Implementation of MALDI-TOF Mass Spectrometry and Peak Analysis: Application to the Discrimination of Cryptococcus neoformans Species Complex and Their Interspecies Hybrids
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolates
2.2. Molecular Identification
2.3. MALDI-TOF MS Identification
2.4. Peak Analysis
2.5. Database Construction
2.6. Ethic Statement
3. Results
3.1. Molecular Identification
3.2. Identification Using MALDI-TOF MS
3.3. Peak Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kwon-Chung, K.J.; Fraser, J.A.; Doering, T.L.; Wang, Z.A.; Janbon, G.; Idnurm, A.; Bahn, Y.-S. Cryptococcus neoformans and Cryptococcus gattii, the Etiologic Agents of Cryptococcosis. Cold Spring Harb. Perspect. Med. 2014, 4, a019760. [Google Scholar] [CrossRef]
- D’Souza, C.A.; Kronstad, J.W.; Taylor, G.; Warren, R.; Yuen, M.; Hu, G.; Jung, W.H.; Sham, A.; Kidd, S.E.; Tangen, K.; et al. Genome Variation in Cryptococcus gattii, an Emerging Pathogen of Immunocompetent Hosts. mBio 2011, 2, e00342-10. [Google Scholar] [CrossRef]
- Trilles, L.; Meyer, W.; Wanke, B.; Guarro, J.; Lazéra, M. Correlation of antifungal susceptibility and molecular type within the Cryptococcus neoformans/C. gattii species complex. Med. Mycol. 2012, 50, 328–332. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.S.; Dagg, R.; Malik, R.; Chen, S.; Carter, D. In Vitro Susceptibility of the Yeast Pathogen Cryptococcus to Fluconazole and Other Azoles Varies with Molecular Genotype. J. Clin. Microbiol. 2010, 48, 4115–4120. [Google Scholar] [CrossRef] [PubMed]
- Kwon-Chung, K.J.; Bennett, J.E. Epidemiologic Differences between the Two Varieties of Cryptococcus neoformans. Am. J. Epidemiol. 1984, 120, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; DeBess, E.E.; Wohrle, R.; Sun, B.; Nett, R.J.; Ahlquist, A.M.; Chiller, T.; Lockhart, S.R.; for the Cryptococcus gattii Public Health Working Group. Correlation of Genotype and In Vitro Susceptibilities of Cryptococcus gattii Strains from the Pacific Northwest of the United States. J. Clin. Microbiol. 2010, 48, 539–544. [Google Scholar] [CrossRef]
- Perfect, J.R.; Bicanic, T. Cryptococcosis diagnosis and treatment: What do we know now. Fungal Genet. Biol. 2015, 78, 49–54. [Google Scholar] [CrossRef]
- Feng, X.; Yao, Z.; Ren, D.; Liao, W. Simultaneous identification of molecular and mating types within the Cryptococcus species complex by PCR-RFLP analysis. J. Med. Microbiol. 2008, 57, 1481–1490. [Google Scholar] [CrossRef][Green Version]
- Pakshir, K.; Fakhim, H.; Vaezi, A.; Meis, J.F.; Mahmoodi, M.; Zomorodian, K.; Javidnia, J.; Ansari, S.; Hagen, F.; Badali, H. Molecular epidemiology of environmental Cryptococcus species isolates based on amplified fragment length polymorphism. J. Mycol. Méd. 2018, 28, 599–605. [Google Scholar] [CrossRef]
- Hanafy, A.; Kaocharoen, S.; Jover-Botella, A.; Katsu, M.; Iida, S.; Kogure, T.; Gonoi, T.; Mikami, Y.; Meyer, W. Multilocus microsatellite typing for Cryptococcus neoformans var. grubii. Med. Mycol. 2008, 46, 685–696. [Google Scholar] [CrossRef]
- Meyer, W.; Aanensen, D.M.; Boekhout, T.; Cogliati, M.; Diaz, M.R.; Esposto, M.C.; Fisher, M.; Gilgado, F.; Hagen, F.; Kaocharoen, S.; et al. Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med. Mycol. 2009, 47, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Franzot, S.P.; Salkin, I.F.; Casadevall, A. Cryptococcus neoformans var. grubii: Separate Varietal Status for Cryptococcus neoformans Serotype A Isolates. J. Clin. Microbiol. 1999, 37, 838–840. [Google Scholar] [CrossRef] [PubMed]
- Meyer, W.; Castañeda, A.; Jackson, S.; Huynh, M.; Castañeda, E.; the IberoAmerican Cryptococcal Study Group. Molecular Typing of IberoAmerican Cryptococcus neoformans Isolates. Emerg. Infect. Dis. 2003, 9, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Hagen, F.; Hare Jensen, R.; Meis, J.F.; Arendrup, M.C. Molecular epidemiology and in vitro antifungal susceptibility testing of 108 clinical Cryptococcus neoformans sensu lato and Cryptococcus gattii sensu lato isolates from Denmark. Mycoses 2016, 59, 576–584. [Google Scholar] [CrossRef]
- Hagen, F.; Khayhan, K.; Theelen, B.; Kolecka, A.; Polacheck, I.; Sionov, E.; Falk, R.; Parnmen, S.; Lumbsch, H.T.; Boekhout, T. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet. Biol. 2015, 78, 16–48. [Google Scholar] [CrossRef]
- De Carolis, E.; Vella, A.; Vaccaro, L.; Torelli, R.; Posteraro, P.; Ricciardi, W.; Sanguinetti, M.; Posteraro, B. Development and Validation of an In-House Database for Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-Based Yeast Identification Using a Fast Protein Extraction Procedure. J. Clin. Microbiol. 2014, 52, 1453–1458. [Google Scholar] [CrossRef]
- Jamal, W.Y.; Ahmad, S.; Khan, Z.U.; Rotimi, V.O. Comparative evaluation of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of clinically significant yeasts. Int. J. Infect. Dis. 2014, 26, 167–170. [Google Scholar] [CrossRef]
- Fraser, M.; Brown, Z.; Houldsworth, M.; Borman, A.M.; Johnson, E.M. Rapid identification of 6328 isolates of pathogenic yeasts using MALDI-ToF MS and a simplified, rapid extraction procedure that is compatible with the Bruker Biotyper platform and database. Med. Mycol. 2016, 54, 80–88. [Google Scholar] [CrossRef]
- Spanu, T.; Posteraro, B.; Fiori, B.; D’Inzeo, T.; Campoli, S.; Ruggeri, A.; Tumbarello, M.; Canu, G.; Trecarichi, E.M.; Parisi, G.; et al. Direct MALDI-TOF Mass Spectrometry Assay of Blood Culture Broths for Rapid Identification of Candida Species Causing Bloodstream Infections: An Observational Study in Two Large Microbiology Laboratories. J. Clin. Microbiol. 2012, 50, 176–179. [Google Scholar] [CrossRef]
- Bader, O.; Weig, M.; Taverne-Ghadwal, L.; Lugert, R.; Groß, U.; Kuhns, M. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 2011, 17, 1359–1365. [Google Scholar] [CrossRef]
- McTaggart, L.R.; Lei, E.; Richardson, S.E.; Hoang, L.; Fothergill, A.; Zhang, S.X. Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2011, 49, 3050–3053. [Google Scholar] [CrossRef]
- Firacative, C.; Trilles, L.; Meyer, W. MALDI-TOF MS Enables the Rapid Identification of the Major Molecular Types within the Cryptococcus neoformans/C. gattii Species Complex. PLoS ONE 2012, 7, e37566. [Google Scholar] [CrossRef]
- Posteraro, B.; Vella, A.; Cogliati, M.; De Carolis, E.; Florio, A.R.; Posteraro, P.; Sanguinetti, M.; Tortorano, A.M. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-Based Method for Discrimination between Molecular Types of Cryptococcus neoformans and Cryptococcus gattii. J. Clin. Microbiol. 2012, 50, 2472–2476. [Google Scholar] [CrossRef]
- Katsu, M.; Kidd, S.; Ando, A.; Morettibranchini, M.; Mikami, Y.; Nishimura, K.; Meyer, W. The internal transcribed spacers and 5.8S rRNA gene show extensive diversity among isolates of the Cryptococcus neoformans species complex. FEMS Yeast Res. 2004, 4, 377–388. [Google Scholar] [CrossRef][Green Version]
- Guinea, J.; Hagen, F.; Peláez, T.; Boekhout, T.; Tahoune, H.; Torres-Narbona, M.; Bouza, E. Antifungal susceptibility, serotyping, and genotyping of clinical Cryptococcus neoformans isolates collected during 18 years in a single institution in Madrid, Spain. Med. Mycol. 2010, 48, 942–948. [Google Scholar] [CrossRef]
- Rodríguez-Sánchez, B.; Marín, M.; Sánchez-Carrillo, C.; Cercenado, E.; Ruiz, A.; Rodríguez-Créixems, M.; Bouza, E. Improvement of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of difficult-to-identify bacteria and its impact in the workflow of a clinical microbiology laboratory. Diagn. Microbiol. Infect. Dis. 2014, 79, 1–6. [Google Scholar] [CrossRef]
- Zvezdanova, M.E.; Escribano, P.; Ruiz, A.; Martínez-Jiménez, M.C.; Peláez, T.; Collazos, A.; Guinea, J.; Bouza, E.; Rodríguez-Sánchez, B. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library. Med. Mycol. 2019, 57, 63–70. [Google Scholar] [CrossRef]
- Siqueira, L.P.M.; Gimenes, V.M.F.; de Freitas, R.S.; Melhem, M.D.S.C.; Bonfietti, L.X.; da Silva, A.R.; Souza Santos, L.B.; Motta, A.L.; Rossi, F.; Benard, G.; et al. Evaluation of Vitek MS for Differentiation of Cryptococcus neoformans and Cryptococcus gattii Genotypes. J. Clin. Microbiol. 2018, 57, e01282-18. [Google Scholar] [CrossRef]
Identification by DNA Sequencing | Isolates Analyzed | Identification Using the Biotyper Database with 8223 MSPs | Identification Using the Biotyper Database with 8223 MSPs + HGM Library | |||||
---|---|---|---|---|---|---|---|---|
Score ≥ 2.0 | Score ≥ 1.7 | Score ≥ 1.6 | Score < 1.6 | Score ≥ 2.0 | Score ≥ 1.7 | Score ≥ 1.6 | ||
Cryptococcus neoformans | 22 | 2 | 13 | 3 | 4 | 18 | 4 | 0 |
Cryptococcus deneoformans | 3 | 0 | 2 1 | 1 | 0 | 3 | 0 | 0 |
Interspecies hybrids | 19 | 7 2 | 8 3 | 0 | 4 4 | 7 | 12 5 | 0 |
Total | 44 | 9 | 23 | 4 | 8 | 28 | 16 | 0 |
m/z | Number of Spectra | C. neoformans | C. neoformans (CV) | C. neoformans (Mean) | Interspecies Hybrids | Interspecies Hybrids (CV) | Interspecies Hybrids (Mean) | C. deneoformans | C. deneoformans (CV) | C. deneoformans (mean) |
---|---|---|---|---|---|---|---|---|---|---|
2488.07 | 54 | 30/34 | 88.75% | 4401.77 | 24/24 | 69.62% | 2811.79 | 0/7 | - | - |
2842.14 | 53 | 29/34 | 78.21% | 2202.13 | 24/24 | 79.60% | 2235.20 | 0/7 | - | - |
* 3084.11 | 55 | 31/34 | 98.46% | 7800.06 | 24/24 | 89.28% | 5969.39 | 0/7 | - | - |
* 5453.91 | 27 | 1/34 | 0.0% | 72.91 | 23/24 | 65.08% | 731.90 | 3/7 | 12.65% | 748.87 |
* 5552.90 | 27 | 1/34 | 0.0% | 558.31 | 23/24 | 73.62% | 1418.90 | 3/7 | 47.30% | 2.763.28 |
6576.08 | 23 | 0/34 | - | - | 16/24 | 63.17% | 457.98 | 7/7 | 56.70% | 685.58 |
* 6688.67 | 57 | 34/34 | 95.69% | 4420.91 | 23/24 | 88.39% | 3556.22 | 0/7 | - | - |
* 7103.01 | 31 | 1/34 | 0.0% | 24.32 | 23/24 | 122.76% | 1484.77 | 7/7 | 52.14% | 4.155.27 |
7830.42 | 18 | 0/34 | - | - | 11/24 | 46.49% | 719.13 | 7/7 | 39.83% | 449.70 |
8636.24 | 43 | 19/34 | 101.07% | 2887.86 | 24/24 | 87.32% | 1832.72 | 0/7 | - | - |
m/z | 2842.14 | 3084.11 | 6576.08 | 6688.67 | 7103.01 | 8636.24 |
---|---|---|---|---|---|---|
C. deneoformans | 0 | 0 | 100 | 0 | 100 | 0 |
C. neoformans | 85.3 | 91.2 | 0 | 100 | 0 | 55.9 |
Interspecies hybrids | 100 | 100 | 66.7 | 95.8 | 4.3 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zvezdanova, M.E.; Arroyo, M.J.; Méndez, G.; Guinea, J.; Mancera, L.; Muñoz, P.; Rodríguez-Sánchez, B.; Escribano, P. Implementation of MALDI-TOF Mass Spectrometry and Peak Analysis: Application to the Discrimination of Cryptococcus neoformans Species Complex and Their Interspecies Hybrids. J. Fungi 2020, 6, 330. https://doi.org/10.3390/jof6040330
Zvezdanova ME, Arroyo MJ, Méndez G, Guinea J, Mancera L, Muñoz P, Rodríguez-Sánchez B, Escribano P. Implementation of MALDI-TOF Mass Spectrometry and Peak Analysis: Application to the Discrimination of Cryptococcus neoformans Species Complex and Their Interspecies Hybrids. Journal of Fungi. 2020; 6(4):330. https://doi.org/10.3390/jof6040330
Chicago/Turabian StyleZvezdanova, Margarita E., Manuel J. Arroyo, Gema Méndez, Jesús Guinea, Luis Mancera, Patricia Muñoz, Belén Rodríguez-Sánchez, and Pilar Escribano. 2020. "Implementation of MALDI-TOF Mass Spectrometry and Peak Analysis: Application to the Discrimination of Cryptococcus neoformans Species Complex and Their Interspecies Hybrids" Journal of Fungi 6, no. 4: 330. https://doi.org/10.3390/jof6040330
APA StyleZvezdanova, M. E., Arroyo, M. J., Méndez, G., Guinea, J., Mancera, L., Muñoz, P., Rodríguez-Sánchez, B., & Escribano, P. (2020). Implementation of MALDI-TOF Mass Spectrometry and Peak Analysis: Application to the Discrimination of Cryptococcus neoformans Species Complex and Their Interspecies Hybrids. Journal of Fungi, 6(4), 330. https://doi.org/10.3390/jof6040330