Effectiveness of the Entomopathogenic Fungal Species Metarhizium anisopliae Strain NCAIM 362 Treatments against Soil Inhabiting Melolontha melolontha Larvae in Sweet Potato (Ipomoea batatas L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Set-up under Open Field and Greenhouse Conditions
2.2. Chemical Composition Assay of Sweet Potato Soil
2.3. 16S rRNA Gene Amplicon Sequencing of Soil Bacterial Community and Biological Activity Assay
2.4. Data Analyses
3. Results
3.1. Field Experiment
3.2. Greenhouse Experiment
3.3. Chemical Composition Assay of Sweet Potato Soil
3.4. Microbial Community and Biological Activity in Sweet Potato Soil
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Compost present | K+ |
No compost | K− |
M. anisopliae present | M+ |
No M. anisopliae | M− |
M. melolontha grubs present | P+ |
No M. melolontha | P− |
References
- Bateman, R.P. Constraints and Enabling Technologies for Mycopesticide Development. In Outlooks on Pest Management; Research Information Ltd.: Buckinghamshire, UK, 2004; Volume 15, pp. 64–69. [Google Scholar]
- Hussain, A.; Rizwan-ul-Haq, M.; Al-Ayedh, H.; Al-Jabr, A.M. Mycoinsecticides: Potential and future perspective. Recent Pat. Food Nutr. Agric. 2014, 6, 45–53. [Google Scholar] [CrossRef]
- Skinner, M.; Parker, B.L.; Kim, J.S. Role of Entomopathogenic Fungi in Integrated Pest Management. In Integrated Pest Management; Abrol, D.P., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 169–191. ISBN 978-0-12-398529-3. [Google Scholar]
- Kergunteuil, A.; Bakhtiari, M.; Formenti, L.; Xiao, Z.; Defossez, E.; Rasmann, S. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores. Insects 2016, 7, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maina, U.M.; Galadima, I.B.; Gambo, F.M.; Zakaria, D. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zool. Stud. 2018, 6, 27–32. [Google Scholar]
- Bidochka, M.J.; Small, C.L. Phylogeography of Metarhizium, an insect pathogenic fungus. In Insect–fungal associations: Ecology and Evolution; Oxford University Press: Oxford, UK, 2005; pp. 3–27. [Google Scholar]
- Bischoff, J.F.; Rehner, S.A.; Humber, R.A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101, 512–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kepler, R.M.; Humber, R.A.; Bischoff, J.F.; Rehner, S.A. Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia 2014, 106, 811–829. [Google Scholar] [CrossRef]
- Zimmermann, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Mascarin, G.M.; Lopes, R.B.; Delalibera, Í.; Fernandes, É.K.K.; Luz, C.; Faria, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 2018. [Google Scholar] [CrossRef]
- Zimmermann, G. The entomopathogenic fungus Metarhizium anisopliae and its potential as a biocontrol agent. Pestic. Sci. 1993, 37, 375–379. [Google Scholar] [CrossRef]
- Driver, F.; Milner, R.J.; Trueman, J.W.H. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol. Res. 2000, 104, 134–150. [Google Scholar] [CrossRef]
- Vega, F.E.; Goettel, M.S.; Blackwell, M.; Chandler, D.; Jackson, M.A.; Keller, S.; Koike, M.; Maniania, N.K.; Monzón, A.; Ownley, B.H.; et al. Fungal entomopathogens: New insights on their ecology. Fungal Ecol. 2009, 2, 149–159. [Google Scholar] [CrossRef] [Green Version]
- García, J.; Elena Posadas, J.; Perticari, A.; Alejandro, L.; Roberto, E. Metarhizium anisopliae (Metschnikoff) Sorokin Promotes Growth and Has Endophytic Activity in Tomato Plants. Adv. Biol. Res. 2011, 5, 22–27. [Google Scholar]
- Akello, J.; Sikora, R. Systemic acropedal influence of endophyte seed treatment on Acyrthosiphon pisum and Aphis fabae offspring development and reproductive fitness. Biol. Control 2012, 61, 215–221. [Google Scholar] [CrossRef]
- Liao, X.; O’Brien, T.R.; Fang, W.; St Leger, R.J. The plant beneficial effects of Metarhizium species correlate with their association with roots. Appl. Microbiol. Biotechnol. 2014, 98, 7089–7096. [Google Scholar] [CrossRef] [PubMed]
- Barelli, L.; Moonjely, S.; Behie, S.W.; Bidochka, M.J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol. Biol. 2016, 90, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Jaber, L.R.; Ownley, B.H. Can we use entomopathogenic fungi as endophytes for dual biological control of insect pests and plant pathogens. Biol. Control 2018. [Google Scholar] [CrossRef]
- Shah, P.A.; Pell, J.K. Entomopathogenic fungi as biological control agents. Appl. Microbiol. Biotechnol. 2003, 61, 413–423. [Google Scholar] [CrossRef]
- Ondiaka, S.; Maniania, N.K.; Nyamasyo, G.H.N.; Nderitu, J.H. Virulence of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to sweet potato weevil Cylas puncticollis and effects on fecundity and egg viability. Ann. Appl. Biol. 2008, 153, 41–48. [Google Scholar] [CrossRef]
- Burdeos, A.T.; Villacarlos, L.T. Comparative pathogenicity of Metarhizium anisopliae, Beauveria bassiana and Paecilomyces lilacinus to adult sweet potato weevil, Cylas formicarius (F.) (Coleoptera: Curculionidae). Philipp. Entomol. 1989, 7, 561–571. [Google Scholar]
- Reddy, G.V.P.; Zhao, Z.; Humber, R.A. Laboratory and field efficacy of entomopathogenic fungi for the management of the sweetpotato weevil, Cylas formicarius (Coleoptera: Brentidae). J. Invertebr. Pathol. 2014, 122, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Dotaona, R.; Wilson, B.A.L.; Stevens, M.M.; Holloway, J.; Ash, G.J. Chronic effects and horizontal transmission of Metarhizium anisopliae strain QS155 infection in the sweet potato weevil, Cylas formicarius (Coleoptera: Brentidae). Biol. Control 2017, 114, 24–29. [Google Scholar] [CrossRef]
- Story, R.N.; Hammond, A.M.; Fuxa, J.R.; Jett, L.W. Evaluation of Biological Control Agents for Control of Soil Inhabiting White Grubs and Banded Cucumber Beetle Larvae on Sweet Potato, 1998. Arthropod Manag. Tests 1999, 24. [Google Scholar] [CrossRef]
- Jackson, M.A.; Dunlap, C.A.; Jaronski, S.T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 2010, 55, 129–145. [Google Scholar] [CrossRef]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2010, 55, 159–185. [Google Scholar] [CrossRef]
- Vidal, S.; R Jaber, L. Entomopathogenic fungi as endophytes: Plant-endophyte-herbivore interactions and prospects for use in biological control. Curr. Sci. 2015, 109, 46–54. [Google Scholar]
- Kepler, R.M.; Maul, J.E.; Rehner, S.A. Managing the plant microbiome for biocontrol fungi: Examples from Hypocreales. Curr. Opin. Microbiol. 2017, 37, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Rápó, E.; Robert, S.; Keresztesi, Á.; Suciu, M.; Tonk, S. Adsorptive Removal of Cationic and Anionic Dyes from Aqueous Solutions by Using Eggshell Household Waste as Biosorbent. Acta Chim. Slov. 2018, 65, 709–717. [Google Scholar] [CrossRef]
- Rápó, E.; Posta, K.; Suciu, M.; Robert, S.; Tonk, S. Adsorptive Removal of Remazol Brilliant Violet-5R Dye from Aqueous Solutions using Calcined Eggshell as Biosorbent. Acta Chim. Slov. 2019, 66. [Google Scholar] [CrossRef]
- Benedek, K.; Bálint, J.; Máthé, I.; Mara, G.; Felföldi, T.; Szabó, A.; Fazakas, C.; Albert, C.; Buchkowski, R.W.; Schmitz, O.J.; et al. Linking intraspecific variation in plant chemical defence with arthropod and soil bacterial community structure and N allocation. Plant Soil 2019, 444, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Herlemann, D.P.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [Green Version]
- Apprill, A.; McNally, S.; Parsons, R.; Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 2015, 75. [Google Scholar] [CrossRef] [Green Version]
- R: A Language and Environment for Statistical Computing; Version 4.0.0; R Foundation for Statistical Computing: Vienna, Austria, 2013; ISBN 3-900051-07-0. Available online: http://www.R-project.org/ (accessed on 18 July 2020).
- Schloss, P.D. Reintroducing mothur: 10 Years Later. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Horaczek, A.; Viernstein, H. Comparison of three commonly used drying technologies with respect to activity and longevity of aerial conidia of Beauveria brongniartii and Metarhizium anisopliae. Biol. Control 2004, 31, 65–71. [Google Scholar] [CrossRef]
- Erler, F.; Ates, A.O. Potential of two entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae (Coleoptera: Scarabaeidae), as biological control agents against the June beetle. J. Insect Sci. Online 2015, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fătu, A.-C.; Dinu, M.-M.; Andrei, A.-M. Susceptibility of Some Melolonthine Scarab Species to Entomopathogenic Fungus Beauveria brongniartii (Sacc.) Petch AND Metarhizium anisopliae (Metsch.). Sci. Bull. Ser. F Biotechnol. 2018, 22, 42–49. [Google Scholar]
- Yoder, J.A.; Pekins, P.J.; Nelson, B.W.; Randazzo, C.R.; Siemon, B.P. Susceptibility of Winter Tick Larvae and Eggs to Entomopathogenic Fungi - Beauveria bassiana, Beauveria caledonica, Metarhizium anisopliae, and Scopulariopsis brevicaulis. Alces J. Devoted Biol. Manag. Moose 2017, 53, 41–51. [Google Scholar]
- Brito, E.S.; de Paula, A.R.; Vieira, L.P.; Dolinski, C.; Samuels, R.I. Combining vegetable oil and sub-lethal concentrations of Imidacloprid with Beauveria bassiana and Metarhizium anisopliae against adult guava weevil Conotrachelus psidii (Coleoptera: Curculionidae). Biocontrol Sci. Technol. 2008, 18, 665–673. [Google Scholar] [CrossRef]
Treatments | M-K-Foil | M + K-Foil | M-K + Foil | M + K + Foil | M-K-Text | M + K-Text | M-K + Text | M + K + Text |
---|---|---|---|---|---|---|---|---|
M-K-Foil | - | 0.984 | 0.992 | 0.999 | 1 | 1 | 1 | 0.995 |
M + K-Foil | 1.27 | - | 1 | 0.999 | 0.999 | 0.963 | 0.906 | 1 |
M-K + Foil | 1.132 | 0.137 | - | 0.999 | 0.999 | 0.978 | 0.936 | 1 |
M + K + Foil | 0.538 | 0.731 | 0.593 | - | 1 | 0.999 | 0.994 | 1 |
M-K-Text | 0.513 | 0.756 | 0.618 | 0.024 | - | 0.999 | 0.995 | 0.999 |
M + K-Text | 0.221 | 1.491 | 1.354 | 0.76 | 0.735 | - | 1 | 0.984 |
M-K + Text | 0.520 | 1.790 | 1.653 | 1.059 | 1.034 | 0.298 | - | 0.950 |
M + K + Text | 1.058 | 0.212 | 0.074 | 0.519 | 0.544 | 1.279 | 1.578 | - |
Treatments | M-K-Foil | M + K-Foil | M-K + Foil | M + K + Foil | M-K-Text | M + K-Text | M-K + Text | M + K + Text |
---|---|---|---|---|---|---|---|---|
M-K-Foil | - | 0.013 | 0.153 | 0.113 | 0.060 | 0.010 | 0.004 | 0.0008 |
M + K-Foil | 4.453 | - | 0.483 | 0.422 | 0.593 | 0.896 | 0.661 | 0.333 |
M-K + Foil | 0.134 | 0.101 | - | 0.986 | 0.815 | 0.420 | 0.248 | 0.099 |
M + K + Foil | 0.121 | 0.211 | 0.431 | - | 0.774 | 0.359 | 0.190 | 0.063 |
M-K-Text | 0.145 | 0.322 | 0.561 | 0.981 | - | 0.511 | 0.302 | 0.113 |
M + K-Text | 5.061 | 0.111 | 0.431 | 0.789 | 0.891 | - | 0.778 | 0.426 |
M-K + Text | 6.275 | 0.321 | 0.671 | 0.671 | 0.791 | 0.991 | - | 0.580 |
M + K + Text | 8.334 | 0.451 | 0.451 | 0.961 | 0.954 | 0.781 | 0.871 | - |
Treatments | Tuber Weight/Plant (g) | * |
---|---|---|
Cypermethrin P− | 1716.19 | a |
Cypermethrin P+ | 1787.46 | a |
Control P− | 1700.85 | a |
Control P+ | 1730.68 | a |
Metarhizium P− | 1735.36 | a |
Metarhizium P+ | 1659.32 | a |
Elements | ControlP+ | ControlP− | Metarh.P+ | Metarh.P− | Cyperm.P+ | Cyperm.P− | * |
---|---|---|---|---|---|---|---|
C | 47.379 | 41.403 | 47.043 | 44.720 | 51.307 | 47.773 | a |
Na | 0.122 | 0.108 | 0.109 | 0.079 | 0.191 | 0.111 | a |
Mg | 0.328 | 0.334 | 0.330 | 0.414 | 0.354 | 0.265 | a |
Al | 1.715 | 1.668 | 1.606 | 2.133 | 1.261 | 1.501 | a |
Si | 4.648 | 7.114 | 4.184 | 5.816 | 3.131 | 6.456 | a |
P | 0.131 | 0.220 | 0.132 | 0.158 | 0.133 | 0.104 | a |
S | 0.251 | 0.150 | 0.210 | 0.348 | 0.220 | 0.148 | a |
Cl | 0.022 | 0.010 | 0.016 | 0.011 | 0.019 | 0.019 | a |
K | 0.623 | 0.395 | 0.364 | 0.540 | 0.587 | 0.242 | a |
Ca | 3.255 | 4.570 | 3.706 | 2.198 | 1.968 | 1.908 | a |
Ti | 0.087 | 0.100 | 0.077 | 0.140 | 0.070 | 0.048 | a |
Mn | 0.040 | 0.068 | 0.041 | 0.072 | 0.010 | 0.020 | a |
Fe | 1.362 | 2.337 | 1.122 | 1.294 | 0.876 | 0.722 | a |
Cu | 0.216 | 0.202 | 0.253 | 0.348 | 0.246 | 0.310 | a |
Zn | 0.186 | 0.152 | 0.222 | 0.272 | 0.188 | 0.253 | a |
Mo | 0.038 | 0.029 | 0.030 | 0.098 | 0.092 | 0.086 | a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putnoky-Csicsó, B.; Tonk, S.; Szabó, A.; Márton, Z.; Tóthné Bogdányi, F.; Tóth, F.; Abod, É.; Bálint, J.; Balog, A. Effectiveness of the Entomopathogenic Fungal Species Metarhizium anisopliae Strain NCAIM 362 Treatments against Soil Inhabiting Melolontha melolontha Larvae in Sweet Potato (Ipomoea batatas L.). J. Fungi 2020, 6, 116. https://doi.org/10.3390/jof6030116
Putnoky-Csicsó B, Tonk S, Szabó A, Márton Z, Tóthné Bogdányi F, Tóth F, Abod É, Bálint J, Balog A. Effectiveness of the Entomopathogenic Fungal Species Metarhizium anisopliae Strain NCAIM 362 Treatments against Soil Inhabiting Melolontha melolontha Larvae in Sweet Potato (Ipomoea batatas L.). Journal of Fungi. 2020; 6(3):116. https://doi.org/10.3390/jof6030116
Chicago/Turabian StylePutnoky-Csicsó, Barna, Szende Tonk, Attila Szabó, Zsuzsanna Márton, Franciska Tóthné Bogdányi, Ferenc Tóth, Éva Abod, János Bálint, and Adalbert Balog. 2020. "Effectiveness of the Entomopathogenic Fungal Species Metarhizium anisopliae Strain NCAIM 362 Treatments against Soil Inhabiting Melolontha melolontha Larvae in Sweet Potato (Ipomoea batatas L.)" Journal of Fungi 6, no. 3: 116. https://doi.org/10.3390/jof6030116
APA StylePutnoky-Csicsó, B., Tonk, S., Szabó, A., Márton, Z., Tóthné Bogdányi, F., Tóth, F., Abod, É., Bálint, J., & Balog, A. (2020). Effectiveness of the Entomopathogenic Fungal Species Metarhizium anisopliae Strain NCAIM 362 Treatments against Soil Inhabiting Melolontha melolontha Larvae in Sweet Potato (Ipomoea batatas L.). Journal of Fungi, 6(3), 116. https://doi.org/10.3390/jof6030116