The Role of Prebiotic and Herbal Supplementation in Enhancing Welfare and Resilience of Kenguri Sheep Subjected to Transportation Stress
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Location and Ethical Approval
2.2. Experimental Animals and Grouping
2.3. Transportation Protocol
2.4. Weather Variables and THI Calculation
2.5. Physiological and Hematological Measurements
2.6. PBMC Isolation and Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Temperature Humidity Index
3.2. Physiological Responses
3.3. Hematological and Biochemical Parameters
3.4. Molecular Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adenkola, A.Y.; Ayo, J.O. Physiological and Behavioural Responses of Livestock to Road Transportation Stress: A Review. Afr. J. Biotechnol. 2010, 9, 4845–4856. [Google Scholar]
- Grandin, T. Assessment of Stress during Handling and Transport. J. Anim. Sci. 1997, 75, 249. [Google Scholar] [CrossRef]
- Devaraj, C.; Sejian, V.; Shashank, C.G.; Silpa, M.V.; Bhatta, R. The Effect of an Antioxidant Supplement Based on Selenium, Electrolytes, and Vitamins on Relieving Transportation Stress in Goats. Small Rumin. Res. 2024, 241, 107392. [Google Scholar] [CrossRef]
- Qi, J.; Huang, F.; Gan, L.; Zhou, X.; Gou, L.; Xie, Y.; Guo, H.; Fang, J.; Zuo, Z. Multi-Omics Investigation into Long-Distance Road Transportation Effects on Respiratory Health and Immunometabolic Responses in Calves. Microbiome 2024, 12, 242. [Google Scholar] [CrossRef]
- Kanakaraja, M.G.; Sagar, M.; Juniwal, C.; Afnan, S.N.; Reddy, E.N. Kartik Collective Study on Housing Management Practices of Kenguri Sheep Farmers under Intensive and Extensive Rearing Systems in Yadgir District of Karnataka, India. J. Sci. Res. Rep. 2024, 30, 9–15. [Google Scholar] [CrossRef]
- Ali, B.H.; Al-Qarawi, A.A.; Mousa, H.M. Stress Associated with Road Transportation in Desert Sheep and Goats, and the Effect of Pretreatment with Xylazine or Sodium Betaine. Res. Vet. Sci. 2006, 80, 343–348. [Google Scholar] [CrossRef]
- Van Engen, N.K.; Stock, M.L.; Engelken, T.; Vann, R.C.; Wulf, L.W.; Karriker, L.A.; Busby, W.D.; Lakritz, J.; Carpenter, A.J.; Bradford, B.J.; et al. Impact of Oral Meloxicam on Circulating Physiological Biomarkers of Stress and Inflammation in Beef Steers after Long-Distance Transportation1. J. Anim. Sci. 2014, 92, 498–510. [Google Scholar] [CrossRef]
- Markowiak, P.; Śliżewska, K. The Role of Probiotics, Prebiotics and Synbiotics in Animal Nutrition. Gut Pathog. 2018, 10, 21. [Google Scholar] [CrossRef]
- Verma, P.; Jain, A.K.; Mishra, A.; Jesse, D.D.; Mandal, S.; Gattani, A.; Patel, P.; Singh, P.; Jatav, M. Ameliorative Effect of Withania somnifera on Haemato-Biochemical and Hormonal Parameters during Heat Stress in Murrah Buffalo Calves. Int. J. Adv. Biochem. Res. 2024, 8, 80–85. [Google Scholar] [CrossRef]
- Oderinwale, O.A.; Oluwatosin, B.O.; Onagbesan, M.O.; Adekunle, E.O.; Shuaibu, A.Y.; Amosu, S.D.; Adeyemo, A.J.; Kuye, O.M.; Olalere, J.O.; Ajewole, I.T. Effects of Dietary Inclusion of Turmeric (Curcuma longa L.) Powder on Oxidative Stress and Cortisol Concentration in Goats during Pregnancy and Onset of Postpartum. Nig. J. Anim. Prod. 2022, 48, 374–390. [Google Scholar] [CrossRef]
- Azevedo, V.A.N.; Barroso, P.A.A.; Vasconcelos, E.M.; Costa, F.C.; Assis, E.I.T.; Silva, B.R.; Paulino, L.R.M.; Silva, A.W.B.; Donato, M.M.A.; Peixoto, C.A.; et al. Effects of Aloe vera Extract on Growth, Viability, Ultrastructure and Expression of mRNA for Antioxidant Enzymes in Bovine Secondary Follicles Cultured in vitro. Anim. Reprod. Sci. 2022, 247, 107078. [Google Scholar] [CrossRef] [PubMed]
- Petrecca, V. Galactooligosaccharides Delivered in Ovo: Effect on Performance and Meat Quality Traits of Slow-Growing Broiler Chickens Exposed to Heat Stress. Survey on the Quality Characteristics of Chicken Breast Meat from Intensive Farming. Ph.D. Thesis, Università Degli Studi Del Molise, Campobasso, Italy, 2021. [Google Scholar]
- Gupta, S.; Jha, R. Transportation of Animals in India. Ind. J. Livest. Vet. Anim. Sci. 2021, 1, 29–31. [Google Scholar]
- Knowles, G.; Warriss, P.D.; Brown, S.N.; Edwards, J.E. Effects on Cattle of Transportation by Road for up to 31 Hours. Vet. Rec. 1999, 145, 575–582. [Google Scholar] [CrossRef] [PubMed]
- McDowell, R.E. Improvement of Livestock Production in Warm Climates; W. H. Freeman: New York, NY, USA, 1972. [Google Scholar]
- Sejian, V.; Devaraj, C.; Shashank, C.G.; Silpa, M.V.; Sahoo, A.; Bhatta, R. Mitigating transportation stress in Bannur sheep: Exploring the utility of innovative antioxidant supplementation in a hot-dry tropical climate. Trop. Anim. Health Prod. 2025, 57, 115. [Google Scholar] [CrossRef]
- Bin Tarif, A.; Lasecka, L.; Holzer, B.; Baron, M.D. Ganjam Virus/Nairobi Sheep Disease Virus Induces a pro-Inflammatory Response in Infected Sheep. Vet. Res. 2012, 43, 71. [Google Scholar] [CrossRef]
- Kramer, C.Y. Extension of Multiple Range Tests to Group Correlated Adjusted Means. Biometrics 1957, 13, 13. [Google Scholar] [CrossRef]
- Gressley, T.F.; Hall, M.B.; Armentano, L.E. Ruminant Nutrition Symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants. J. Anim. Sci. 2011, 89, 1120–1130. [Google Scholar] [CrossRef]
- Duan, X.D.; Chen, D.W.; Zheng, P.; Tian, G.; Wang, J.P.; Mao, X.B.; Yu, J.; He, J.; Li, B.; Huang, Z.Q.; et al. Effects of dietary mannan oligosaccharide supplementation on performance and immune response of sows and their offspring. Anim. Feed Sci. Technol. 2016, 218, 17–25. [Google Scholar] [CrossRef]
- Van Loo, J. The specificity of the interaction with intestinal bacterial fermentation by prebiotics determines their physiological efficacy. Nutr. Res. Rev. 2004, 17, 89–98. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, M.; Liu, Y.; Ye, Q.; Gu, J.; Luo, G. Isolation and identification of antioxidant compounds from Gynura bicolor stems and leaves. Int. J. Food Prop. 2016, 19, 233–241. [Google Scholar] [CrossRef]
- Rabelo, E.; Rezende, R.L.; Bertics, S.J.; Grummer, R.R. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows. J. Dairy Sci. 2003, 86, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Śliżewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Rybarczyk, A. Effect of Dietary Supplementation of Finishers with Herbal Probiotics, Ascorbic Acid and Allicin on the Cost and Quality Characteristics of Pork. Agriculture 2022, 12, 1173. [Google Scholar] [CrossRef]
- Xu, J.; Moore, B.N.; Pluznick, J.L. Short-Chain Fatty Acid Receptors and Blood Pressure Regulation: Council on Hypertension Mid-Career Award for Research Excellence 2021. Hypertension 2022, 79, 2127–2137. [Google Scholar] [CrossRef]
- Nøhr, M.K.; Egerod, K.L.; Christiansen, S.H.; Gille, A.; Offermanns, S.; Schwartz, T.W.; Møller, M. Expression of the Short Chain Fatty Acid Receptor GPR41/FFAR3 in Autonomic and Somatic Sensory Ganglia. Neuroscience 2015, 290, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A.; Yun, C.-H.; Kessel, A.V.; Li, B.; Hauta, S.; Laarveld, B. Immunomodulatory Activities of Oat β-Glucan in vitro and in vivo. Microbiol. Immunol. 1997, 41, 991–998. [Google Scholar] [CrossRef]
- Khalil, M.I.; Ahmmed, I.; Ahmed, R.; Tanvir, E.M.; Afroz, R.; Paul, S.; Gan, S.H.; Alam, N. Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract. BioMed Res. Int. 2015, 2015, 624159. [Google Scholar] [CrossRef]
- Guo, R.; Gan, L.; Lau, W.B.; Yan, Z.; Xie, D.; Gao, E.; Christopher, T.A.; Lopez, B.L.; Ma, X.; Wang, Y. Withaferin A Prevents Myocardial Ischemia/Reperfusion Injury by Upregulating AMP-Activated Protein Kinase-Dependent B-Cell Lymphoma2 Signaling. Circ. J. 2019, 83, 1726–1736. [Google Scholar] [CrossRef]
- Michalik, A.; Jarzyna, R. The key role of AMP-activated protein kinase (AMPK) in aging process. Postepy. Biochem. 2016, 62, 459–471. [Google Scholar]
- Salve, B.; Tripathi, R.; Petare, A.; Raut, A.; Rege, N. Effect of Tinospora Cordifolia on Physical and Cardiovascular Performance Induced by Physical Stress in Healthy Human Volunteers. AYU 2015, 36, 265. [Google Scholar] [CrossRef]
- Yoshitomi, H.; Zhou, J.; Nishigaki, T.; Li, W.; Liu, T.; Wu, L.; Gao, M. Morinda citrifolia (Noni) Fruit Juice Promotes Vascular Endothelium Function in Hypertension via Glucagon-like Peptide-1 Receptor-CaMKKβ-AMPK-eNOS Pathway. Phytother. Res. 2020, 34, 2341–2350. [Google Scholar] [CrossRef]
- Tizazu, A.; Bekele, T. A Review on the Medicinal Applications of Flavonoids from Aloe Species. Eur. J. Med. Chem. Rep. 2024, 10, 100135. [Google Scholar] [CrossRef]
- Vedantam, D.; Poman, D.S.; Motwani, L.; Asif, N.; Patel, A.; Anne, K.K. Stress-Induced Hyperglycemia: Consequences and Management. Cureus 2022, 14, e26714. [Google Scholar] [CrossRef] [PubMed]
- Atkin, S.A.; Moin, A.S.M.; Atkin, S.L.; Butler, A.E. Hypoglycemia Impairs the Heat Shock Protein Response: A Risk for Heat Shock in Cattle? Front. Vet. Sci. 2022, 9, 822310. [Google Scholar] [CrossRef] [PubMed]
- Anju; Kumar Ghosh, A. Adaptogens as Anti-Stress Agents in Reducing Increased Plasma Cortisol Level during Stress. Int. J. Clin. Biochem. Res. 2021, 8, 198–203. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, P.; Bajpai, G. Tinospora cordifolia (Giloy): An Insight on the Multifarious Pharmacological Paradigms of a Most Promising Medicinal Ayurvedic Herb. Heliyon 2024, 10, e26125. [Google Scholar] [CrossRef]
- Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M.; Mohkam, M.; Masoumi, S.; Berenjian, A.; Ghasemi, Y. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods 2019, 8, 92. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef]
- Mitchell, C.M.; Davy, B.M.; Ponder, M.A.; McMillan, R.P.; Hughes, M.D.; Hulver, M.W.; Neilson, A.P.; Davy, K.P. Prebiotic Inulin Supplementation and Peripheral Insulin Sensitivity in Adults at Elevated Risk for Type 2 Diabetes: A Pilot Randomized Controlled Trial. Nutrients 2021, 13, 3235. [Google Scholar] [CrossRef]
- Vydra, N.; Toma, A.; Glowala-Kosinska, M.; Gogler-Piglowska, A.; Widlak, W. Overexpression of Heat Shock Transcription Factor 1 Enhances the Resistance of Melanoma Cells to Doxorubicin and Paclitaxel. BMC Cancer 2013, 13, 504. [Google Scholar] [CrossRef]
- Hu, S.; Kuwabara, R.; De Haan, B.J.; Smink, A.M.; De Vos, P. Acetate and Butyrate Improve β-Cell Metabolism and Mitochondrial Respiration under Oxidative Stress. I. J. Mol. Sci. 2020, 21, 1542. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Rezaei, M.J. The Benefits of Ashwagandha (Withania somnifera) Supplements on Brain Function and Sports Performance. Front. Nutr. 2024, 11, 1439294. [Google Scholar] [CrossRef] [PubMed]
(a) Nutrient | Composition (100 g) |
Mannan oligosaccharide | 15 g |
Fructooligosaccharides | 30 g |
Galacto-oligosaccharide | 15 g |
Inulin | 15 g |
β-Glucan | 25 g |
Dose rate | 10 g/Animal/Day |
(b) Nutrient | Composition (100 g) |
Withania somnifera | 15 g |
Ocimum sanctum | 30 g |
Tinospora cordifolia | 20 g |
Morinda citrifolia | 15 g |
Aloe barbadensis | 20 g |
Dose rate | 10 g/Animal/Day |
Gene ID | Primer Sequence (5′-3′) | Product Length | Accession No. | |
---|---|---|---|---|
GAPDH | F R | TCGGAGTGAACGGATTTGGC ACGATGTCCACTTTGCCAGT | 76 | NM_001190390.1 |
HSF-1 | F R | GAAAGTGACCAGCGTGTCCA GTCGGTCAGCAGCTTGGTAA | 79 | XM_027973370.2 |
HSP27 | F R | GAAGCCGGAAAGTCCGAACA CATAGAGGTTTGGCGGGTGA | 106 | XM_027961472.3 |
HSP70 | F R | CCCACCATTGAGGAAGTGGAT CAAACTGACACAGCACAGGAC | 102 | XM_042236765.2 |
HSP90 | F R | ACCTGTCAGACAACGTCCAC TCCATGAGGGCACATTTCTCC | 100 | XM_060416283.1 |
Status of Transport | Inside the Vehicle | Outside the Vehicle |
---|---|---|
Pre-Transport | 69.1 | 71.2 |
During Transport | 78.6 | 76.2 |
Parameter | Group-1 (CKS) | Group-2 (PKS) | Group-3 (HKS) | SEM | p-Value |
---|---|---|---|---|---|
RR (breaths/min) | 38.7 a | 29.6 b | 31.8 b | 1.2 | 0.001 |
PR (pulses/min) | 75.6 a | 64.8 b | 66.8 b | 2.4 | 0.009 |
RT (°C) | 39.7 | 40.0 | 40.0 | 0.2 | 0.334 |
STH (°C) | 31.4 | 31.5 | 30.9 | 0.5 | 0.563 |
STS (°C) | 30.3 | 31.2 | 31.6 | 0.4 | 0.081 |
Parameter | Group-1 (CKS) | Group-2 (PKS) | Group-3 (HKS) | SEM | p-Value |
---|---|---|---|---|---|
RBC (106/µL) | 11.5 | 10.1 | 10.3 | 0.6 | 0.204 |
HGB (g/dL) | 9.18 a | 7.87 b | 7.97 b | 0.35 | 0.023 |
HCT (%) | 28.1 a | 24.2 b | 24.7 b | 0.9 | 0.021 |
MCV (fL) | 24.9 | 24.8 | 24.5 | 0.9 | 0.951 |
MCH (pg) | 8.01 | 7.87 | 7.80 | 0.23 | 0.802 |
MCHC (g/dL) | 32.6 | 32.1 | 32.2 | 0.4 | 0.605 |
RDW (%) | 17.5 | 17.3 | 17.1 | 0.3 | 0.570 |
WBC (103/µL) | 10.4 | 13.8 | 13.4 | 1.0 | 0.055 |
Glucose (mg/dL) | 63.5 b | 69.6 ab | 80.0 a | 3.6 | 0.012 |
Gene | Group | Fold Change | SEM | p-Value |
---|---|---|---|---|
HSF1 | CKS | 1.08 | 0.18 | 0.410 |
PKS | 1.51 | |||
HKS | 1.24 | |||
HSP90 | CKS | 1.08 | 0.1 | 0.191 |
PKS | 1.04 | |||
HKS | 0.81 | |||
HSP70 | CKS | 1.08 | 0.61 | 0.227 |
PKS | 1.93 | |||
HKS | 3.12 | |||
HSP27 | CKS | 1.06 | 0.1 | 0.525 |
PKS | 1.23 | |||
HKS | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sejian, V.; Devaraj, C.; Shashank, C.G.; Silpa, M.V.; Sahoo, A.; Bhatta, R. The Role of Prebiotic and Herbal Supplementation in Enhancing Welfare and Resilience of Kenguri Sheep Subjected to Transportation Stress. Vet. Sci. 2025, 12, 442. https://doi.org/10.3390/vetsci12050442
Sejian V, Devaraj C, Shashank CG, Silpa MV, Sahoo A, Bhatta R. The Role of Prebiotic and Herbal Supplementation in Enhancing Welfare and Resilience of Kenguri Sheep Subjected to Transportation Stress. Veterinary Sciences. 2025; 12(5):442. https://doi.org/10.3390/vetsci12050442
Chicago/Turabian StyleSejian, Veerasamy, Chinnasamy Devaraj, Chikamagalore Gopalakrishna Shashank, Mullakkalparambil Velayudhan Silpa, Artabandhu Sahoo, and Raghavendra Bhatta. 2025. "The Role of Prebiotic and Herbal Supplementation in Enhancing Welfare and Resilience of Kenguri Sheep Subjected to Transportation Stress" Veterinary Sciences 12, no. 5: 442. https://doi.org/10.3390/vetsci12050442
APA StyleSejian, V., Devaraj, C., Shashank, C. G., Silpa, M. V., Sahoo, A., & Bhatta, R. (2025). The Role of Prebiotic and Herbal Supplementation in Enhancing Welfare and Resilience of Kenguri Sheep Subjected to Transportation Stress. Veterinary Sciences, 12(5), 442. https://doi.org/10.3390/vetsci12050442