Investigating Bacterial Bloodstream Infections in Dogs and Cats: A 4-Year Surveillance in an Italian Veterinary University Hospital
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BC | Blood culture |
BSI | Bloodstream infection |
AMR | Antimicrobial resistance |
MDR | Multidrug resistance |
HAI | Healthcare-associated infection |
VUH | Veterinary University Hospital |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
CLSI | Clinical and Laboratory Standards Institute |
AST | Antimicrobial susceptibility testing |
Appendix A
Antimicrobial Class | Antimicrobial Drug |
---|---|
Aminoglycosides | Amikacin 30 μg |
Gentamicin 10 μg (120 μg for Enterococcus spp. isolates) | |
Penicillins +/− beta-lactamase inhibitors | Ampicillin 10 μg |
Penicillin G 10 units (for Staphylococcus spp.) | |
Oxacillin 1 μg (for Staphylococcus pseudintermedius and Staphylococcus schleiferi) | |
Amoxicillin–clavulanate 30 μg | |
Ampicillin–sulbactam 20 μg | |
Piperacillin–tazobactam 110 μg | |
Cephalosporins | Cefazolin/cephalothin 30 μg |
Cefoxitin 30 μg (for Staphylococcus spp. other than S.pseudintermedius and S.schleiferi) | |
Ceftiofur 30 μg | |
Ceftazidime 30 μg (for Pseudomonas aeruginosa) | |
Tetracyclines | Tetracycline 30 μg |
Fluoroquinolones | Enrofloxacin 5 μg |
Sulfonamides + dihydrofolate reductase inhibitors | Trimethoprim–sulfamethoxazole 1.25/23.7 μg |
References
- Martinez, R.M.; Wolk, D.M. Bloodstream Infections. Microbiol. Spectr. 2016, 4, 653–689. [Google Scholar] [CrossRef] [PubMed]
- Keir, I.; Dickinson, A.E. The Role of Antimicrobials in the Treatment of Sepsis and Critical Illness-related Bacterial Infections: Examination of the Evidence. J. Vet. Emergen Crit. Care 2015, 25, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Dowling, P.M.; Prescott, J.F.; Baptiste, K.E. (Eds.) Antimicrobial Therapy in Veterinary Medicine, 1st ed.; Wiley: Hoboken, NJ, USA, 2024; ISBN 978-1-119-65459-9. [Google Scholar]
- European Medicines Agency. Categorisation of Antibiotics in the European Union; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- CLSI Supplement Vet08; Performance Standards for Antimicrobial Disk and Dilutions Susceptibility Test for Bacteria Isolated from Animals, 4th ed. Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2018.
- CLSI Supplement VET01S; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 6th ed. Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2023.
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 15.0; European Committee on Antimicrobial Susceptibility Testing (EUCAST): Basel, Switzerland, 2025.
- CRAB. Tabelle Resistenze Intrinseche Dei Batteri Di Interesse Veterinario; Centro di Referenza Nazionale per l’Antibioticoresistenza: Rome, Italy, 2018. [Google Scholar]
- Nabal Díaz, S.G.; Algara Robles, O.; García-Lechuz Moya, J.M. New Definitions of Susceptibility Categories EUCAST 2019: Clinic Application. Rev. Esp. Quimioter. 2022, 35, 84–88. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Tabah, A.; Cotta, M.O.; Garnacho-Montero, J.; Schouten, J.; Roberts, J.A.; Lipman, J.; Tacey, M.; Timsit, J.-F.; Leone, M.; Zahar, J.R.; et al. A Systematic Review of the Definitions, Determinants, and Clinical Outcomes of Antimicrobial De-Escalation in the Intensive Care Unit. Clin. Infect. Dis. 2016, 62, 1009–1017. [Google Scholar] [CrossRef]
- Vallicelli, C.; Minghetti, M.; Sartelli, M.; Coccolini, F.; Ansaloni, L.; Agnoletti, V.; Bravi, F.; Catena, F. Antibiotic De-Escalation in Emergency General Surgery. Antibiotics 2022, 11, 1148. [Google Scholar] [CrossRef] [PubMed]
- Centro Di Referenza Nazionale per l’Antibioticoresistenza. Linee guida per l’interpretazione delle prove di sensibilità ai chemioantibiotici in vitro per un utilizzo nella terapia clinica. 2018. Available online: https://www.izsvenezie.it/documenti/amministrazione/bandi-gare/forniture-beni-servizi/gare/2020/2020-07-15-piastre-mic/molecole-prototipo.pdf (accessed on 29 April 2025).
- Haque, M.; Sartelli, M.; McKimm, J.; Abu Bakar, M.B. Health Care-Associated Infections—An Overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef]
- Tsuyuki, Y.; Kurita, G.; Murata, Y.; Takahashi, T. Bacteria Isolated from Companion Animals in Japan (2014–2016) by Blood Culture. J. Infect. Chemother. 2018, 24, 583–587. [Google Scholar] [CrossRef]
- Saarenkari, H.K.; Sharp, C.R.; Smart, L. Retrospective Evaluation of the Utility of Blood Cultures in Dogs (2009–2018): 45 Cases. J. Vet. Emergen Crit. Care 2022, 32, 141–145. [Google Scholar] [CrossRef]
- Moraes, R.; Ribeiro, D.; Melchert, A.; García, H.D.M.; Regalin, D.; Filho, R.; Giuffrida, R.; Takahira, R.; Okamoto, A.; Okamoto, P. A Retrospective Description of Blood and Urine Alterations in 386 Male Cats with Urethral Obstruction in Botucatu, São Paulo, Brazil. Open Vet. J. 2024, 14, 2901. [Google Scholar] [CrossRef]
- Ogrodny, A.J.; Mani, R.; Schmid, S.M.; Gould, E.N.; Fellman, C.L.; DeStefano, I.; Shropshire, S.; Haines, J.M.; Bolton, T.A.; Jablonski, S.A.; et al. Multi-Institutional Retrospective Study Investigating Blood Culture Protocols and Test Positivity in 701 Dogs. Front. Vet. Sci. 2023, 10, 1301018. [Google Scholar] [CrossRef] [PubMed]
- Greiner, M.; Wolf, G.; Hartmann, K. A Retrospective Study of the Clinical Presentation of 140 Dogs and 39 Cats with Bacteraemia. J. Small Anim. Pract. 2008, 49, 378–383. [Google Scholar] [CrossRef]
- Greiner, M.; Wolf, G.; Hartmann, K. Bacteraemia and Antimicrobial Susceptibility in Dogs. Vet. Rec. 2007, 160, 529–530. [Google Scholar] [CrossRef]
- Lee, A.; Mirrett, S.; Reller, L.B.; Weinstein, M.P. Detection of Bloodstream Infections in Adults: How Many Blood Cultures Are Needed? J. Clin. Microbiol. 2007, 45, 3546–3548. [Google Scholar] [CrossRef] [PubMed]
- Tarai, B.; Jain, D.; Das, P.; Budhiraja, S. Paired Blood Cultures Increase the Sensitivity for Detecting Pathogens in Both Inpatients and Outpatients. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Neumann, N.; Solis, S.A.F.; Crawford, S.; Rogovskyy, A.S. Are Multiple Blood Cultures Advantageous for Canine Patients? J. Vet. Diagn. Investig. 2023, 35, 332–335. [Google Scholar] [CrossRef]
- Hossain, B.; Islam, M.S.; Rahman, A.; Marzan, M.; Rafiqullah, I.; Connor, N.E.; Hasanuzzaman, M.; Islam, M.; Hamer, D.H.; Hibberd, P.L.; et al. Understanding Bacterial Isolates in Blood Culture and Approaches Used to Define Bacteria as Contaminants: A Literature Review. Pediatr. Infect. Dis. J. 2016, 35, S45–S51. [Google Scholar] [CrossRef]
- Perry, K.M.; Lynch, A.M.; Caudill, A.; Vigani, A.; Roberston, J.B.; Vaden, S. Clinical Features, Outcome, and Illness Severity Scoring in 32 Dogs with Urosepsis (2017–2018). J. Vet. Emergen Crit. Care 2022, 32, 236–242. [Google Scholar] [CrossRef]
- Barash, N.R.; Birkenheuer, A.J.; Vaden, S.L.; Jacob, M.E. Agreement between Parallel Canine Blood and Urine Cultures: Is Urine Culture the Poor Man’s Blood Culture? J. Clin. Microbiol. 2018, 56, e00506-18. [Google Scholar] [CrossRef]
- Scarpellini, R.; Assirelli, G.; Giunti, M.; Esposito, E.; Mondo, E.; Piva, S. Monitoring the Prevalence of Antimicrobial Resistance in Companion Animals: Results from Clinical Isolates in an Italian University Veterinary Hospital. Transbound. Emerg. Dis. 2023, 2023, 6695493. [Google Scholar] [CrossRef]
- Guardabassi, L. Veterinary Hospital-Acquired Infections: The Challenge of MRSA and Other Multidrug-Resistant Bacterial Infections in Veterinary Medicine. Vet. J. 2012, 193, 307–308. [Google Scholar] [CrossRef] [PubMed]
- Vincze, S.; Stamm, I.; Kopp, P.A.; Hermes, J.; Adlhoch, C.; Semmler, T.; Wieler, L.H.; Lübke-Becker, A.; Walther, B. Alarming Proportions of Methicillin-Resistant Staphylococcus Aureus (MRSA) in Wound Samples from Companion Animals, Germany 2010–2012. PLoS ONE 2014, 9, e85656. [Google Scholar] [CrossRef]
- Stull, J.W.; Weese, J.S. Hospital-Associated Infections in Small Animal Practice. Vet. Clin. N. Am. Small Anim. Pract. 2015, 45, 217–233. [Google Scholar] [CrossRef]
- Freilich, L.; Jugan, M.C. Retrospective Evaluation of Enteral Nutrition Supplementation in 295 Hospitalized Dogs and Cats (2014–2023). J. Am. Vet. Med. Assoc. 2024, 1, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.; Chan, D.L.; Villaverde, C.; Ryan, L.; Peron, F.; Quimby, J.; O’Brien, C.; Chalhoub, S. 2022 ISFM Consensus Guidelines on Management of the Inappetent Hospitalised Cat. J. Feline Med. Surg. 2022, 24, 614–640. [Google Scholar] [CrossRef]
- Breheny, C.R.; Boag, A.; Le Gal, A.; Hõim, S.; Cantatore, M.; Anderson, D.; Nuttall, T.; Chandler, M.L.; Gunn-Moore, D.A. Esophageal Feeding Tube Placement and the Associated Complications in 248 Cats. Vet. Intern. Med. 2019, 33, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Greiner, M.; Wolf, G.; Hartmann, K. Bacteraemia in 66 Cats and Antimicrobial Susceptibility of the Isolates (1995–2004). J. Feline Med. Surg. 2007, 9, 404–410. [Google Scholar] [CrossRef]
- Fidanzio, F.; Rega, M.; Bertini, S.; Carrillo Heredero, A.M.; Corsini, A.; Corti, F.; Crosara, S.; Quintavalla, C. Overview on Antimicrobial Prescription Habits in Cats at Different Clinical Services of the Veterinary Teaching Hospital of Parma. BMC Vet. Res. 2025, 21, 106. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludová, L. Antibiotics Used Most Commonly to Treat Animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef]
- Yudhanto, S.; Hung, C.-C.; Maddox, C.W.; Varga, C. Antimicrobial Resistance in Bacteria Isolated From Canine Urine Samples Submitted to a Veterinary Diagnostic Laboratory, Illinois, United States. Front. Vet. Sci. 2022, 9, 867784. [Google Scholar] [CrossRef]
- Black, D.M.; Rankin, S.C.; King, L.G. Antimicrobial Therapy and Aerobic Bacteriologic Culture Patterns in Canine Intensive Care Unit Patients: 74 Dogs (January–June 2006). J. Vet. Emergen Crit. Care 2009, 19, 489–495. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals—Protocol, Version 6.1; ECDC: Solna, Sweden, 2023.
- Schreiber, A.; Epstein, S.E.; Byrne, B.A.; Reagan, K.L. Survey of Bacterial Isolates and Their Antimicrobial Susceptibility Patterns from Dogs with Infective Endocarditis. Pathogens 2023, 12, 1011. [Google Scholar] [CrossRef] [PubMed]
- Impey, R.E.; Hawkins, D.A.; Sutton, J.M.; Soares Da Costa, T.P. Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. Antibiotics 2020, 9, 623. [Google Scholar] [CrossRef] [PubMed]
- Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules 2020, 25, 1340. [Google Scholar] [CrossRef]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneve, Switzerland, 2024. [Google Scholar]
- Scarpellini, R.; Pulido-Vadillo, M.; Serna, C.; Gonzalez-Zorn, B.; Blanco, J.L.; Delgado-Blas, J.F.; Giunti, M.; Piva, S. High Frequency of Detection of NDM-Producing Enterobacterales Among Companion Animals Hospitalized in an Italian Veterinary Teaching Hospital. Transbound. Emerg. Dis. 2025, 2025, 2622185. [Google Scholar] [CrossRef]
- Tabah, A.; De Bus, L.; Leone, M. Antibiotic De-Escalation: Finally, Some Action and Not Only Words. Lancet Infect. Dis. 2024, 24, 331–333. [Google Scholar] [CrossRef]
- on behalf of The Nine-I study Group; Rello, J.; Sarda, C.; Mokart, D.; Arvaniti, K.; Akova, M.; Tabah, A.; Azoulay, E. Antimicrobial Stewardship in Hematological Patients at the Intensive Care Unit: A Global Cross-Sectional Survey from the Nine-i Investigators Network. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 385–392. [Google Scholar] [CrossRef]
- De Waele, J.J.; Schouten, J.; Beovic, B.; Tabah, A.; Leone, M. Antimicrobial De-Escalation as Part of Antimicrobial Stewardship in Intensive Care: No Simple Answers to Simple Questions—A Viewpoint of Experts. Intensive Care Med. 2020, 46, 236–244. [Google Scholar] [CrossRef]
- Smith, A.; Wayne, A.S.; Fellman, C.L.; Rosenbaum, M.H. Usage Patterns of Carbapenem Antimicrobials in Dogs and Cats at a Veterinary Tertiary Care Hospital. Vet. Intern. Med. 2019, 33, 1677–1685. [Google Scholar] [CrossRef]
- Teitelbaum, D.; Elligsen, M.; Katz, K.; Lam, P.W.; Lo, J.; MacFadden, D.; Vermeiren, C.; Daneman, N. Introducing the Escalation Antibiogram: A Simple Tool to Inform Changes in Empiric Antimicrobials in the Nonresponding Patient. Clin. Infect. Dis. 2022, 75, 1763–1771. [Google Scholar] [CrossRef]
- Robbins, S.N.; Goggs, R.; Lhermie, G.; Lalonde-Paul, D.F.; Menard, J. Antimicrobial Prescribing Practices in Small Animal Emergency and Critical Care. Front. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, A.E.; Summers, J.F.; Wignal, J.; Boag, A.K.; Keir, I. Impact of Appropriate Empirical Antimicrobial Therapy on Outcome of Dogs with Septic Peritonitis. J. Vet. Emergen Crit. Care 2015, 25, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Proulx, A.; Hume, D.Z.; Drobatz, K.J.; Reineke, E.L. In Vitro Bacterial Isolate Susceptibility to Empirically Selected Antimicrobials in 111 Dogs with Bacterial Pneumonia. J. Vet. Emergen Crit. Care 2014, 24, 194–200. [Google Scholar] [CrossRef]
- Kumar, A.; Haery, C.; Paladugu, B.; Kumar, A.; Symeoneides, S.; Taiberg, L.; Osman, J.; Trenholme, G.; Opal, S.M.; Goldfarb, R.; et al. The Duration of Hypotension before the Initiation of Antibiotic Treatment Is a Critical Determinant of Survival in a Murine Model of Escherichia coli Septic Shock: Association with Serum Lactate and Inflammatory Cytokine Levels. J. Infect. Dis. 2006, 193, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Rickard, C.M.; Webster, J.; Wallis, M.C.; Marsh, N.; McGrail, M.R.; French, V.; Foster, L.; Gallagher, P.; Gowardman, J.R.; Zhang, L.; et al. Routine versus Clinically Indicated Replacement of Peripheral Intravenous Catheters: A Randomised Controlled Equivalence Trial. Lancet 2012, 380, 1066–1074. [Google Scholar] [CrossRef]
- Vendramim, P.; Avelar, A.F.M.; Rickard, C.M.; Pedreira, M.d.L.G. The RESPECT Trial–Replacement of Peripheral Intravenous Catheters According to Clinical Reasons or Every 96 Hours: A Randomized, Controlled, Non-Inferiority Trial. Int. J. Nurs. Stud. 2020, 107, 103504. [Google Scholar] [CrossRef]
Bacterial Species | Total Isolates (%) | Number of Non-Intrinsic MDR Isolates (%) |
---|---|---|
E. coli | 29 (30.2) | 11 (37.9) |
Enterobacter spp. | 6 (6.3) | 4 (66.7) |
Enterococcus spp. | 4 (4.2) | 0 (0) |
S. canis | 11 (11.5) | 0 (0) |
S. gallolyticus | 4 (4.2) | 0 (0) |
K. pneumoniae | 4 (4.2) | 3 (75) |
other Gram-negatives | 8 (8.3) | 2 (25) |
S. pseudintermedius | 10 (10.4) | 5 (50) |
S. aureus | 5 (5.2) | 1 (20) |
other Gram-positives | 10 (5.2) | 2 |
P. aeruginosa | 5 (5.2) | 0 |
Antibiotic Drug | n. of Tested Isolates | n. of Non-Intrinsic Resistance (%) | n. of Resistant Gram-Positive Isolates (%) | n. of Resistant Gram-Negative Isolates (%) | p-Value |
---|---|---|---|---|---|
Amikacin | 72 | 0 (0) | 0/17 (0) | 0/57 (0) | NA |
Gentamicin | 76 | 8 (10.5) | 3/24 (12.5) | 5/52 (9.6) | 0.983 |
Ampicillin/Penicillin G (for Staphylococcus spp. isolates) | 76 | 34 (44.7) | 17/43 (39.5) | 17/33 (51.5) | 0.297 |
Oxacillin/Cefoxitin (for Staphylococcus spp. isolates) | 19 | 7 (36.8) | NA | NA | NA |
Amoxicillin–clavulanic acid | 81 | 21 (25.9) | 9/43 (20.9) | 12/38 (31.6) | 0.275 |
Ampicillin–sulbactam | 81 | 18 (22.2) | 8/43 (18.6) | 10/38 (26.3) | 0.405 |
Piperacillin–tazobactam | 96 | 12 (12.5) | 8/43 (18.6) | 4/53 (7.5) | 0.103 |
Cefazolin | 76 | 23 (30.3) | 8/38 (21.1) | 15/38 (39.5) | 0.080 |
Ceftiofur | 86 | 23 (26.7) | 8/39 (20.5) | 15/47 (31.9) | 0.139 |
Ceftazidime (for P.aeruginosa isolates) | 6 | 0(0) | NA | NA | NA |
Tetracycline | 93 | 40 (43) | 19/43 (44.2) | 21/50 (42) | 0.832 |
Enrofloxacin | 96 | 28 (29.2) | 9/43 (20.9) | 19/53 (35.8) | 0.110 |
Trimethoprim–sulfamethoxazole | 89 | 23 (25.8) | 7/41 (17.1) | 16/48 (33.3) | 0.081 |
Non-intrinsic multidrug resistance | 96 | 28 (29.2) | 8/43 (18.6) | 20/53 (38) | 0.040 * |
Antibiotic | n. of Patients Empirically Treated | In Vitro Appropriateness | % |
---|---|---|---|
Ampicillin–sulbactam | 51 | 35 | 68.6% |
Marbofloxacin | 42 | 18 | 42.9% |
Piperacillin–tazobactam | 29 | 22 | 75.9% |
Other | 6 | 1 | 16.7% |
Total | 91 | 70 | 76.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarpellini, R.; Giunti, M.; Bulgarelli, C.; Esposito, E.; Mondo, E.; Tumietto, F.; Piva, S. Investigating Bacterial Bloodstream Infections in Dogs and Cats: A 4-Year Surveillance in an Italian Veterinary University Hospital. Vet. Sci. 2025, 12, 445. https://doi.org/10.3390/vetsci12050445
Scarpellini R, Giunti M, Bulgarelli C, Esposito E, Mondo E, Tumietto F, Piva S. Investigating Bacterial Bloodstream Infections in Dogs and Cats: A 4-Year Surveillance in an Italian Veterinary University Hospital. Veterinary Sciences. 2025; 12(5):445. https://doi.org/10.3390/vetsci12050445
Chicago/Turabian StyleScarpellini, Raffaele, Massimo Giunti, Cecilia Bulgarelli, Erika Esposito, Elisabetta Mondo, Fabio Tumietto, and Silvia Piva. 2025. "Investigating Bacterial Bloodstream Infections in Dogs and Cats: A 4-Year Surveillance in an Italian Veterinary University Hospital" Veterinary Sciences 12, no. 5: 445. https://doi.org/10.3390/vetsci12050445
APA StyleScarpellini, R., Giunti, M., Bulgarelli, C., Esposito, E., Mondo, E., Tumietto, F., & Piva, S. (2025). Investigating Bacterial Bloodstream Infections in Dogs and Cats: A 4-Year Surveillance in an Italian Veterinary University Hospital. Veterinary Sciences, 12(5), 445. https://doi.org/10.3390/vetsci12050445