.P.; Li, C.S.; Franco, C.; Wang, J.Y.; Li, L.J.; Meredith, N.; Ye, Q.S.; Wan, C.X. A novel bioceramic scaffold integrating silk fibroin in calcium polyphosphate for bone tissue-engineering. Ceram. Int. 2016, 42, 2386–2392. [Google Scholar] [CrossRef]
- Joy, K.; David, S.S.; Shanmugavadivu, A.; Selvamurugan, N.; Mani, P. Three-dimensional porous polycaprolactone/chitosan/bioactive glass scaffold for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 2024, 35, 2829–2844. [Google Scholar] [CrossRef]
- Ananth, K.P.; Jayram, N.D. A comprehensive review of 3D printing techniques for biomaterial-based scaffold fabrication in bone tissue engineering. Ann. 3D Print. Med. 2024, 13, 100141. [Google Scholar] [CrossRef]
- El-Wakil, N.; Kamel, R.; Mahmoud, A.A.; Dufresne, A.; Abouzeid, R.E.; El-Fadl, M.T.A.; Maged, A. Risedronate-loaded aerogel scaffolds for bone regeneration. Drug Deliv. 2023, 30, 51–63. [Google Scholar] [CrossRef]
- Cabral, C.S.D.; de Melo-Diogo, D.; Ferreira, P.; Moreira, A.F.; Correia, I.J. Reduced graphene oxide-reinforced tricalcium phosphate/gelatin/chitosan light-responsive scaffolds for application in bone regeneration. Int. J. Biol. Macromol. 2024, 259, 13. [Google Scholar] [CrossRef]
- Tardelli, J.D.C.; da Costa Valente, M.L.; de Oliveira, T.T.; Dos Reis, A.C. Influence of chemical composition on cell viability on titanium surfaces: A systematic review. J. Prosthet. Dent. 2021, 125, 421–425. [Google Scholar] [CrossRef]
- Liu, J.; Ruan, J.M.; Yin, J.; Ou, P.H.; Yang, H.L. Fabrication of multilevel porous structure networks on Nb-Ta-Ti alloy scaffolds and the effects of surface characteristics on behaviors of MC3T3-E1 cells. Biomed. Mater. 2022, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Shichman, I.; Oakley, C.; Willems, J.H.; Van Hellemondt, G.G.; Heesterbeek, P.; Rozell, J.; Marwin, S.; Schwarzkopf, R. Novel metaphyseal porous titanium cones allow favorable outcomes in revision total knee arthroplasty. Arch. Orthop. Trauma Surg. 2023, 143, 1537–1547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Sun, N.; Zhu, M.R.; Qiu, Q.R.; Zhao, P.J.; Zheng, C.Y.; Bai, Q.; Zeng, Q.Y.; Lu, T.L. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomater. Adv. 2022, 133, 10. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.R.; Li, L.; Li, S.S.; Wang, Y.P.; Yu, X.X. Preparation, characterization, bioactivity and degradation behavior in vitro of copper-doped calcium polyphosphate as a candidate material for bone tissue engineering. RSC Adv. 2017, 7, 42614–42626. [Google Scholar] [CrossRef]
- Pilliar, R.M.; Kandel, R.A.; Grynpas, M.D.; Theodoropoulos, J.; Hu, Y.X.; Allo, B.; Changoor, A. Calcium polyphosphate particulates for bone void filler applications. J. Biomed. Mater. Res. Part B 2017, 105, 874–884. [Google Scholar] [CrossRef]
- Ma, F.M.; Li, P.; Zhang, B.Q.; Zhao, X.; Fu, Q.; Wang, Z.Y.; Gu, C.L. Effect of solution plasma process with bubbling gas on physicochemical properties of chitosan. Int. J. Biol. Macromol. 2017, 98, 201–207. [Google Scholar] [CrossRef]
- Magallanes-Perdomo, M.; Luklinska, Z.B.; De Aza, A.H.; Carrodeguas, R.G.; De Aza, S.; Pena, P. Bone-like forming ability of apatite-wollastonite glass ceramic. J. Eur. Ceram. Soc. 2011, 31, 1549–1561. [Google Scholar] [CrossRef]
- Pilliar, R.M.; Hu, X.; Grynpas, M.D.; Kandel, R.A. Processing and properties of Na-doped porous calcium polyphosphates—Mechanical properties and in vitro degradation characteristics. J. Mech. Behav. Biomed. Mater. 2019, 91, 355–365. [Google Scholar] [CrossRef]
- Vidane, A.S.; Nunes, F.C.; Ferreira, J.A.; Fukumasu, H.; Freitas, S.H.; Pallone, E.; Ambrósio, C.E. Biocompatibility and interaction of porous alumina-zirconia scaffolds with adipose-derived mesenchymal stem cells for bone tissue regeneration. Heliyon 2023, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Alghofaily, M.; Almana, A.; Alrayes, J.; Lambarte, R.; Weir, M.D.; Alsalleeh, F. Chitosan-Gelatin Scaffolds Loaded with Different Antibiotic Formulations for Regenerative Endodontic Procedures Promote Biocompatibility and Antibacterial Activity. J. Func. Biomater. 2024, 15, 14. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Huang, X.; Cai, Y.; Tang, R.; Yang, D. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells. Acta Biomater. 2009, 5, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.F.; Liu, Y.W.; Buehring, J.; Tian, L.; Koblenzer, M.; Schröder, K.U.; Li, F.; Van Dessel, J.; Politis, C.; Jahr, H.; et al. Biocompatibility and osteogenic capacity of additively manufactured biodegradable porous WE43 scaffolds: An in vivo study in a canine model. Biomater. Adv. 2024, 164, 14. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Zhao, G.L.; Ma, W.; Song, Y.H.; Huang, C.; Xie, C.; Chen, K.B.; Li, X.F. The root-like chitosan nanofiber porous scaffold cross-linked by genipin with type I collagen and its osteoblast compatibility. Carbohydr. Polym. 2022, 285, 10. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, X.; Hu, Z.; Liu, W.; Huang, D. Fabrication and Properties of Chitosan/Calcium Polyphosphate Fibre Composite Biological Scaffold. Gels 2025, 11, 767. https://doi.org/10.3390/gels11100767
Qiang X, Hu Z, Liu W, Huang D. Fabrication and Properties of Chitosan/Calcium Polyphosphate Fibre Composite Biological Scaffold. Gels. 2025; 11(10):767. https://doi.org/10.3390/gels11100767
Chicago/Turabian StyleQiang, Xiaohu, Zhu Hu, Wang Liu, and Dajian Huang. 2025. "Fabrication and Properties of Chitosan/Calcium Polyphosphate Fibre Composite Biological Scaffold" Gels 11, no. 10: 767. https://doi.org/10.3390/gels11100767
APA StyleQiang, X., Hu, Z., Liu, W., & Huang, D. (2025). Fabrication and Properties of Chitosan/Calcium Polyphosphate Fibre Composite Biological Scaffold. Gels, 11(10), 767. https://doi.org/10.3390/gels11100767