Genome-Wide Identification of the ABC Gene Family and Its Expression in Response to the Wood Degradation of Poplar in Trametes gibbosa
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Identification of ABC Genes in T. gibbosa
2.3. Phylogenetic Relationship and Motif Analyses of Tg-ABCs in T. gibbosa
2.4. Scaffold Localization and Collinearity Analysis of Tg-ABCs in T. gibbosa
2.5. Phylogenetic Relationship and Collinearity Analyses of ABC Gene Family
2.6. Other Characteristic Analyses in the Tg-ABCs
2.7. RT-qPCR Analysis of Tg-ABCs in Response to Wood Degradation by T. gibbosa
3. Results
3.1. Identification of ABC Genes in T. gibbosa
3.2. Phylogenetic Relationship and Motif Analyses of Tg-ABCs in T. gibbosa
3.3. Scaffold Localization and Collinearity Analyses of Tg-ABCs in T. gibbosa
3.4. Physicochemical Analyses of Tg-ABCs in T. gibbosa
3.5. Phylogenetic Relationship and Collinearity Analyses of ABC Gene Family
3.6. Quantitative Analysis of Tg-ABCs in T. gibbosa
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thakur, A.K.; Kumar, P.; Parmar, N.; Shandil, R.K.; Aggarwal, G.; Gaur, A.; Srivastava, D.K. Achievements and prospects of genetic engineering in poplar: A review. New For. 2021, 52, 889–920. [Google Scholar] [CrossRef]
- Gao, S.; Li, C.; Chen, X.; Li, S.; Liang, N.; Wang, H.; Zhan, Y.; Zeng, F. Basic helix-loop-helix transcription factor PxbHLH02 enhances drought tolerance in Populus (Populus simonii × P. nigra). Tree Physiol. 2023, 43, 185–202. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Dong, F.; Wang, Y.; Chen, H.; Tang, M. Arbuscular mycorrhizal fungi enhance photosynthesis and drought tolerance by regulating MAPK genes expressions of Populus simonii × P. nigra. Physiol. Plant. 2022, 174, e13829. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Kang, Y.; Leng, J.; Xu, Q. Genome-Wide Analysis of the miRNA-mRNAs Network Involved in Cold Tolerance in Populus simonii × P. nigra. Genes 2019, 10, 430. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.K.M.; Fu, Z.; Ding, C.; Jiang, L.; Han, X.; Yang, A.; Ma, Y.; Zhao, X. Growth and wood properties of a 38-year-old Populus simonii × P. nigra plantation established with different densities in semi-arid areas of northeastern China. J. For. Res. 2020, 31, 497–506. [Google Scholar] [CrossRef]
- Liu, D.; Liu, M.; Li, Z.; Wang, G.; Li, Y.; Zheng, M.; Liu, G.; Zhao, X. Variation Analysis of Growth Traits of Transgenic Populus simonii x P.nigra Clones Carrying TaLEA Gene. Bull. Bot. Res. 2015, 35, 540–546. [Google Scholar]
- de Vries, L.; Guevara-Rozo, S.; Cho, M.; Liu, L.Y.; Renneckar, S.; Mansfield, S.D. Tailoring renewable materials via plant biotechnology. Biotechnol. Biofuels 2021, 14, 167. [Google Scholar] [CrossRef]
- Vanholme, R.; De Meester, B.; Ralph, J.; Boerjan, W. Lignin biosynthesis and its integration into metabolism. Curr. Opin. Biotechnol. 2019, 56, 230–239. [Google Scholar] [CrossRef]
- Gan, M.J.; Niu, Y.Q.; Qu, X.J.; Zhou, C.H. Lignin to value-added chemicals and advanced materials: Extraction, degradation, and functionalization. Green Chem. 2022, 24, 7705–7750. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Zhao, D.; Jia, L.; Qin, B.; Cao, X.; Zang, L.; Lu, F.; Liu, F. Biological degradation of lignin: A critical review on progress and perspectives. Ind. Crops Prod. 2022, 188, 115715. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, Y.; Wang, F.; Shen, X.; Cheng, J.; Cai, C. Catalytic Strategies and Mechanism Analysis Orbiting the Center of Critical Intermediates in Lignin Depolymerization. Chem. Rev. 2023, 123, 4510–4601. [Google Scholar] [CrossRef]
- Weimer, P.J. Degradation of Cellulose and Hemicellulose by Ruminal Microorganisms. Microorganisms 2022, 10, 2345. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Hu, Y.; Sun, F.; Gao, W.; Hao, Z.; Yin, H. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery. Int. J. Biol. Macromol. 2022, 219, 68–83. [Google Scholar] [CrossRef] [PubMed]
- Nurul-Aliyaa, Y.A.; Awang, N.A.; Mohd, M.H. Characterisation of white rot fungi from wood decayed for lignin degradation. Lett. Appl. Microbiol. 2023, 76, ovad118. [Google Scholar] [CrossRef] [PubMed]
- Fackler, K.; Schwanninger, M. Polysaccharide degradation and lignin modification during brown rot of spruce wood: A polarised Fourier transform near infrared study. J. Near Infrared Spectrosc. 2010, 18, 403–416. [Google Scholar] [CrossRef]
- Chen, J.; Chi, Y.; Hao, X.; Ma, L. Metabolic regulation mechanism of Trametes gibbosa CB1 on lignin. Int. J. Biol. Macromol. 2023, 240, 124189. [Google Scholar] [CrossRef]
- Knezevic, A.; Stajic, M.; Milovanovic, I.; Vukojevic, J. Degradation of beech wood and wheat straw by Trametes gibbosa. Wood Sci. Technol. 2017, 51, 1227–1247. [Google Scholar] [CrossRef]
- Knezevic, A.; Stajic, M.; Milovanovic, I.; Vukojevic, J. Wheat Straw Degradation by Trametes gibbosa: The Effect of Calcium Ions. Waste Biomass Valorization 2018, 9, 1903–1908. [Google Scholar] [CrossRef]
- Han, M.-L.; Lin, L.; Guo, X.-X.; An, M.; Geng, Y.-J.; Xin, C.; Ma, L.-C.; Mi, Q.; Ping, A.-Q.; Yang, Q.-Y. Comparative Analysis of the Laccase Secretion Ability of Five White-rot Fungi in Submerged Fermentation with Lignocellulosic Biomass. Bioresources 2023, 18, 584–598. [Google Scholar] [CrossRef]
- Yi, X.; Lin, L.; Mei, J.; Wang, W. Transporter proteins in Zymomonas mobilis contribute to the tolerance of lignocellulose-derived phenolic aldehyde inhibitors. Bioprocess Biosyst. Eng. 2021, 44, 1875–1882. [Google Scholar] [CrossRef]
- Takeuchi, M.; Watanabe, A.; Tamura, M.; Tsutsumi, Y. The gene expression analysis of Arabidopsis thaliana ABC transporters by real-time PCR for screening monolignol-transporter candidates. J. Wood Sci. 2018, 64, 477–484. [Google Scholar] [CrossRef]
- Sibout, R.; Höfte, H. Plant cell biology: The ABC of monolignol transport. Curr. Biol. 2012, 22, R533–R535. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Zhong, Z.; Liu, H.; Lin, L.; Guo, M.; Guo, W.; Wang, Z.; Zhang, Q.; Feng, L.; Lu, G. Whole genome and transcriptome analysis reveal adaptive strategies and pathogenesis of Calonectria pseudoreteaudii to Eucalyptus. BMC Genom. 2018, 19, 358. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, K. ABC transporters involved in the transport of plant secondary metabolites. FEBS Lett. 2006, 580, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- de Lima, L.G.A.; Ferreira, S.S.; Simoes, M.S.; Cunha, L.X.; Fernie, A.R.; Cesarino, I. Comprehensive expression analyses of the ABCG subfamily reveal SvABCG17 as a potential transporter of lignin monomers in the model C4 grass Setaria viridis. J. Plant Physiol. 2023, 280, 153900. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Li, J.; Qin, G.; Liu, C.; Cao, Z.; Jia, B.; Xu, Y.; Li, G.; Yang, Y.; Su, Y. Characterization of the ABC Transporter G Subfamily in Pomegranate and Function Analysis of PgrABCG14. Int. J. Mol. Sci. 2022, 23, 11661. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Gong, W.; Zhu, Z.; Zhou, Y.; Xu, C.; Yan, L.; Hu, Z.; Ai, L.; Peng, Y. Comparative secretome of white-rot fungi reveals co-regulated carbohydrate-active enzymes associated with selective ligninolysis of ramie stalks. Microb. Biotechnol. 2021, 14, 911–922. [Google Scholar] [CrossRef]
- Kirk, T.K.; Schultz, E.; Connors, W.J.; Lorenz, L.F.; Zeikus, J.G. Influence of culture parameters on lignin metabolism byPhanerochaete chrysosporium. Arch. Microbiol. 1978, 117, 277–285. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wu, Y.; Li, J.; Wang, X.; Zeng, Z.; Xu, J.; Liu, Y.; Feng, J.; Chen, H.; He, Y. TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-data Mining. Mol. Plant 2023, 16, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Hage, H.; Miyauchi, S.; Viragh, M.; Drula, E.; Min, B.; Chaduli, D.; Navarro, D.; Favel, A.; Norest, M.; Lesage-Meessen, L. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ. Microbiol. 2021, 23, 5716–5732. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.; Ahring, B.K. Lignin degradation under anaerobic digestion: Influence of lignin modifications—A review. Biomass Bioenergy 2019, 128, 105325. [Google Scholar] [CrossRef]
- Jiang, B.; Jiao, H.; Guo, X.; Chen, G.; Guo, J.; Wu, W.; Jin, Y.; Cao, G.; Liang, Z. Lignin-Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and Applications. Adv. Sci. 2023, 10, 2206055. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Kong, W.; Ren, K.; Cheng, H. Advance of Research in Function of Plant ABC Transporters. Acat Agric. Boreali-Occident. Sin. 2023, 32, 1–10. [Google Scholar]
- Chi, Y.; Gu, X. Advances in the Research of Lenzites gibbosa (Pers.) Hemmi. J. Jilin Agric. Univ. 2021, 43, 275–282. [Google Scholar]
- Viglas, J.; Olejnikova, P. An update on ABC transporters of filamentous fungi-from physiological substrates to xenobiotics. Microbiol. Res. 2021, 246, 126684. [Google Scholar] [CrossRef]
- Chi, Y.; Yan, H.; Wu, S. Phylogenetic Analysis and Cloning of the Gene Lg-mnp2 and Lg-mnp3 of Lenzites gibbosa CB1. J. North-East For. Univ. 2019, 47, 64–87. [Google Scholar]
- Kovalchuk, A.; Driessen, A.J.M. Phylogenetic analysis of fungal ABC transporters. BMC Genom. 2010, 11, 177. [Google Scholar] [CrossRef] [PubMed]
- Kaneda, M.; Schuetz, M.; Lin, B.S.P.; Chanis, C.; Hamberger, B.; Western, T.L.; Ehlting, J.; Samuels, A.L. ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J. Exp. Bot. 2011, 62, 2063–2077. [Google Scholar] [CrossRef] [PubMed]
- Michalska, K.; Chang, C.; Mack, J.C.; Zerbs, S.; Joachimiak, A.; Collart, F.R. Characterization of Transport Proteins for Aromatic Compounds Derived from Lignin: Benzoate Derivative Binding Proteins. J. Mol. Biol. 2012, 423, 555–575. [Google Scholar] [CrossRef] [PubMed]
- Dao, A.T.N.; Loenen, S.J.; Swart, K.; Dang, H.T.C.; Brouwer, A.; de Boer, T.E. Characterization of 2,3,7,8-tetrachlorodibenzo-p-dioxin biodegradation by extracellular lignin-modifying enzymes from ligninolytic fungus. Chemosphere 2021, 263, 128280. [Google Scholar] [CrossRef]
- Leriche-Grandchamp, M.; Flourat, A.; Shen, H.; Picard, F.; Giordana, H.; Allais, F.; Fayeulle, A. Inhibition of Phenolics Uptake by Ligninolytic Fungal Cells and Its Potential as a Tool for the Production of Lignin-Derived Aromatic Building Blocks. J. Fungi 2020, 6, 362. [Google Scholar] [CrossRef]
ID | Number of Amino Acids | Molecular Weight | Theoretical pI | Aliphatic Index | Grand Average of Hydropathicity | Formula | Total Number of Atoms | Instability Index | Stability |
---|---|---|---|---|---|---|---|---|---|
gene_11539 | 1536 | 169,596.99 | 6.28 | 107.98 | 0.186 | C7664H12155N2041O2200S47 | 24,107 | 37.98 | stable |
gene_11540 | 1497 | 165,312.94 | 5.92 | 106.73 | 0.117 | C7435H11789N1999O2176S41 | 23,440 | 40.53 | unstable |
gene_79 | 1459 | 161,918.99 | 7.99 | 95.42 | −0.030 | C7256H11479N1993O2107S49 | 22,884 | 35.49 | stable |
gene_5291 | 1476 | 161,417.17 | 6.84 | 97.24 | 0.104 | C7183H11477N1997O2095S65 | 22,817 | 48.30 | unstable |
gene_2753 | 1604 | 174,825.02 | 8.45 | 105.57 | 0.262 | C7940H12497N2113O2241S44 | 24,835 | 35.36 | stable |
gene_2690 | 1465 | 164,291.53 | 6.96 | 86.22 | −0.065 | C7446H11457N1969O2109S62 | 23,043 | 39.54 | stable |
gene_6080 | 1463 | 160,933.00 | 8.51 | 97.58 | −0.019 | C7214H11504N1958O2122S41 | 22,839 | 36.87 | stable |
gene_5257 | 1524 | 168,164.73 | 7.00 | 86.71 | −0.018 | C7560H11723N2059O2194S50 | 23,586 | 37.30 | stable |
gene_5243 | 1685 | 185,461.04 | 5.89 | 101.38 | 0.082 | C8390H13216N2228O2432S39 | 26,305 | 36.75 | stable |
gene_1251 | 1622 | 178,758.07 | 5.85 | 104.06 | 0.156 | C8094H12776N2108O2350S48 | 25,376 | 39.28 | stable |
gene_9723 | 1594 | 175,020.65 | 5.90 | 102.61 | 0.169 | C7909H12477N2083O2292S50 | 24,811 | 41.41 | unstable |
gene_8398 | 1333 | 145,732.30 | 6.24 | 96.05 | −0.051 | C6518H10338N1774O1951S30 | 20,611 | 39.62 | stable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, A.; Wang, Q. Genome-Wide Identification of the ABC Gene Family and Its Expression in Response to the Wood Degradation of Poplar in Trametes gibbosa. J. Fungi 2024, 10, 96. https://doi.org/10.3390/jof10020096
Zhao J, Wang A, Wang Q. Genome-Wide Identification of the ABC Gene Family and Its Expression in Response to the Wood Degradation of Poplar in Trametes gibbosa. Journal of Fungi. 2024; 10(2):96. https://doi.org/10.3390/jof10020096
Chicago/Turabian StyleZhao, Jia, Achuan Wang, and Qian Wang. 2024. "Genome-Wide Identification of the ABC Gene Family and Its Expression in Response to the Wood Degradation of Poplar in Trametes gibbosa" Journal of Fungi 10, no. 2: 96. https://doi.org/10.3390/jof10020096
APA StyleZhao, J., Wang, A., & Wang, Q. (2024). Genome-Wide Identification of the ABC Gene Family and Its Expression in Response to the Wood Degradation of Poplar in Trametes gibbosa. Journal of Fungi, 10(2), 96. https://doi.org/10.3390/jof10020096