Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel
Abstract
1. Introduction
2. Results and Discussion
2.1. Initial Spectral Analysis
2.2. Sensor Response Stability
2.3. Pb2+ Response Sensitivity
2.4. Dynamic Response
2.5. Sensor Reproducibility
2.6. Effect of HEMA/AM Ratio on Response Characteristics
2.7. Selectivity Test
2.8. Temperature Response Characteristics
2.9. Preliminary Investigation on Sensor Performance Under Dry–Wet Cycling
2.10. Comparison with Reported Results
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Structure and Principle
4.3. Sensor Fabrication and Test Solution Preparation
4.4. Experimental System
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bao, S.; Li, K.; Ning, P.; Peng, J.; Jin, X.; Tang, L. Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents: Behaviours and mechanisms. Appl. Surf. Sci. 2017, 393, 457–466. [Google Scholar] [CrossRef]
- Rahman, S.U.; Qin, A.; Zain, M.; Mushtaq, Z.; Mehmood, F.; Riaz, L.; Naveed, S.; Ansari, M.J.; Saeed, M.; Ahmad, I. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024, 10, e27724. [Google Scholar] [CrossRef]
- Raj, K.; Das, A.P. Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environ. Chem. Ecotoxicol. 2023, 5, 79–85. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.S.; Anusha, J.; Choudhary, R.; Lvov, V.; Tovar, G.I. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Abdulrazzaq, A.M.; Mohd, H.M.N.; Wahid, H.A.; Yusof, S.M.; Ali, R.M. The detrimental effects of lead on human and animal health. Vet. World 2016, 9, 660–671. [Google Scholar]
- March, G.; Nguyen, T.D.; Piro, B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors 2015, 5, 241–275. [Google Scholar] [CrossRef] [PubMed]
- Faraji, H.; Helalizadeh, M. Lead quantification in urine samples of athletes by coupling DLLME with UV-vis spectrophotometry. Biol. Trace Elem. Res. 2017, 176, 258–269. [Google Scholar] [CrossRef]
- Ritgen, U. Atomic absorption spectroscopy (AAS). In Analytical Chemistry I; Springer: Berlin/Heidelberg, Germany, 2023; pp. 247–253. [Google Scholar]
- Van Acker, T.; Theiner, S.; Bolea-Fernandez, E.; Vanhaecke, F.; Koellensperger, G. Inductively coupled plasma mass spectrometry. Nat. Rev. Methods Primers 2023, 3, 52. [Google Scholar] [CrossRef]
- Zhang, Y.-n.; Sun, Y.; Cai, L.; Gao, Y.; Cai, Y. Optical fiber sensors for measurement of heavy metal ion concentration: A review. Measurement 2020, 158, 107742. [Google Scholar] [CrossRef]
- Wang, X.-d.; Wolfbeis, O.S. Fiber-optic chemical sensors and biosensors (2015–2019). Anal. Chem. 2019, 92, 397–430. [Google Scholar] [CrossRef]
- Elsherif, M.; Salih, A.E.; Muñoz, M.G.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Zaki, M.F.; Yetisen, A.K.; Park, S.; Wilkinson, T.D. Optical fiber sensors: Working principle, applications, and limitations. Adv. Photonics Res. 2022, 3, 2100371. [Google Scholar] [CrossRef]
- Verma, R.; Gupta, B.D. Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 2015, 166, 568–575. [Google Scholar] [CrossRef]
- Zhong, N.; Wang, Z.; Chen, M.; Xin, X.; Wu, R.; Cen, Y.; Li, Y. Three-layer-structure polymer optical fiber with a rough inter-layer surface as a highly sensitive evanescent wave sensor. Sens. Actuators B Chem. 2018, 254, 133–142. [Google Scholar] [CrossRef]
- Tan, S.-Y.; Lee, S.-C.; Okazaki, T.; Kuramitz, H.; Abd-Rahman, F. Detection of mercury (II) ions in water by polyelectrolyte–gold nanoparticles coated long period fiber grating sensor. Opt. Commun. 2018, 419, 18–24. [Google Scholar] [CrossRef]
- Guo, X.; Wang, R.; Liu, F.; Ma, Y.; Fu, X.; Li, Y.; Song, M.; Wang, P. Highly sensitive optical fiber SPR sensor based on chitosan for the detection of trace Cu2+ ion in aqueous solution. Opt. Quantum Electron. 2024, 56, 1400. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, X.; Wang, L.; Qi, Y.; An, N.; Chen, S.; Liu, Y.; Zhang, H.; Guo, Y. Epichlorohydrin-modified chitosan for a sensitive and targeted SPR sensor for copper ion detection on optical fiber. Microchem. J. 2025, 212, 113450. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Lu, Z.-W.; Wu, Y.-C.; Liao, Y.-J.; Kuo, C.-Y. An injectable, chitosan-based hydrogel prepared by Schiff base reaction for anti-bacterial and sustained release applications. Int. J. Biol. Macromol. 2024, 269, 131808. [Google Scholar] [CrossRef]
- Shree, H.S.; Arpitha, H.; Priyanka, H.; Banu, N.; Gayathri, B.; Srinivasan, R.; Al-Sadoon, M.K.; Durai, M.; Gnanasekaran, L.; Ramasundaram, S. Effective removal of metal ions using MoS2 functionalized chitosan Schiff base incorporated with C3N4 nanoparticle from aqueous solutions. Int. J. Biol. Macromol. 2025, 307, 141402. [Google Scholar]
- Gupta, D.; Singh, D.; Koranne, A.; Singh, C.; Singh, S.K.; Singh, R.P.; Singh, A.K. Chromic Schiff Bases: Transformative Stimuli-Responsive Systems for Next-Generation Soft Materials. Mater. Adv. 2025. [Google Scholar] [CrossRef]
- Hasan, N.; Bhuyan, M.M.; Jeong, J.-H. Single/multi-network conductive hydrogels—A review. Polymers 2024, 16, 2030. [Google Scholar] [CrossRef]
- Li, X.; Gong, J.P. Design principles for strong and tough hydrogels. Nat. Rev. Mater. 2024, 9, 380–398. [Google Scholar] [CrossRef]
- Al Noman, A.; Dash, J.N.; Cheng, X.; Yu, C. Fiber optic lead ion (Pb2+) sensor using chitosan diaphragm based Fabry-Pérot interferometer. In Proceedings of the Optoelectronics and Communications Conference, Hong Kong, China, 3–7 July 2021; p. W3D-2. [Google Scholar]
- Li, G.; Liu, Z.; Feng, J.; Zhou, G.; Huang, X. Pb2+ fiber optic sensor based on smart hydrogel coated Mach-Zehnder interferometer. Opt. Laser Technol. 2022, 145, 107453. [Google Scholar]
- Banerjee, S.; Siddiqui, L.; Bhattacharya, S.S.; Kaity, S.; Ghosh, A.; Chattopadhyay, P.; Pandey, A.; Singh, L. Interpenetrating polymer network (IPN) hydrogel microspheres for oral controlled release application. Int. J. Biol. Macromol. 2012, 50, 198–206. [Google Scholar] [CrossRef]
- Dragan, E.S. Design and applications of interpenetrating polymer network hydrogels. A review. Chem. Eng. J. 2014, 243, 572–590. [Google Scholar] [CrossRef]
- Yamashita, K.; Nishimura, T.; Nango, M. Preparation of IPN-type stimuli-Responsive heavy-Metal-Ion adsorbent gel. Polym. Adv. Technol. 2003, 14, 189–194. [Google Scholar] [CrossRef]
- Wang, W.-B.; Huang, D.-J.; Kang, Y.-R.; Wang, A.-Q. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf. B Biointerfaces 2013, 106, 51–59. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Wang, X.; Zong, L.; Kang, Y.; Wang, A. Fast and highly efficient adsorption removal of toxic Pb (II) by a reusable porous semi-IPN hydrogel based on alginate and poly (vinyl alcohol). Front. Chem. 2021, 9, 662482. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Sepúlveda, J.R.; Guzmán-Cabrera, R.; Castillo-Guzmán, A.A. Optical sensing using fiber-optic multimode interference devices: A review of nonconventional sensing schemes. Sensors 2021, 21, 1862. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Liu, Y.; Gao, Z.; Wu, B.; Fan, X.; Liu, C.; Li, H.; Li, Y.; Ma, M. An optical fiber sensor for the detections of liquid level and strain through cascading Sagnac interference and modal interference. Infrared Phys. Technol. 2022, 127, 104387. [Google Scholar] [CrossRef]
- Xiaohong, H.; Zhaohua, W.; Guoqiang, C. New method of estimation of phase, amplitude, and frequency based on all phase FFT spectrum analysis. In Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, 28 November–1 December 2007; pp. 284–287. [Google Scholar]
- Liu, Y.; Wang, F.; Peng, Y.; Yu, K.; Liu, Y. Optical fiber vibration sensor with wide detection range based on STDS structure designed by Mach–Zehnder interferometer. IEEE Sens. J. 2023, 23, 27351–27360. [Google Scholar] [CrossRef]
- Tanan, W.; Saengsuwan, S. A one-pot microwave-assisted synthesis of IPN hydrogels based on HEMA/AM/PVA blend for enhancing Cu (II) and Pb (II) ions removal. J. Environ. Chem. Eng. 2020, 8, 103469. [Google Scholar] [CrossRef]
- Taşdelen, B. Synthesis, swelling, diffusion and cationic dye adsorption studies of semi-IPN sodium alginate/poly (HEMA-co-MA) hydrogels. ChemistrySelect 2023, 8, e202300707. [Google Scholar] [CrossRef]
- Panpinit, S.; Pongsomboon, S.-A.; Keawin, T.; Saengsuwan, S. Development of multicomponent interpenetrating polymer network (IPN) hydrogel films based on 2-hydroxyethyl methacrylate (HEMA), acrylamide (AM), polyvinyl alcohol (PVA) and chitosan (CS) with enhanced mechanical strengths, water swelling and antibacterial properties. React. Funct. Polym. 2020, 156, 104739. [Google Scholar] [CrossRef]
- Priyadarsini, M.; Biswal, T. Recent progress on the design and applications of guar gum based nano hydrogel “guar gum-gP (HEMA-co-AM)/chicken eggshell” as superabsorbent. Egypt. J. Chem. 2020, 63, 851–859. [Google Scholar]
- Fu, J.; Chen, L.; Li, J.; Zhang, Z. Current status and challenges of ion imprinting. J. Mater. Chem. A 2015, 3, 13598–13627. [Google Scholar] [CrossRef]
- Du, M.; Xu, Z.; Xue, Y.; Li, F.; Bi, J.; Liu, J.; Wang, S.; Guo, X.; Zhang, P.; Yuan, J. Application prospect of Ion-imprinted polymers in harmless treatment of heavy metal wastewater. Molecules 2024, 29, 3160. [Google Scholar] [CrossRef]
- Ramanan, R.M.K.; Chellamuthu, P.; Tang, L.; Nguyen, K.T. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol. Prog. 2006, 22, 118–125. [Google Scholar] [CrossRef]
- Choi, H.Y.; Mudhana, G.; Park, K.S.; Paek, U.-C.; Lee, B.H. Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index. Opt. Express 2009, 18, 141–149. [Google Scholar] [CrossRef]
- Madrigal, J.; Barrera, D.; Sales, S. Refractive index and temperature sensing using inter-core crosstalk in multicore fibers. J. Light. Technol. 2019, 37, 4703–4709. [Google Scholar] [CrossRef]
- Li, J.; Gan, W.; Li, H.; Xu, M.; Liu, J.; Zhou, A. Temperature compensated highly sensitive refractive index sensor based on Mach-Zehnder interferometer and FBG. Optik 2021, 241, 166838. [Google Scholar] [CrossRef]
- Razali, N.M.; Zaidi, N.F.A.; Ja’afar, P.N.S.S.; Hamzah, A.; Ahmad, F.; Ambran, S. Optical fibre tip sensor coated with chitosan for lead ion detection. In AIP Conference Proceedings; AIP Publishing LLC: New York, NY, USA, 2020; Volume 2203, p. 020035. [Google Scholar]
- Kavitha, B.; Asokan, S. Selective detection of lead in water using etched fiber Bragg grating sensor. Sens. Actuators B Chem. 2022, 354, 131208. [Google Scholar]
- Dhara, P.; Kumar, R.; Binetti, L.; Nguyen, H.T.; Alwis, L.S.; Sun, T.; Grattan, K.T. Optical fiber-based heavy metal detection using the localized surface plasmon resonance technique. IEEE Sens. J. 2019, 19, 8720–8726. [Google Scholar] [CrossRef]
- Zhang, L.; He, H.; Zhang, S.; Xiong, Y.; Pan, R.; Yang, W. Highly Sensitive Optical Fiber MZI Sensor for Specific Detection of Trace Pb2+ Ion Concentration. Photonics 2024, 11, 631. [Google Scholar] [CrossRef]
- Lai, N.D.; Liang, W.P.; Lin, J.H.; Hsu, C.C.; Lin, C.H. Fabrication of two-and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 2005, 13, 9605–9611. [Google Scholar] [CrossRef]
- Wan Hassan, W.M.S.; Tamuri, A.R.; Yaacob, M.Z.; Zainal, R. Interference of Light. In Physics—Problems, Solutions, and Computer Calculations: Volume 2 Waves, Sound, Electricity, Magnetism, and Optics; Springer: Berlin/Heidelberg, Germany, 2023; pp. 499–523. [Google Scholar]
- Zhang, G.; Xu, L.; Ge, Q. An in-fiber Mach–Zehnder strain sensor for studying multimode interference of light. Am. J. Phys. 2024, 92, 385–391. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, D.; Yang, H.; Zhao, C. Distributed optical fiber vibration sensors using light interference technology: Fundamental principles and major advancements. IEEE Trans. Instrum. Meas. 2025, 74, 7501227. [Google Scholar] [CrossRef]
- Elbarbary, A.M.; Ghobashy, M.M. Phosphorylation of chitosan/HEMA interpenetrating polymer network prepared by γ-radiation for metal ions removal from aqueous solutions. Carbohydr. Polym. 2017, 162, 16–27. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, X.; Yin, D.; Zhang, W. Preparation of a hydrogel-based adsorbent for metal ions through high internal phase emulsion polymerization. ACS Omega 2020, 5, 19920–19927. [Google Scholar] [CrossRef] [PubMed]
- Ozay, H.; Gungor, Z.; Yilmaz, B.; Ilgin, P.; Ozay, O. Dual use of colorimetric sensor and selective copper removal from aqueous media with novel p (HEMA-co-TACYC) hydrogels: Cyclen derivative as both monomer and crosslinker. J. Hazard. Mater. 2020, 389, 121848. [Google Scholar] [CrossRef]
- Tanan, W.; Panpinit, S.; Saengsuwan, S. Comparison of microwave-assisted and thermal-heated synthesis of P (HEMA-co-AM)/PVA interpenetrating polymer network (IPN) hydrogels for Pb (II) removal from aqueous solution: Characterization, adsorption and kinetic study. Eur. Polym. J. 2021, 143, 110193. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, Y.; Lin, Z.; Zhao, B.; Wang, J.; Xie, J.; Zhang, A. Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion. Sci. Total Environ. 2020, 744, 140653. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhan, J.; Chen, L.; Zhao, Y. Preparation of CTS/PAMAM/SA/Ca2+ hydrogel and its adsorption performance for heavy metal ions. Appl. Surf. Sci. 2023, 607, 155135. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Fundamentals of double network hydrogels. J. Mater. Chem. B 2015, 3, 3654–3676. [Google Scholar] [CrossRef] [PubMed]
Sample Codes | HEMA (g) | AM (g) | SA (g) | H2O (mL) |
---|---|---|---|---|
10% HEMA | 0.1 | 0.9 | 1 | 48 |
30% HEMA | 0.31 | 0.7 | 1 | 48 |
50% HEMA | 0.52 | 0.5 | 1 | 48 |
70% HEMA | 0.73 | 0.3 | 1 | 48 |
90% HEMA | 0.94 | 0.1 | 1 | 48 |
Sensitive Material | Sensing Probe | Mechanism | Detection Range (ppm) | Sensitivity | Cost | Manufacturing Difficulty | Refs. |
---|---|---|---|---|---|---|---|
Chitosan | SMF | Optical absorbance | 0–70 | 0.044 dBm/ppm | Low | Easy | [44] |
AuNPs-maleic acid | Etched-FBG | FBG | 0–0.02 | 2.703 × 10−6 nm/ppm | High | Difficult | [45] |
1,1-Mercaptoundecanoic acid | MMF coated by AuNPs | LSPR | 166–2 × 104 | 1.35 × 10−3 nm/ppm | High | Difficult | [46] |
Ionic imprinting chitosan | HCF-TCF-HCF | MZI | 0–350 | 0.01268 nm/ppm | High | Difficult | [47] |
P(HEMA-co-AM) hydrogel | NCF-FMF-NCF | MZI | 0.04–0.25 | 3.936 nm/ppm | High | Difficult | [24] |
Spherically shaped chitosan diaphragm | SMF-Capillary | FPI | 0–30 | 0.091 nm/ppm | Low | Medium | [23] |
P(HEMA-co-AM)/SA IPN hydrogel | SMF-Ceramic ferrule | FPI | 0–1 | 5.22118 nm/ppm | Low | Easy | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; He, M.; Wang, L.; Lei, C.; Xiao, L.; Li, Y.; Liu, S. Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel. Gels 2025, 11, 766. https://doi.org/10.3390/gels11100766
Wang N, He M, Wang L, Lei C, Xiao L, Li Y, Liu S. Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel. Gels. 2025; 11(10):766. https://doi.org/10.3390/gels11100766
Chicago/Turabian StyleWang, Ning, Ming He, Longjiao Wang, Chuanjie Lei, Linyufan Xiao, Yingjie Li, and Shuan Liu. 2025. "Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel" Gels 11, no. 10: 766. https://doi.org/10.3390/gels11100766
APA StyleWang, N., He, M., Wang, L., Lei, C., Xiao, L., Li, Y., & Liu, S. (2025). Highly Sensitive Optical Fiber Pb2+ Concentration Sensor Based on HEMA/AM/SA Interpenetrating Polymer Network (IPN) Hydrogel. Gels, 11(10), 766. https://doi.org/10.3390/gels11100766