Partial Replacement of Soybean Meal with Black Soldier Fly (Hermetia illucens) Larva Meal Maintains Stable Reproductive Performance and Health Status of Sows and Their Offsprings
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Husbandry, and Experimental Diets
2.2. Sampling and Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varzakas, T.; Smaoui, S. Global Food Security and Sustainability Issues: The Road to 2030 from Nutrition and Sustainable Healthy Diets to Food Systems Change. Foods 2024, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.P.S. Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Schiavone, A.; De Marco, M.; Martínez, S.; Dabbou, S.; Renna, M.; Madrid, J.; Hernandez, F.; Rotolo, L.; Costa, P.; Gai, F.; et al. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: Apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J. Anim. Sci. Biotechnol. 2017, 8, 51. [Google Scholar] [CrossRef] [PubMed]
- Boerema, A.; Peeters, A.; Swolfs, S.; Vandevenne, F.; Jacobs, S.; Staes, J.; Meire, P. Soybean Trade: Balancing Environmental and Socio-Economic Impacts of an Intercontinental Market. PLoS ONE 2016, 11, e0155222. [Google Scholar] [CrossRef]
- Ao, X.; Kim, I.H. Effects of dietary dried mealworm (Ptecticus tenebrifer) larvae on growth performance and nutrient digestibility in weaning pigs. Livest. Sci. 2019, 230, 103815. [Google Scholar] [CrossRef]
- Cho, K.H.; Sampath, V.; Kim, A.J.; Yoo, J.S.; Kim, I.H. Evaluation of full-fatted and hydrolysate mealworm (Tenebrio molitor) larvae as a substitute for spray-dried plasma protein diet in weaning pigs. J. Anim. Phys. Anim. Nutr. 2023, 107, 589–597. [Google Scholar] [CrossRef]
- Lalander, C.; Diener, S.; Zurbrügg, C.; Vinnerås, B. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). J. Clean. Prod. 2019, 208, 211–219. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef]
- Perednia, D.A.; Anderson, J.; Rice, A. A comparison of the greenhouse gas production of black soldier fly larvae versus aerobic microbial decomposition of an organic feed material. Res. Rev. J. Ecol. Environ. Sci. 2017, 5, 10–16. [Google Scholar]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- Velten, S.; Neumann, C.; Dorper, A.; Liebert, F. Response of piglets due to amino acid optimization of mixed diets with 75% replacement of soybean-meal by partly defatted insect meal (H. illucens). In Book of Abstracts, Proceedings of the INSECTA Conference 2017, Berlin, Germany, 7–8 September 2017; Bornimer Agrartechnische Berichte Heft 97; Leibniz-Institut für Agrartechnik und Bioökonomie: Potsdam, Germany, 2017; pp. 63–64. [Google Scholar]
- Yu, M.; Li, Z.; Chen, W.; Rong, T.; Wang, G.; Li, J.; Ma, X. Use of Hermetia illucens larvae as a dietary protein source: Effects on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci. 2019, 158, 107837. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, M.; Wei, Y.; Li, L.; Ma, D.; Weng, Y.; Wang, H.; Xu, X. Influence of a Mixture of Protein Hydrolysate from Black Soldier Fly Larvae and Schizochytrium on Palatability, Plasma Biochemistry, and Antioxidative and Anti-Inflammatory Capacity in Cat Diets. Animals 2024, 14, 751. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.R.; Liu, S.; Wang, F.; Wang, H.; Mo, Q.; Zhuang, Z.; Zheng, C.; Liang, Y.; Liu, Y.; ur Rehman, K.; et al. Black Soldier Fly: A Keystone Species for the Future of Sustainable Waste Management and Nutritional Resource Development: A Review. Insects 2025, 16, 750. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Zhao, J.; Takao, N.; Sato, M.; Ban, T.; Tamamaki, K.; Kagami, M.; Yano, K. Sustenance Trial to Analyze the Effects of Black Soldier Fly Larvae Meal on the Reproductive Efficiency of Sows and the Hematological Properties of Suckling and Weaning Piglets. Animals 2023, 13, 3410. [Google Scholar] [CrossRef]
- National Research Council, Division on Earth and Committee on Nutrient Requirements of Swine. Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Spranghers, T.; Michiels, J.; Vrancx, J.; Ovyn, A.; Eeckhout, M.; De Clercq, P.; De Smet, S. Gut antimicrobial effects and nutritional value of black soldier fly (Hermetia illucens L.) prepupae for weaned piglets. Anim. Feed Sci. Technol. 2018, 235, 33–42. [Google Scholar] [CrossRef]
- Ling, S.L.Y.; Shafiee, M.; Longworth, Z.; Vatanparast, H.; Tabatabaei, M.; Liew, H.J. Black Soldier Fly Larvae Meal (BSFLM) as an alternative protein source in sustainable aquaculture production: A scoping review of its comprehensive impact on shrimp and prawn farming. Anim. Feed Sci. Technol. 2025, 319, 116174. [Google Scholar] [CrossRef]
- Heuel, M.; Sandrock, C.; Leiber, F.; Mathys, A.; Gold, M.; Zurbrügg, C.; Gangnat, I.D.M.; Kreuzer, M.; Terranova, M. Black soldier fly larvae meal and fat can completely replace soybean cake and oil in diets for laying hens. Poult. Sci. 2021, 100, 101034. [Google Scholar] [CrossRef]
- Dourmad, J.Y.; Etienne, M.; Noblet, J. Mesurer l’épaisseur de lard dorsal des truies pour définir leurs programmes alimentaires. INRAE Prod. Anim. 2001, 14, 41–50. [Google Scholar] [CrossRef]
- Lucy, M. Functional Differences in the Growth Hormone and Insulin-like Growth Factor Axis in Cattle and Pigs: Implications for Post-partum Nutrition and Reproduction. Reprod. Domest. Anim. 2008, 43, 31–39. [Google Scholar] [CrossRef]
- Serenius, T.; Stalder, K.J.; Baas, T.J.; Mabry, J.W.; Goodwin, R.N.; Johnson, R.K.; Robison, O.W.; Tokach, M.; Miller, R.K. National Pork Producers Council Maternal Line National Genetic Evaluation Program: A comparison of sow longevity and trait associations with sow longevity. J. Anim. Sci. 2006, 84, 2590–2595. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, M.; Yuan, B.; Jin, X.; Zhang, X.; Xie, G.; Wang, Z.; Lv, Y.; Wang, W.; Huang, Y. Growth Performance and Meat Quality of Growing Pigs Fed with Black Soldier Fly (Hermetia illucens) Larvae as Alternative Protein Source. Processes 2022, 10, 1498. [Google Scholar] [CrossRef]
- Clowes, E.J.; Aherne, F.X.; Schaefer, A.L.; Foxcroft, G.R.; Baracos, V.E. Parturition body size and body protein loss during lactation influence performance during lactation and ovarian function at weaning in first-parity sows. J. Anim. Sci. 2003, 81, 1517–1528. [Google Scholar] [CrossRef] [PubMed]
- DANBRED. Højgaard CK2022 New Recommended Backfat Measurements: Optimise Production Reduce Feed Costs. Available online: https://danbred.com/new-recommended-backfat-measurements-optimise-production-and-reduce-feed-costs/ (accessed on 10 September 2024).
- Lauridsen, C.; Danielsen, V. Lactational dietary fat levels and sources influence milk composition and performance of sows and their progeny. Livest. Prod. Sci. 2004, 91, 95–105. [Google Scholar] [CrossRef]
- Kajimoto, M.; Ledee, D.R.; Olson, A.K.; Isern, N.G.; Des Rosiers, C.; Portman, M.A. Differential effects of octanoate and heptanoate on myocardial metabolism during extracorporeal membrane oxygenation in an infant swine model. Am. J. Physiol. Heart Circ. 2015, 309, 1157–1165. [Google Scholar] [CrossRef]
- Lee, K.S.; Lee, M.G.; Jeong, K.; Yun, E.Y.; Goo, T.W. Medium-Chain Fatty Acids Extracted from Black Soldier Fly (Hermetia illucens) Larvae Prevents High-Fat Diet-Induced Obesity In Vivo in C57BL/6J Mice. Animals 2025, 15, 1384. [Google Scholar] [CrossRef]
- Renaville, R.; Hammadi, M.; Portetelle, D. Role of the somatotropic axis in the mammalian metabolism. Domest. Anim. Endocrinol. 2002, 23, 351–360. [Google Scholar] [CrossRef]
- Zak, L.J.; Cosgrove, J.R.; Aherne, F.X.; Foxcroft, G.R. Pattern of feed intake and associated metabolic and endocrine changes differentially affect postweaning fertility in primiparous lactating sows. J. Anim. Sci. 1997, 75, 208. [Google Scholar] [CrossRef]
- Daftary, S.S.; Gore, A.C. IGF-1 in the Brain as a Regulator of Reproductive Neuroendocrine Function. Exp. Biol. Med. 2005, 230, 292–306. [Google Scholar] [CrossRef] [PubMed]
| Fatty Acids (g/100 g Fat) | Composition |
|---|---|
| Lauric acids (C12:0) | 42.5 |
| Myristic acids (C14:0) | 6.9 |
| Palmitic acids (C16:0) | 11.2 |
| Stearic acids (C18:0) | 1.4 |
| Oleic acids (C18:1 u9) | 12.3 |
| Linoleic acids (C18:2 u6) | 3.6 |
| Linolenic acids (C18:3 u6) | 0.8 |
| Eicosapentaenoic acids (C20:5 u3) | 1.5 |
| Docosahexaenoic acids (C22:6) | 0.6 |
| Amino acids (g/100 g protein) | |
| Histidine | 4.10 |
| Threonine | 4.49 |
| Arginine | 5.22 |
| Tyrosine | 7.66 |
| Methionine | 2.74 |
| Valine | 5.80 |
| Phenylalanine | 6.24 |
| Isoleucine | 5.08 |
| Leucine | 8.81 |
| Lysine | 6.44 |
| Serine | 4.08 |
| Glysine | 4.49 |
| Alanine | 5.85 |
| Items | Dietary Treatment | ||
|---|---|---|---|
| CON 1 | BSFLM1 1 | BSFLM2 1 | |
| Ingredient, % | |||
| Corn | 43.96 | 44.13 | 44.28 |
| Wheat | 17.00 | 17.00 | 17.00 |
| Wheat bran | 10.00 | 10.00 | 10.00 |
| Palm kernel meal | 2.00 | 2.00 | 2.00 |
| Soybean meal | 7.54 | 6.85 | 6.20 |
| Dehulled soybean meal | 10.00 | 10.00 | 10.00 |
| Molasses | 2.00 | 2.00 | 2.00 |
| Tallow | 3.69 | 3.66 | 3.63 |
| Monocalcium phosphate | 1.15 | 1.15 | 1.15 |
| Limestone | 1.20 | 1.20 | 1.20 |
| MgO | 0.02 | 0.02 | 0.02 |
| Salt | 0.50 | 0.50 | 0.50 |
| Methionine (99%) | 0.01 | 0.02 | 0.02 |
| Threonine (99%) | 0.14 | 0.15 | 0.16 |
| L-Lysine (78%) | 0.27 | 0.30 | 0.32 |
| Vit / Mineral premix 2 | 0.40 | 0.40 | 0.40 |
| Choline (25%) | 0.12 | 0.12 | 0.12 |
| Black soldier fly | - | 0.50 | 1.00 |
| Total | 100.00 | 100.00 | 100.00 |
| Analyzed value | |||
| Crude protein, % | 16.33 | 16.20 | 16.28 |
| ME, kcal/kg | 3282 | 3280 | 3299 |
| Calcium, % | 0.77 | 0.78 | 0.80 |
| Phosphorus, % | 0.74 | 0.70 | 0.71 |
| Lys, % | 0.96 | 0.99 | 0.96 |
| Met, % | 0.27 | 0.26 | 0.26 |
| Thr, % | 0.62 | 0.64 | 0.65 |
| Items | CON | BSFLM1 | BSFLM2 | SEM 2 | p-Value |
|---|---|---|---|---|---|
| Parity | 3.3 | 3.2 | 3.2 | - | - |
| Litter size | |||||
| Total birth, head | 11.8 | 11.2 | 11.8 | 0.9 | 0.615 |
| Mummification, head | 0.0 | 0.2 | 0.2 | 0.1 | 0.248 |
| Stillbirth, head | 0.7 | 0.3 | 0.2 | 0.3 | 0.228 |
| Total alive, head | 11.2 | 10.7 | 11.5 | 0.9 | 0.545 |
| SUR1 3, % | 94.32 | 96.26 | 97.05 | 2.04 | 0.365 |
| Underweight piglet | 1.67 | 1.67 | 1.50 | 0.41 | 0.428 |
| Body weight, kg | |||||
| Initial | 200.3 ab | 194.0 b | 201.7 a | 2.4 | 0.043 |
| Weaning | 168.1 ab | 160.2 b | 170.8 a | 2.7 | 0.019 |
| Body weight difference 1 4 | 32.2 | 33.8 | 30.9 | 1.2 | 0.107 |
| Backfat thickness, mm | |||||
| Initial | 19.3 | 19.2 | 19.5 | 0.3 | 0.433 |
| After farrowing | 17.3 | 17.0 | 17.5 | 0.2 | 0.158 |
| Weaning | 14.8 ab | 14.3 b | 15.2 a | 0.3 | 0.043 |
| Backfat thickness difference 1 5 | 2.0 | 2.2 | 2.0 | 0.3 | 0.677 |
| Backfat thickness difference 2 5 | 2.5 | 2.7 | 2.3 | 0.3 | 0.433 |
| ADFI, kg | |||||
| Pregnant | 2.92 | 2.83 | 2.89 | 0.05 | 0.204 |
| Lactation | 7.29 | 7.20 | 7.33 | 0.04 | 0.197 |
| Estrus interval | 4.2 | 4.0 | 4.5 | 0.5 | 0.516 |
| Items | CON | BSFLM1 | BSFLM2 | SEM 2 | p-Value |
|---|---|---|---|---|---|
| SUR2 3, % | 95.58 | 96.97 | 98.61 | 1.98 | 0.304 |
| Body weight, kg | |||||
| Birth weight | 1.19 b | 1.34 a | 1.26 ab | 0.05 | 0.046 |
| Weaning | 6.21 | 6.49 | 6.13 | 0.11 | 0.098 |
| Average daily gain, g | 239 | 245 | 232 | 5 | 0.073 |
| Items | CON | BSFLM1 | BSFLM2 | SEM 2 | p-Value |
|---|---|---|---|---|---|
| Colostrum | |||||
| Fat, % | 3.86 | 3.80 | 3.92 | 0.15 | 0.771 |
| Protein, % | 12.99 | 13.27 | 13.75 | 0.27 | 0.108 |
| Lactose, % | 2.84 | 2.78 | 2.89 | 0.29 | 0.793 |
| Solids not fat, % | 19.81 | 19.45 | 20.18 | 0.41 | 0.254 |
| Total-solids, % | 23.21 | 22.87 | 23.04 | 0.12 | 0.109 |
| Frozen point, °C | −0.55 | −0.55 | −0.55 | - | - |
| Week 1 | |||||
| Fat, % | 9.50 | 10.49 | 10.03 | 0.35 | 0.093 |
| Protein, % | 4.33 | 4.72 | 4.48 | 0.14 | 0.099 |
| Lactose, % | 5.11 | 4.86 | 4.98 | 0.22 | 0.445 |
| Solids not fat, % | 10.27 | 10.42 | 10.12 | 0.50 | 0.685 |
| Total-solids, % | 19.57 | 20.01 | 19.80 | 0.47 | 0.543 |
| Frozen point, ℃ | −0.62 | −0.62 | −0.62 | - | - |
| Items | CON | BSFLM1 | BSFLM2 | SEM 2 | p-Value |
|---|---|---|---|---|---|
| Initial | |||||
| Calcium, mg/dL | 9.38 | 9.93 | 9.33 | 0.18 | 0.096 |
| Phosphorus, ng/mL | 6.80 | 7.48 | 6.90 | 0.25 | 0.104 |
| IgG, mg/dL | 297.0 | 268.8 | 247.3 | 28.9 | 0.264 |
| IGF-1, ng/mL | 64.28 ab | 81.63 a | 60.50 b | 5.38 | 0.032 |
| Cortisol, µg/dL | 2.94 | 3.20 | 1.71 | 0.84 | 0.258 |
| Weaning | |||||
| Calcium, mg/dL | 9.45 | 9.58 | 9.35 | 0.31 | 0.622 |
| Phosphorus, ng/mL | 6.63 | 6.68 | 6.33 | 0.71 | 0.774 |
| IgG, mg/dL | 470.5 | 445.3 | 554.5 | 89.7 | 0.151 |
| IGF-1, ng/mL | 83.48 | 85.20 | 93.80 | 11.98 | 0.564 |
| Cortisol, µg/dL | 3.49 | 3.06 | 2.09 | 0.98 | 0.351 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Sampath, V.; Lee, K.; Kim, I.H. Partial Replacement of Soybean Meal with Black Soldier Fly (Hermetia illucens) Larva Meal Maintains Stable Reproductive Performance and Health Status of Sows and Their Offsprings. Vet. Sci. 2026, 13, 2. https://doi.org/10.3390/vetsci13010002
Sampath V, Lee K, Kim IH. Partial Replacement of Soybean Meal with Black Soldier Fly (Hermetia illucens) Larva Meal Maintains Stable Reproductive Performance and Health Status of Sows and Their Offsprings. Veterinary Sciences. 2026; 13(1):2. https://doi.org/10.3390/vetsci13010002
Chicago/Turabian StyleSampath, Vetriselvi, Kyejin Lee, and In Ho Kim. 2026. "Partial Replacement of Soybean Meal with Black Soldier Fly (Hermetia illucens) Larva Meal Maintains Stable Reproductive Performance and Health Status of Sows and Their Offsprings" Veterinary Sciences 13, no. 1: 2. https://doi.org/10.3390/vetsci13010002
APA StyleSampath, V., Lee, K., & Kim, I. H. (2026). Partial Replacement of Soybean Meal with Black Soldier Fly (Hermetia illucens) Larva Meal Maintains Stable Reproductive Performance and Health Status of Sows and Their Offsprings. Veterinary Sciences, 13(1), 2. https://doi.org/10.3390/vetsci13010002

