Next Article in Journal
Fungal-Derived Mycoprotein and Health across the Lifespan: A Narrative Review
Next Article in Special Issue
Two Novel Species of Talaromyces Discovered in a Karst Cave in the Satun UNESCO Global Geopark of Southern Thailand
Previous Article in Journal
Responses of the Mushroom Pleurotus ostreatus under Different CO2 Concentration by Comparative Proteomic Analyses
Previous Article in Special Issue
New Species of Aspergillus (Aspergillaceae) from Tropical Islands of China
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China

State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
*
Authors to whom correspondence should be addressed.
J. Fungi 2022, 8(7), 647; https://doi.org/10.3390/jof8070647
Submission received: 6 May 2022 / Revised: 17 June 2022 / Accepted: 18 June 2022 / Published: 21 June 2022

Abstract

:
Species of Talaromyces are cosmopolitan and ubiquitous, and some are of industrial and medicinal importance. Species of Talaromyces have been successively reported in China. During our examinations of samples collected from southwestern China, two new species belonging to Talaromyces sect. Talaromyces were further discovered based on phylogenetic analyses and morphological comparisons. Talaromyces ginkgonis sp. nov., isolated from a partially colonized fruit of Ginkgo biloba, differs from closely-related fungi in the combination of conidia ellipsoidal, smooth and 3.5−4 × 2−3 μm, no growth on CYA at 37 °C and sequence divergences; T. shilinensis sp. nov. is distinguished from its related allies in the combination of smooth conidia, colonies 10−11 mm diameter on CYA at 25 °C and sequence differences. Detailed descriptions and illustrations of the new taxa are given.

1. Introduction

Species of Talaromyces C.R. Benj. are cosmopolitan and ubiquitous, inhabiting soil, air, indoor environments, rotten food, plant debris, healthy plant as endophytes, insects, and immunodeficient humans. The beneficial and the harmful effects of Talaromyces have been well documented [1].
Seven sections have been established and widely accepted in the genus Talaromyces: Bacillispori, Helici, Islandici, Purpurei, Subinflati, Talaromyces, and Trachyspermi [2,3]. A novel section was recently proposed as sect. Tenues [4]. A total of 171 species were compiled in the genus and listed in the latest monograph [3]. Furthermore, 26 new taxa were afterwards noted [1,4,5,6,7,8,9,10,11,12]. Twenty of them are from Asia: T. albisclerotius B.D. Sun et al., T. aspriconidius B.D. Sun et al., T. aureolinus L. Wang, T. bannicus L. Wang, T. brevis B.D. Sun et al., T. chongqingensis X.C. Wang & W.Y. Zhuang, T. guizhouensis B.D. Sun et al., T. gwangjuensis Hyang B. Lee & T.T.T. Nguyen, T. haitouensis L. Wang, T. koreana Hyang B. Lee, T. nanjingensis X.R. Sun et al., T. penicillioides L. Wang, T. rosarhiza H. Zhang & Y.L. Jiang, T. rufus B.D. Sun et al., T. sparsus L. Wang, T. teleomorpha Hyang B. Lee et al., T. tenuis B.D. Sun et al., T. wushanicus X.C. Wang & W.Y. Zhuang, T. yunnanensis Doilom & C.F. Liao, and T. zhenhaiensis L. Wang; five from Europe: T. calidominioluteus Houbraken & Pyrri, T. gaditanus (C. Ramírez & A.T. Martínez) Houbraken & Soccio, T. germanicus Houbraken & Pyrri, T. pulveris Crous, and T. samsonii (Quintan.) Houbraken & Pyrri; and one from Africa, T. africanus Houbraken et al. Talaromyces sect. Talaromyces is the largest section and now with 84 species included.
Southwestern China shows various climates, altitudes, and vegetations, and it is rich in fungal biodiversity. Two species from soil in Chongqing were just described [1]. Along with more samples isolated from the area being examined, two additional new species belonging to Talaromyces sect. Talaromyces were further discovered based on phylogenetic analyses and morphological comparisons. Detailed descriptions and illustrations of the new taxa are provided.

2. Materials and Methods

2.1. Fungal Materials

The new species were associated with fungal (Pseudocosmospora sp.) or plant (Ginkgo biloba L.) materials collected in southwestern China (Sichuan and Yunnan provinces) during 2016–2017. Dried cultures were deposited in the Herbarium Mycologicum Academiae Sinicae (HMAS, Beijing, China), and the living ex-type strains were preserved in the China General Microbiological Culture Collection Center (CGMCC, Beijing, China).

2.2. Morphological Observations

Morphological characterization was conducted following standardized methods [13]. Four standard growth media were used: Czapek yeast autolysate agar (CYA, yeast extract Oxoid, Hampshire, UK), malt extract agar (MEA, Amresco, Solon, OH, USA), yeast extract agar (YES), and potato dextrose agar (PDA). The methods for inoculation, incubation, microscopic examinations, and digital recordings followed our previous studies [1,14,15,16].

2.3. Molecular Experiments

DNA was extracted from the cultures grown on PDA for 7 days, using the Plant Genomic DNA Kit (DP305, TIANGEN Biotech, Beijing, China). Polymerase chain reaction (PCR) amplifications of the internal transcribed spacer (ITS), beta-tubulin (BenA), calmodulin (CaM), and RNA polymerase II second largest subunit (RPB2) gene regions were conducted with routine methods [1,14,15,16]. The products were purified and subjected to sequencing on an ABI 3730 DNA Sequencer (Applied Biosystems, Bedford, MA, USA). Although the ITS region is proposed as the universal DNA barcode for fungi, it is not sufficient to distinguish species of Talaromyces. The ITS sequences provided in this study might be helpful for other researchers in case of need.

2.4. Phylogenetic Analyses

The forward and the reverse sequences newly generated in this study were assembled using Seqman v. 7.1.0 (DNASTAR Inc., Madison, WI, USA). The assembled sequences were deposited in GenBank. Sequences used for phylogenetic analyses were listed in Table 1. Sequences of each of the three separate datasets (BenA, CaM, and RPB2) and those that were combined were aligned using MAFFT v. 7.221 [17], and then manually edited in BioEdit v. 7.1.10 [18] and MEGA v. 6.0.6 [19]. Maximum Likelihood (ML) analyses were determined using RAxML-HPC2 [20] on XSEDE 8.2.12 on CIPRES Science Gateway v. 3.3 [21] with the default GTRCAT model. Bayesian Inference (BI) analyses were performed with MrBayes v. 3.2.5 [22]. Appropriate nucleotide substitution models and parameters were determined by Modeltest v. 3.7 [23]. The consensus trees were viewed in FigTree v. 1.3.1 (http://tree.bio.ed.ac.uk/software/%20figtree/ accessed on 1 September 2015). The type species T. trachyspermus of Talaromyces sect. Trachyspermi served as an outgroup.

3. Results

3.1. Phylogenetic Analysis

To infer the phylogeny of Talaromyces sect. Talaromyces and to determine the positions of the new species, three separate datasets (BenA, CaM and RPB2) and those that were combined were compiled and analyzed. Detailed characteristics of the datasets are listed in Table 2.
In the BenA phylogeny (Figure S1), the strain 10725 was clustered with T. aspriconidius, T. calidicanius, T. duclauxii, T. flavus, T. haitouensis, and T. marneffei; and XCW_SN259 was grouped with T. kabodanensis and T. primulinus. In the CaM tree (Figure S2), 10725 showed as a distinct lineage, while XCW_SN259 was a sister taxon of T. primulinus. In the RPB2 phylogeny (Figure S3), the position of 10725 was similar to that shown in the BenA phylogeny with relatively weak supports, while the sister relationship between T. primulinus and XCW_SN259 was confirmed as that in the CaM phylogeny. In the phylogenetic tree of the combined three-gene dataset (Figure 1), the position of 10725 was identical with the BenA and RPB2 trees and that of XCW_SN259 was consistent in of all the trees (Figure 1 and Figures S1–S3).

3.2. Taxonomy

Talaromyces ginkgonis X.C. Wang & W.Y. Zhuang, sp. nov. Figure 2
Fungal Names: FN570954
Etymology: The specific epithet refers to the substrate of the fungus
in Talaromyces sect. Talaromyces
Typification: CHINA. Sichuan Province, Chengdu City, Dujiangyan City, Mount Qingcheng, 30°54′8″ N 103°33′40″ E, on a partially colonized fruit of Ginkgo biloba L., 22 August 2016, Xin-Cun Wang 10725, cultured by Xin-Cun Wang (holotype HMAS 247853, ex-type strain CGMCC 3.20698)
DNA barcodes: ITS OL638158, BenA OL689844, CaM OL689846, RPB2 OL689848
Colony diam., 7 days, 25 °C (unless stated otherwise): CYA 9–13 mm; CYA 37 °C no growth; MEA 19–21 mm; YES 12–13 mm; PDA 15–27 mm
Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, plain; margins moderately wide, fimbriate; mycelia colorless; texture velutinous; sporulation moderately dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse greenish white.
On MEA 25 °C, 7 days: Colonies nearly circular, plain; margins wide, fimbriate; mycelia white; texture velutinous; sporulation dense; conidia en masse vivid green; soluble pigments absent; exudates absent; reverse buff but pink at centers and white at margins.
On YES 25 °C, 7 days: Colonies irregular, plain; margins narrow, fimbriate; mycelia white; texture velutinous; sporulation dense; conidia en masse bluish green; soluble pigments absent; exudates absent; reverse buff at centers, green at periphery, and white at margins.
On PDA 25 °C, 7 days: Colonies nearly circular to irregular, plain; margins wide, irregular; mycelia white; texture velutinous; sporulation dense; conidia en masse yellowish green to vivid green; soluble pigments absent; exudates absent; reverse usually pink at centers, green to buff at periphery, and white at margins.
Micromorphology: Conidiophores biverticillate, rarely terverticillate; stipes smooth-walled, 150–360 × 2.0–3.0 μm; metulae 3–5, 11.0–22.5 × 2.0–3.5 μm; phialides acerose, tapering into very thin neck, 3–5 per metula, 12.0–15.0 × 2.0–3.0 μm; conidia ellipsoidal to fusiform, smooth, 3.5–4.0 × 2.0–3.0 μm
Note: This species is phylogenetically related to T. aspriconidius, T. calidicanius, T. duclauxii, T. flavus, T. haitouensis, and T. marneffei, with strong support in the combined three-gene tree (Figure 1). Morphologically, it differs from T. aspriconidius and T. calidicanius in the smooth conidia; from T. marneffei in the ellipsoidal conidia; and from T. duclauxii, T. flavus, and T. haitouensis in the slower growth rate on MEA and YES at 25 °C (Table 3).
Talaromyces shilinensis X.C. Wang & W.Y. Zhuang, sp. nov. Figure 3
Fungal Names: FN570955
Etymology: The specific epithet refers to the type locality
in Talaromyces sect. Talaromyces
Typification: CHINA. Yunnan Province, Kunming City, Shilin Yi Autonomous County, Gui Mountain National Forest Park, 24°38′15″ N 103°35′49″ E, isolated from a rotten twig associated with ascomata of Pseudocosmospora sp., 26 September 2017, Yi Zhang, Yu-Bo Zhang and Huan-Di Zheng 11,825, cultured by Yu-Bo Zhang, XCW_SN259 (holotype HMAS 247854, ex-type strain CGMCC 3.20699)
DNA barcodes: ITS OL638159, BenA OL689845, CaM OL689847, RPB2 OL689849
Colony diam., 7 days, 25 °C (unless stated otherwise): CYA 10–11 mm; CYA 37 °C no growth; MEA 36–38 mm; YES 18–19 mm; PDA 35–37 mm
Colony characteristics: On CYA 25 °C, 7 days: Colonies nearly circular, plain; margins wide, entire; mycelia colorless; texture velutinous; sporulation sparse; conidia en masse light yellowish green; soluble pigments absent; exudates absent; reverse almost colorless but light brown at centers
On MEA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins very wide, entire; mycelia colorless and white; texture velutinous, funiculose at central areas; sporulation dense; conidia en masse dull green; soluble pigments absent; exudates absent; reverse buff but pink to reddish brown at centers.
On YES 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins moderately wide, entire; mycelia colorless; texture velutinous; sporulation dense; conidia en masse greyish green; soluble pigments absent; exudates absent; reverse buff but light brown at centers.
On PDA 25 °C, 7 days: Colonies nearly circular, plain, slightly protuberant at centers; margins very wide, entire; mycelia colorless; texture velutinous; sporulation dense; conidia en masse dull green; soluble pigments absent; exudates absent; reverse white, pink to reddish brown at centers.
Micromorphology: Conidiophores biverticillate, rarely quaterverticillate; stipes smooth-walled, 50–110 × 2.0–3.0 μm; metulae 4–6, 8.5–12.5 × 2.5–3.0 μm; phialides acerose, tapering into very thin neck, 4–5 per metula, 9.0–13.0 × 1.8–2.5 μm; conidia ellipsoidal to broad-fusiform, smooth, 2.5–3.5 × 2.0–2.5 μm
Note: This species is a sister of T. primulinus with strong support in the phylogenies inferred from all datasets (Figure 1 and Figures S1–S3), and it also related to T. kabodanensis in the BenA and combined trees (Figure 1 and Figure S1). It has 27 pairwise nucleotide differences from T. primulinus and 23 bp from T. kabodanensis in the BenA dataset; 29 nucleotide differences from T. primulinus in CaM; and 45 nucleotide differences from T. primulinus in RPB2. Morphologically, it differs from T. kabodanensis in the smooth conidia and from T. primulinus in the faster growth rate on CYA, MEA, and YES at 25 °C (Table 3).

4. Discussion

Forty-three species of the Talaromyces have been reported as new to science based on materials collected from China. They are distributed all over the country, especially in southwestern regions, for example, T. chongqingensis and T. wushanicus are from Chongqing, T. albisclerotius, T. guizhouensis, T. penicillioides, T. resinae, T. rosarhiza, and T. tenuis are from Guizhou, T. ginkgonis is from Sichuan, T. neofusisporus and T. qii are from Tibet, and T. aspriconidius, T. aureolinus, T. bannicus, T. rufus, T. shiliensis, and T. yunnanensis are from Yunnan [1,4,6,9,10,11]. This proves that southwestern China is one of the global biodiversity hotspots. In northern China, 13 species were recorded from Beijing; in eastern parts of the country, 9 were from Jiangsu, Shandong, Shanghai, Taiwan, and Zhejiang; and a few species were occasionally found in the south, central, and northeast. This might be due to the frequency of investigations, climates, richness of plants, as well as human activities. We certainly expect to discover more species of the group in unexplored regions and even in surveyed areas in different seasons.
Along with the joining of the two new species, Talaromyces sect. Talaromyces currently possesses up to 86 species around the world. Forty species were originally described as being from Asia, of which 29 are from China, four are from Japan, two are from South Korea and Thailand, respectively, and only one was reported in India, Iran, and Vietnam; 18 taxa are from North America, including 14 from the USA and a single one from Canada, Cuba, Mexico, and Panama; 12 species are distributed in Europe (France, Italy, Netherlands, Spain, UK); six are reported in South America (Brazil, Colombia, and Ecuador); five are from Africa (Ghana and South Africa); and four are from Oceania (Australia and New Zealand). Concerning the known distribution of the genus, one may easily imagine that the biodiversity of Talaromyces may have been underrated, although it is well recognized in areas of East Asia and North America, intensive excursions covering a broad range of areas in the world should be suggested to have a better understanding of the biodiversity of this group.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/jof8070647/s1, Figure S1: ML phylogeny of Talaromyces sect. Talaromyces inferred from BenA dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability; Figure S2: ML phylogeny of Talaromyces sect. Talaromyces inferred from CaM dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability; Figure S3: ML phylogeny of Talaromyces sect. Talaromyces inferred from RPB2 dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability.

Author Contributions

Conceptualization, W.-Y.Z. and X.-C.W.; methodology, X.-C.W.; software, X.-C.W.; validation, X.-C.W. and W.-Y.Z.; formal analysis, X.-C.W.; investigation, X.-C.W.; resources, X.-C.W. and W.-Y.Z.; data curation, X.-C.W.; writing—original draft preparation, X.-C.W.; writing— review and editing, W.-Y.Z. and X.-C.W.; visualization, X.-C.W.; supervision, W.-Y.Z.; project administration, W.-Y.Z.; funding acquisition, W.-Y.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This project was supported by the National Natural Science Foundation of China (31750001) and the Key Research Program of Frontier Science, Chinese Academy of Sciences (QYZDY-SSW-SMC029).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The sequences newly generated in this study have been submitted to the GenBank database.

Acknowledgments

The authors would like to thank Huan-Di Zheng, Yu-Bo Zhang, and Yi Zhang of the Institute of Microbiology, Chinese Academy of Sciences for jointly collecting the samples for this study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Zhang, Z.K.; Wang, X.C.; Zhuang, W.Y.; Cheng, X.H.; Zhao, P. New species of Talaromyces (Fungi) isolated from soil in southwestern China. Biology 2021, 10, 745. [Google Scholar] [CrossRef] [PubMed]
  2. Yilmaz, N.; Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of the genus Talaromyces. Stud. Mycol. 2014, 78, 175–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. Houbraken, J.; Kocsube, S.; Visagie, C.M.; Yilmaz, N.; Wang, X.C.; Meijer, M.; Kraak, B.; Hubka, V.; Bensch, K.; Samson, R.A.; et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Stud. Mycol. 2020, 95, 5–169. [Google Scholar] [CrossRef] [PubMed]
  4. Sun, B.D.; Chen, A.J.; Houbraken, J.; Frisvad, J.C.; Wu, W.P.; Wei, H.L.; Zhou, Y.G.; Jiang, X.Z.; Samson, R.A. New section and species in Talaromyces. MycoKeys 2020, 68, 75–113. [Google Scholar] [CrossRef]
  5. Crous, P.W.; Cowan, D.A.; Maggs-Kolling, G.; Yilmaz, N.; Larsson, E.; Angelini, C.; Brandrud, T.E.; Dearnaley, J.D.W.; Dima, B.; Dovana, F.; et al. Fungal Planet description sheets: 1112–1181. Persoonia 2020, 45, 251–409. [Google Scholar] [CrossRef]
  6. Wei, S.; Xu, X.; Wang, L. Four new species of Talaromyces section Talaromyces discovered in China. Mycologia 2021, 113, 492–508. [Google Scholar] [CrossRef]
  7. Nguyen, T.T.T.; Frisvad, J.C.; Kirk, P.M.; Lim, H.J.; Lee, H.B. Discovery and extrolite production of three new species of Talaromyces belonging to sections Helici and Purpurei from freshwater in Korea. J. Fungi 2021, 7, 722. [Google Scholar] [CrossRef]
  8. Pyrri, I.; Visagie, C.M.; Soccio, P.; Houbraken, J. Re-evaluation of the taxonomy of Talaromyces minioluteus. J. Fungi 2021, 7, 993. [Google Scholar] [CrossRef]
  9. Zhang, H.; Wei, T.P.; Mao, Y.T.; Ma, M.X.; Ma, K.; Shen, Y.; Zheng, M.J.; Jia, W.Y.; Luo, M.Y.; Zeng, Y.; et al. Ascodesmis rosicola sp. nov. and Talaromyces rosarhiza sp. nov., two endophytes from Rosa roxburghii in China. Biodivers. Data J. 2021, 9, e70088. [Google Scholar] [CrossRef]
  10. Han, P.J.; Sun, J.Q.; Wang, L. Two new sexual Talaromyces species discovered in estuary soil in China. J. Fungi 2022, 8, 36. [Google Scholar] [CrossRef]
  11. Doilom, M.; Guo, J.W.; Phookamsak, R.; Mortimer, P.E.; Karunarathna, S.C.; Dong, W.; Liao, C.F.; Yan, K.; Pem, D.; Suwannarach, N.; et al. Screening of phosphate-solubilizing fungi from air and soil in Yunnan, China: Four novel species in Aspergillus, Gongronella, Penicillium, and Talaromyces. Front. Microbiol. 2020, 11, 585215. [Google Scholar] [CrossRef] [PubMed]
  12. Sun, X.R.; Xu, M.Y.; Kong, W.L.; Wu, F.; Zhang, Y.; Xie, X.L.; Li, D.W.; Wu, X.Q. Fine identification and classification of a novel beneficial Talaromyces fungal species from Masson pine rhizosphere soil. J. Fungi 2022, 8, 155. [Google Scholar] [CrossRef] [PubMed]
  13. Visagie, C.M.; Houbraken, J.; Frisvad, J.C.; Hong, S.B.; Klaassen, C.H.; Perrone, G.; Seifert, K.A.; Varga, J.; Yaguchi, T.; Samson, R.A. Identification and nomenclature of the genus Penicillium. Stud. Mycol. 2014, 78, 343–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Wang, X.C.; Chen, K.; Xia, Y.W.; Wang, L.; Li, T.H.; Zhuang, W.Y. A new species of Talaromyces (Trichocomaceae) from the Xisha Islands, Hainan, China. Phytotaxa 2016, 267, 187–200. [Google Scholar] [CrossRef]
  15. Wang, X.C.; Chen, K.; Qin, W.T.; Zhuang, W.Y. Talaromyces heiheensis and T. mangshanicus, two new species from China. Mycol. Prog. 2017, 16, 73–81. [Google Scholar] [CrossRef]
  16. Wang, X.C.; Chen, K.; Zeng, Z.Q.; Zhuang, W.Y. Phylogeny and morphological analyses of Penicillium section Sclerotiora (Fungi) lead to the discovery of five new species. Sci. Rep. 2017, 7, 8233. [Google Scholar] [CrossRef] [Green Version]
  17. Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
  18. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
  19. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [Green Version]
  20. Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 2006, 22, 2688–2690. [Google Scholar] [CrossRef]
  21. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
  22. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  23. Posada, D.; Crandall, K.A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  24. Crous, P.W.; Wingfield, M.J.; Burgess, T.I.; Hardy, G.E.; Crane, C.; Barrett, S.; Cano-Lira, J.F.; Le Roux, J.J.; Thangavel, R.; Guarro, J.; et al. Fungal Planet description sheets: 469–557. Persoonia 2016, 37, 218–403. [Google Scholar] [CrossRef] [PubMed]
Figure 1. ML phylogeny of Talaromyces sect. Talaromyces inferred from the combined (BenA + CaM + RPB2) dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability.
Figure 1. ML phylogeny of Talaromyces sect. Talaromyces inferred from the combined (BenA + CaM + RPB2) dataset. Bootstrap values ≥70% (left) or posterior probability values ≥0.95 (right) are indicated at nodes. Asterisk denotes 100% bootstrap or 1.00 posterior probability.
Jof 08 00647 g001
Figure 2. Colonial and microscopic morphology of Talaromyces ginkgonis (10725). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES, and PDA; bottom row left to right, reverse CYA, MEA, YES, and PDA); (BF) Conidiophores; (G) Conidia. Bars: B = 15 µm, applies to C; D = 12.5 µm; E = 10 µm, applies to F and G.
Figure 2. Colonial and microscopic morphology of Talaromyces ginkgonis (10725). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES, and PDA; bottom row left to right, reverse CYA, MEA, YES, and PDA); (BF) Conidiophores; (G) Conidia. Bars: B = 15 µm, applies to C; D = 12.5 µm; E = 10 µm, applies to F and G.
Jof 08 00647 g002
Figure 3. Colonial and microscopic morphology of Talaromyces shilinensis (XCW_SN259). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES, and PDA; bottom row left to right, reverse CYA, MEA, YES, and PDA); (BF) Conidiophores; (G) Conidia. Bars: B = 15 µm; C = 12.5 µm; D = 10 µm, applies to E and G; F = 7.5 µm.
Figure 3. Colonial and microscopic morphology of Talaromyces shilinensis (XCW_SN259). (A) Colony phenotypes (25 °C, 7 days; top row left to right, obverse CYA, MEA, YES, and PDA; bottom row left to right, reverse CYA, MEA, YES, and PDA); (BF) Conidiophores; (G) Conidia. Bars: B = 15 µm; C = 12.5 µm; D = 10 µm, applies to E and G; F = 7.5 µm.
Jof 08 00647 g003
Table 1. Fungal species and sequences used in phylogenetic analyses of Talaromyces sect. Talaromyces.
Table 1. Fungal species and sequences used in phylogenetic analyses of Talaromyces sect. Talaromyces.
SpeciesStrainLocalitySubstrateITSBenACaMRPB2
T. aculeatus (Raper & Fennell) Samson et al., 2011CBS 289.48 TUSAtextileKF741995KF741929KF741975MH793099
T. adpressus A.J. Chen et al., 2016CGMCC 3.18211 TChina: Beijingindoor airKU866657KU866844KU866741KU867001
T. alveolaris Guevara-Suarez et al., 2017CBS 142379 TUSAhuman bronchoalveolar lavageLT558969LT559086LT795596LT795597
T. amazonensis N. Yilmaz et al., 2016CBS 140373 TColombialeaf litterKX011509KX011490KX011502MN969186
T. amestolkiae N. Yilmaz et al., 2012CBS 132696 TSouth Africahouse dustJX315660JX315623KF741937JX315698
T. angelicae S.H. Yu et al., 2013KACC 46611 TSouth Koreadried root of Angelica gigasKF183638KF183640KJ885259KX961275
T. annesophieae Houbraken 2017CBS 142939 TNetherlandssoilMF574592MF590098MF590104MN969199
T. apiculatus Samson et al., 2011CBS 312.59 TJapansoilJN899375KF741916KF741950KM023287
T. argentinensis Jurjević & S.W. Peterson 2019NRRL 28750 TGhanasoilMH793045MH792917MH792981MH793108
T. aspriconidius B.D. Sun et al., 2020CBS 141835 TChina: YunnansoilMN864274MN863343MN863320MN863332
T. aurantiacus (J.H. Mill. et al.) Samson et al., 2011CBS 314.59 TUSAsoilJN899380KF741917KF741951KX961285
T. aureolinus L. Wang 2021CGMCC 3.15865 TChina: YunnansoilMK837953MK837937MK837945MK837961
T. australis Visagie et al., 2015CBS 137102 TAustraliasoil under pastureKF741991KF741922KF741971KX961284
T. bannicus L. Wang 2021CGMCC 3.15862 TChina: YunnansoilMK837955MK837939MK837947MK837963
T. beijingensis A.J. Chen et al., 2016CGMCC 3.18200 TChina: Beijingindoor airKU866649KU866837KU866733KU866993
T. brevis B.D. Sun et al., 2020CBS 141833 TChina: BeijingsoilMN864269MN863338MN863315MN863328
T. calidicanius (J.L. Chen) Samson et al., 2011CBS 112002 TChina: TaiwansoilJN899319HQ156944KF741934KM023311
T. californicus Jurjević & S.W. Peterson 2019NRRL 58168 TUSAairMH793056MH792928MH792992MH793119
T. cnidii S.H. Yu et al., 2013KACC 46617 TSouth Koreadried roots of CnidiumKF183639KF183641KJ885266KM023299
T. coprophilus Guevara-Suarez et al., 2020CBS 142756 TSpainherbivore dungLT899794LT898319LT899776LT899812
T. cucurbitiradicus L. Su & Y.C. Niu 2018ACCC 39155 TChina: Beijingendophyte from root of Cucurbita moschataKY053254KY053228KY053246n.a.
T. derxii Takada & Udagawa 1988CBS 412.89 TJapancultivated soilJN899327JX494306KF741959KM023282
T. dimorphus X.Z. Jiang & L. Wang 2018CGMCC 3.15692 TChina: Hainanforest soilKY007095KY007111KY007103KY112593
T. domesticus Jurjević & S.W. Peterson 2019NRRL 58121 TUSAfloor swabMH793055MH792927MH792991MH793118
T. duclauxii (Delacr.) Samson et al., 2011CBS 322.48 TFrancecanvasJN899342JX091384KF741955JN121491
T. euchlorocarpius Yaguchi et al., 1999CBM PF1203 TJapansoilAB176617KJ865733KJ885271KM023303
T. flavovirens (Durieu & Mont.) Visagie et al., 2012CBS 102801 TSpainunknownJN899392JX091376KF741933KX961283
T. flavus (Klöcker) Stolk & Samson 1972CBS 310.38 TNew ZealandunknownJN899360JX494302KF741949JF417426
T. francoae N. Yilmaz et al., 2016CBS 113134 TColombialeaf litterKX011510KX011489KX011501MN969188
T. funiculosus (Thom) Samson et al., 2011CBS 272.86 TIndiaLagenaria vulgarisJN899377MN969408KF741945KM023293
T. fuscoviridis Visagie et al., 2015CBS 193.69 TNetherlandssoilKF741979KF741912KF741942MN969156
T. fusiformis A.J. Chen et al., 2016CGMCC 3.18210 TChina: Beijingindoor airKU866656KU866843KU866740KU867000
T. galapagensis Samson & Mahoney 1977CBS 751.74 TEcuadorsoil under Maytenus obovataJN899358JX091388KF741966KX961280
T. ginkgonis X.C. Wang & W.Y. Zhuang sp. nov.10725 TChina: Sichuanrotten fruit of Ginkgo bilobaOL638158OL689844OL689846OL689848
T. haitouensis L. Wang 2022CGMCC 3.16101 TChina: Jiangsuriverside soilMZ045695MZ054634MZ054637MZ054631
T. indigoticus Takada & Udagawa 1993CBS 100534 TJapansoilJN899331JX494308KF741931KX961278
T. intermedius (Apinis) Stolk & Samson 1972CBS 152.65 TUKswamp soilJN899332JX091387KJ885290KX961282
T. kabodanensis Houbraken et al., 2016CBS 139564 TIranhypersaline soilKP851981KP851986KP851995MN969190
T. kendrickii Visagie et al., 2015CBS 136666 TCanadaforest soilKF741987KF741921KF741967MN969158
T. lentulus X.Z. Jiang & L. Wang 2018CGMCC 3.15689 TChina: ShandongsoilKY007088KY007104KY007096KY112586
T. liani (Kamyschko) N. Yilmaz et al., 2014CBS 225.66 TChinasoilJN899395JX091380KJ885257KX961277
T. louisianensis Jurjević & S.W. Peterson 2019NRRL 35823 TUSAairMH793052MH792924MH792988MH793115
T. macrosporus (Stolk & Samson) Frisvad et al., 1990CBS 317.63 TSouth Africaapple juiceJN899333JX091382KF741952KM023292
T. mae X.Z. Jiang & L. Wang 2018CGMCC 3.15690 TChina: Shanghaiforest soilKY007090KY007106KY007098KY112588
T. malicola Jurjević & S.W. Peterson 2019NRRL 3724 TItalyrhizosphere of an apple treeMH909513MH909406MH909459MH909567
T. mangshanicus X.C. Wang & W.Y. Zhuang 2016CGMCC 3.18013 TChina: HunansoilKX447531KX447530KX447528KX447527
T. marneffei (Segretain et al.) Samson et al., 2011CBS 388.87 TVietnamRhizomys sinensisJN899344JX091389KF741958KM023283
T. muroii Yaguchi et al., 1994CBS 756.96 TChina: TaiwansoilMN431394KJ865727KJ885274KX961276
T. mycothecae R.N. Barbosa et al., 2018CBS 142494 TBrazilnest of Melipona scutellarisMF278326LT855561LT855564LT855567
T. nanjingensis X.R. Sun et al., 2022CCTCC M 2012167 TChina: Jiangsurhizosphere soil of Pinus massonianaMW130720MW147759MW147760MW147762
T. neofusisporus L. Wang 2016CGMCC 3.15415 TChina: Tibetleaf sampleKP765385KP765381KP765383MN969165
T. oumae-annae Visagie et al., 2014CBS 138208 TSouth Africahouse dustKJ775720KJ775213KJ775425KX961281
T. panamensis (Samson et al.) Samson et al., 2011CBS 128.89 TPanamasoilJN899362HQ156948KF741936KM023284
T. penicillioides L. Wang 2021CGMCC 3.15822 TChina: GuizhousoilMK837956MK837940MK837948MK837964
T. pinophilus (Hedgc.) Samson et al., 2011CBS 631.66 TFrancePVCJN899382JX091381KF741964KM023291
T. pratensis Jurjević & S.W. Peterson 2019NRRL 62170 TUSAeffluent of water treatment plantMH793075MH792948MH793012MH793139
T. primulinus (Pitt) Samson et al., 2011CBS 321.48 TUSAunknownJN899317JX494305KF741954KM023294
T. pseudofuniculosus Guevara-Suarez et al., 2020CBS 143041 TSpainherbivore dungLT899796LT898323LT899778LT899814
T. purgamentorum N. Yilmaz et al., 2016CBS 113145 TColombialeaf litterKX011504KX011487KX011500MN969189
T. purpureogenus (Stoll) Samson et al., 2011CBS 286.36 TunknownunknownJN899372JX315639KF741947JX315709
T. qii L. Wang 2016CGMCC 3.15414 TChina: Tibetleaf sampleKP765384KP765380KP765382MN969164
T. rapidus Guevara-Suarez et al., 2017CBS 142382 TUSAhuman bronchoalveolar lavageLT558970LT559087LT795600LT795601
T. rosarhiza H. Zhang & Y.L. Jiang 2021GUCC 190040.1 TChina: Guizhouendophyte of Rosa roxburghiiMZ221603MZ333143MZ333137MZ333141
T. ruber (Stoll) N. Yilmaz et al., 2012CBS 132704 TUKaircraft fuel tankJX315662JX315629KF741938JX315700
T. rubicundus (J.H. Mill. et al.) Samson et al., 2011CBS 342.59 TUSAsoilJN899384JX494309KF741956KM023296
T. rufus B.D. Sun et al., 2020CBS 141834 TChina: YunnansoilMN864272MN863341MN863318MN863331
T. sayulitensis Visagie et al., 2014CBS 138204 TMexicohouse dustKJ775713KJ775206KJ775422MN969146
T. shilinensis X.C. Wang & W.Y. Zhuang sp. nov.XCW_SN259 TChina: Yunnanassociated with Pseudocosmospora sp.OL638159OL689845OL689847OL689849
T. siamensis (Manoch & C. Ramírez) Samson et al., 2011CBS 475.88 TThailandforest soilJN899385JX091379KF741960KM023279
T. soli Jurjević & S.W. Peterson 2019NRRL 62165 TUSAsoilMH793074MH792947MH793011MH793138
T. sparsus L. Wang 2021CGMCC 3.16003 TChina: BeijingsoilMT077182MT083924MT083925MT083926
T. stellenboschiensis Visagie & K. Jacobs 2015CBS 135665 TSouth AfricasoilJX091471JX091605JX140683MN969157
T. stipitatus (Thom) C.R. Benj. 1955CBS 375.48 TUSArotting woodJN899348KM111288KF741957KM023280
T. stollii N. Yilmaz et al., 2012CBS 408.93 TNetherlandsAIDS patientJX315674JX315633JX315646JX315712
T. striatoconidium (R.F. Castañeda & W. Gams) Houbraken et al., 2020CBS 550.89 TCubaleaf litter of Pachyanthus poirettiiMN431418MN969441MN969360MT156347
T. thailandensis Manoch et al., 2013CBS 133147 TThailandforest soilJX898041JX494294KF741940KM023307
T. tumuli Jurjević & S.W. Peterson 2019NRRL 62151 TUSAsoil from prairieMH793071MH792944MH793008MH793135
T. veerkampii Visagie et al., 2015CBS 500.78 TColumbiasoilKF741984KF741918KF741961KX961279
T. verruculosus (Peyronel) Samson et al., 2011NRRL 1050 TUSAsoilKF741994KF741928KF741944KM023306
T. versatilis Bridge & Buddie 2013IMI 134755 TUKunknownMN431395MN969412MN969319MN969161
T. viridis (Stolk & G.F. Orr) Arx 1987CBS 114.72 TAustraliasoilAF285782JX494310KF741935JN121430
T. viridulus Samson et al., 2011CBS 252.87 TAustraliasoilJN899314JX091385KF741943JF417422
T. wushanicus X.C. Wang & W.Y. Zhuang 2021CGMCC 3.20481 TChina: ChongqingsoilMZ356356MZ361347MZ361354MZ361361
T. xishaensis X.C. Wang et al., 2016CGMCC 3.17995 TChina: HainansoilKU644580KU644581KU644582MZ361364
T. yunnanensis Doilom & C.F. Liao 2020KUMCC 18-0208 TChina: Yunnanrhizosphere soilMT152339MT161683MT178251n.a.
T. zhenhaiensis L. Wang 2022CGMCC 3.16102 TChina: Zhejiangmudflat soilMZ045697MZ054636MZ054639MZ054633
T. trachyspermus (Shear) Stolk & Samson 1973CBS 373.48 TUSAunknownJN899354KF114803KJ885281JF417432
GenBank accession numbers in bold indicating the newly generated sequences. Full names of the culture collection centers: ACCC (Agricultural Culture Collection of China); CBS (Centraalbureau voor Schimmelcultures, now Westerdijk Fungal Biodiversity Institute); CCTCC (China Center for Type Culture Collection); CGMCC (China General Microbiological Culture Collection); GUCC (Culture Collection at Department of Plant Pathology, Agriculture College, Guizhou University); IMI (CABI Bioscience); KACC (Korean Agricultural Culture Collection); KUMCC (Kunming Institute of Botany Culture Collection); NRRL (USDA-ARS Culture Collection).
Table 2. Detailed characteristics of datasets of Talaromyces sect. Talaromyces.
Table 2. Detailed characteristics of datasets of Talaromyces sect. Talaromyces.
Gene FragmentNo. of Seq.Length of Alignment (bp)No. of Variable SitesNo. of Parsimony-Informative SitesModel for BI
BenA87643246200K81uf + I + G
CaM87581305260SYM + I + G
RPB285978359319TVM + I + G
BenA + CaM + RPB2872202910779GTR + I + G
Full names of the used models: GTR + I + G (General Time Reversible model with unequal base frequencies with Invariable sites and Gamma distribution); K81uf + I + G (Kimura 3-parameter model with unequal base frequencies with Invariable sites and Gamma distribution); SYM + I + G (Symmetrical model with Invariable sites and Gamma distribution); TVM + I + G (Transversion model with Invariable sites and Gamma distribution).
Table 3. Morphological comparisons of new Talaromyces species and their closely related species.
Table 3. Morphological comparisons of new Talaromyces species and their closely related species.
SpeciesCYA 25 °C (mm)CYA 37 °C (mm)MEA (mm)YES (mm)ConidiophoreConidia ShapeConidia WallConidia Size (µm)Reference
T. aspriconidius22–2322–2336–3728–29biverticillateglobosestrikingly roughened3–4[4]
T. calidicanius27–30no growth47–4840–41biverticillateellipsoidal to fusiformfinely rough to rough with spiral striations2.5–4.5 × 2–3[2]
T. duclauxii25–273–448–5043–44biverticillateellipsoidalsmooth to finely rough3–4 × 1.5–3.5[2]
T. flavus9–1019–2031–3224–26monoverticillateellipsoidalsmooth2–3 × 1.5–2.5[2]
T. haitouensis22–2518–2048–5125–28biverticillatepyriform to ellipsoidalsmooth2.5–3 × 2–2.5[10]
T. marneffei13–255–1015–2717–25mono- to biverticillatesubglobosesmooth2.5–4 × 2–3[2]
T. ginkgonis9–13no growth19–2112–13biverticillateellipsoidal to fusiformsmooth3.5–4 × 2–3This study
T. kabodanensis15–25no growth37–4428–35biverticillateovoidal to fusiformfinely rough to rough with spiral striations2.5–3.5 × 1.5–2.5[24]
T. primulinus5–6no growth20–258–10biverticillateellipsoidal to fusiformsmooth to finely rough2–4 × 1.5–3[2]
T. shilinensis10–11no growth36–3818–19biverticillateellipsoidal to broad fusiformsmooth2.5–3.5 × 2–2.5This study
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Wang, X.-C.; Zhuang, W.-Y. New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China. J. Fungi 2022, 8, 647. https://doi.org/10.3390/jof8070647

AMA Style

Wang X-C, Zhuang W-Y. New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China. Journal of Fungi. 2022; 8(7):647. https://doi.org/10.3390/jof8070647

Chicago/Turabian Style

Wang, Xin-Cun, and Wen-Ying Zhuang. 2022. "New Species of Talaromyces (Trichocomaceae, Eurotiales) from Southwestern China" Journal of Fungi 8, no. 7: 647. https://doi.org/10.3390/jof8070647

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop