Supplementing Sacha Inchi (Plukenetia volubilis) Oil in Laying Hen Diets: Influences on Production Performance, Egg Quality and Fatty Acid Profile
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feedstuff Preparation
2.2. Animals and Housing
2.3. Diets
2.4. Sampling and Measurements
2.4.1. Production Parameters
2.4.2. Egg Quality
2.4.3. Fatty Acid Analysis
2.5. Statistical Analysis
3. Results
3.1. Laying Performance and Body Weight
3.1.1. Bird Body Weight, Feed Intake, and Feed Consumption
3.1.2. Egg Production
3.2. Egg Components and Quality
3.3. Fatty Acid Profile of Egg Yolk
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goyal, A.; Tanwar, B.; Kumar Sihag, M.; Sharma, V. Sacha Inchi (Plukenetia volubilis L.): An Emerging Source of Nutrients, Omega-3 Fatty Acid and Phytochemicals. Food Chem. 2022, 373, 131459. [Google Scholar] [CrossRef]
- Gao, Z.; Duan, Z.; Zhang, J.; Zheng, J.; Li, F.; Xu, G. Effects of Oil Types and Fat Concentrations on Production Performance, Egg Quality, and Antioxidant Capacity of Laying Hens. Animals 2022, 12, 315. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.V.; Malau-Aduli, B.S.; Cavalieri, J.; Nichols, P.D.; Malau-Aduli, A.E. Supplementation with Plant-Derived Oils Rich in Omega-3 Polyunsaturated Fatty Acids for Lamb Production. Vet. Anim. Sci. 2018, 6, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Mirshekar, R.; Boldaji, F.; Dastar, B.; Yamchi, A.; Pashaei, S. Longer Consumption of Flaxseed Oil Enhances N-3 Fatty Acid Content of Chicken Meat and Expression of FADS2 Gene. Eur. J. Lipid Sci. Technol. 2015, 117, 810–819. [Google Scholar] [CrossRef]
- Średnicka-Tober, D.; Barański, M.; Seal, C.J.; Sanderson, R.; Benbrook, C.; Steinshamn, H.; Gromadzka-Ostrowska, J.; Rembiałkowska, E.; Skwarło-Sońta, K.; Eyre, M.; et al. Higher PUFA and N-3 PUFA, Conjugated Linoleic Acid, α-Tocopherol and Iron, but Lower Iodine and Selenium Concentrations in Organic Milk: A Systematic Literature Review and Meta-and Redundancy Analyses. Br. J. Nutr. 2016, 115, 1043–1060. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, Y.B.; Kim, D.-H.; Lee, D.-W.; Lee, H.-G.; Jha, R.; Lee, K.-W. Dietary Soluble Flaxseed Oils as a Source of Omega-3 Polyunsaturated Fatty Acids for Laying Hens. Poult. Sci. 2021, 100, 101276. [Google Scholar] [CrossRef]
- Mariod, A.A.; Mukhtar, M.A.E.; Salih, M.E.; Herwan, T. Effect of Addition of Fish Oil on the Performance Parameters of Laying Hens and the Fatty Acid Composition of Their Egg Yolk. Am. J. Food Sci. Health 2015, 1, 38–42. [Google Scholar]
- Wang, Y.; Wu, G.; Wang, Y.; Rehman, A.; Yu, L.; Zhang, H.; Jin, Q.; Suleria, H.A.R.; Wang, X. Recent Developments, Challenges, and Prospects of Dietary Omega-3 PUFA-Fortified Foods: Focusing on Their Effects on Cardiovascular Diseases. Food Chem. 2025, 470, 142498. [Google Scholar] [CrossRef]
- Zamora, S.J.; Arista, M.A.; Fernández, P.A.; Valle, L.; Frias, H.; Salvador-Tasayco, E.; Leiva, Y.D.; Murga, N.L.; Yoplac, I.; Bardales, W. Effect of Sacha Inchi Oil (Plukenetia volubilis) on Productive Performance, Egg Quality and Blood Biochemistry of Laying Hens. J. Appl. Poult. Res. 2025, 34, 100537. [Google Scholar] [CrossRef]
- Cong, O.N.; Viet, D.N.; Kim, D.P.; Hornick, J.L. Effects of Dietary Sacha Inchi (Plukenetia volubilis L.) Oil and Medicinal Plant Powder Supplementation on Growth Performance, Carcass Traits, and Breast Meat Quality of Colored Broiler Chickens Raised in Vietnam. Trop. Anim. Health Prod. 2022, 54, 87. [Google Scholar] [CrossRef]
- Oanh, N.C.; Thu, C.T.T. Effect of Different Dietary Vegetable Oils on Egg Productivity and Quality in Laying Hens (in Vietnamese). Vietnam J. Agric. Sci. 2024, 22, 37–45. [Google Scholar]
- Tien, V.D.; Thai, V.H.; Tram, N.T.; Larondelle, Y. Evaluation and Characterization of Nutrient Value of Sacha Inchi Seeds Grown in Vietnam and the Residual Pressed Cake. In Proceedings of the 12th Regional Conference on Chemical Engineering, Ho Chi Minh City, Vietnam, 15 October 2019; Science and Technics Publishing House: Hanoi, Vietnam, 2019; pp. 214–218. [Google Scholar]
- Lu, W.-C.; Chiu, C.-S.; Chan, Y.-J.; Mulio, A.T.; Li, P.-H. New Perspectives on Different Sacha Inchi Seed Oil Extractions and Its Applications in the Food and Cosmetic Industries. Crit. Rev. Food Sci. Nutr. 2025, 65, 475–493. [Google Scholar] [CrossRef]
- D’Angelo, S.; Motti, M.L.; Meccariello, R. ω-3 and ω-6 Polyunsaturated Fatty Acids, Obesity and Cancer. Nutrients 2020, 12, 2751. [Google Scholar] [CrossRef] [PubMed]
- Silalahi, M. Sacha Inchi (Plukenetia Volubilis L.): Its Potential as Foodstuff and Traditional Medicine. GSC Biol. Pharm. Sci. 2022, 18, 213–218. [Google Scholar] [CrossRef]
- Cárdenas, D.M.; Gómez Rave, L.J.; Soto, J.A. Biological Activity of Sacha Inchi (Plukenetia Volubilis Linneo) and Potential Uses in Human Health: A Review. Food Technol. Biotechnol. 2021, 59, 253–266. [Google Scholar] [CrossRef]
- Nájera, P.R.A.; Lara, H.I.V.; Sampedro, S.E.L.; Patricio, H. Evaluation of Three Levels of Sacha Inchi Oil (Plukenetia Volubilis) in Broilers Chicken Diet. Rev. Caribeña Cienc. Soc. 2018, 5, 1–24. [Google Scholar]
- Sepúlveda, C.A.G.; Mejía, Á.M.G.; Álvarez, E.A.O. Apparent and True Digestibility of Palm Oil (Elaeis Guineensis), Chicken Oil, and Sacha Inchi Oil (Plukenetia volubilis) with Three Inclusion Levels in Diets for Broiler Chickens. GSC Biol. Pharm. Sci. 2023, 23, 153–162. [Google Scholar] [CrossRef]
- Yang, W.; Jia, Y.; Yang, Y.; Chen, H.; Zhou, L.; Wang, L.; Lv, X.; Zhao, Q.; Qin, Y.; Zhang, J.; et al. Sacha Inchi Oil Addition to Hen Diets and the Effects on Egg Yolk Flavor Based on Multiomics and Flavoromics Analysis. Food Chem. 2025, 475, 143251. [Google Scholar] [CrossRef]
- Mai, H.C.; Nguyen, D.C.; Nhan, N.T.; Bach, L.G. Physico-Chemical Properties of Sacha Inchi (Plukenetia volubilis L.) Seed Oil from Vietnam. Asian J. Chem. 2020, 32, 335–338. [Google Scholar] [CrossRef]
- Leeson, S.; Summers, J.D. Commercial Poultry Nutrition; Notting University Press: Nottingham, UK, 2009; Volume 3, ISBN 9781904761785. [Google Scholar]
- Phuong, L.V.; Le, N.T.T.; Doanh, B.H.; Tuan, B.Q.; Huyen, N.T. Supplement Red Yeast (Rhodotorula) and Alga (Sargassum sp.) in the Diet of Laying Hens to Improve Egg Yield and Egg Quality. Livest. Res. Rural. Dev. 2021, 33, 107. [Google Scholar]
- Lokaewmanee, K.; Yamauchi, K.; Okuda, N. Effects of Dietary Red Pepper on Egg Yolk Colour and Histological Intestinal Morphology in Laying Hens. J. Anim. Physiol. Anim. Nutr. 2013, 97, 986–995. [Google Scholar] [CrossRef]
- Eisen, E.J.; Bohren, B.B.; McKean, H.E. The Haugh Unit as a Measure of Egg Albumen Quality. Poult. Sci. 1962, 41, 1461–1468. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Le, V.H.; Nguyen, Q.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E. Omega–3 Long-Chain Fatty Acids in the Heart, Kidney, Liver and Plasma Metabolite Profiles of Australian Prime Lambs Supplemented with Pelleted Canola and Flaxseed Oils. Nutrients 2017, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Celebi, S.; Macit, M. Effects of Feeding Tallow and Plant Fat to Laying Hens on Performance, Egg Quality and Fatty Acid Composition of Egg Yolk. J. Appl. Anim. Res. 2009, 36, 49–52. [Google Scholar] [CrossRef]
- Gul, M.; Yoruk, M.A.; Aksu, T.; Kaya, A.; Kaynar, Ö. The Effect of Different Levels of Canola Oil on Performance, Egg Shell Quality and Fatty Acid Composition of Laying Hens. Int. J. Poult. Sci. 2012, 11, 769–776. [Google Scholar] [CrossRef]
- Baucells, M.D.; Crespo, N.; Barroeta, A.C.; Lopez-Ferrer, S.; Grashorn, M.A. Incorporation of Different Polyunsaturated Fatty Acids into Eggs. Poult. Sci. 2000, 79, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Küçükersan, K.; Yeşilbağ, D.; Küçükersan, S. Influence of Different Dietary Oil Sources on Performance and Cholesterol Content of Egg Yolk in Laying Hens. J. Biol. Environ. Sci. 2010, 4, 117–122. [Google Scholar]
- Chen, H.; Dansou, D.M.; Yu, Y.; Tang, C.; Zhao, Q.; Zhang, K.; Zhang, J. Effects of Dietary Different Supplemental Levels of Sacha Inchi Oil on Performance, Egg Quality, and Enrichments of Omega-3 Polyunsaturated Fatty Acids and Vitamin E in Egg Yolk of Laying Hens. Chin. J. Anim. Nutr. 2023, 35, 2990–3000. [Google Scholar] [CrossRef]
- Balevi, T.; Coskun, B. Effects of Some Dietary Oils on Performance and Fatty Acid Composition of Eggs in Layers. Rev. Med. Vet. 2000, 151, 847–854. [Google Scholar]
- Schreiner, M.; Hulan, H.W.; Razzazi-Fazeli, E.; Böhm, J.; Iben, C. Feeding Laying Hens Seal Blubber Oil: Effects on Egg Yolk Incorporation, Stereospecific Distribution of Omega-3 Fatty Acids, and Sensory Aspects. Poult. Sci. 2004, 83, 462–473. [Google Scholar] [CrossRef] [PubMed]
- Grobas, S.; Mendez, J.; De Blas, C.; Mateos, G. Laying Hen Productivity as Affected by Energy, Supplemental Fat, and Linoleic Acid Concentration of the Diet. Poult. Sci. 1999, 78, 1542–1551. [Google Scholar] [CrossRef] [PubMed]
- Neijat, M.; Ojekudo, O.; House, J.D. Effect of Flaxseed Oil and Microalgae DHA on the Production Performance, Fatty Acids and Total Lipids of Egg Yolk and Plasma in Laying Hens. Prostaglandins Leukot. Essent. Fatty Acids 2016, 115, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Ehr, I.J.; Persia, M.E.; Bobeck, E.A. Comparative Omega-3 Fatty Acid Enrichment of Egg Yolks from First-Cycle Laying Hens Fed Flaxseed Oil or Ground Flaxseed. Poult. Sci. 2017, 96, 1791–1799. [Google Scholar] [CrossRef]
- Batkowska, J.; Drabik, K.; Brodacki, A.; Czech, A.; Adamczuk, A. Fatty Acids Profile, Cholesterol Level and Quality of Table Eggs from Hens Fed with the Addition of Linseed and Soybean Oil. Food Chem. 2021, 334, 127612. [Google Scholar] [CrossRef]
- Xu, M.; Liu, L.; Fan, Z.; Niu, L.; Ning, W.; Cheng, H.; Li, M.; Huo, W.; Zhou, P.; Deng, H. Effect of Different Dietary Oil Sources on the Performance, Egg Quality and Antioxidant Capacity during the Late Laying Period. Poult. Sci. 2025, 104, 104615. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, J.; Li, F.; Zheng, J.; Xu, G. Effect of Oils in Feed on the Production Performance and Egg Quality of Laying Hens. Animals 2021, 11, 3482. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, H.K.; Yang, T.S.; Kang, H.K.; Kil, D.Y. Effect of Different Sources and Inclusion Levels of Dietary Fat on Productive Performance and Egg Quality in Laying Hens Raised under Hot Environmental Conditions. Asian-Australas. J. Anim. Sci. 2019, 32, 1407–1413. [Google Scholar] [CrossRef]
- Kim, J.; Barcus, M.; Magnuson, A.; Tao, L.; Lei, X.G. Supplemental Defatted Microalgae Affects Egg and Tissue Fatty Acid Composition Differently in Laying Hens Fed Diets Containing Corn and Flaxseed Oil. J. Appl. Poult. Res. 2016, 25, 528–538. [Google Scholar] [CrossRef]
- Mirshekar, R.; Dastar, B.; Shargh, S.M. Supplementing Flaxseed Oil for Long Periods Improved Carcass Quality and Breast Fatty Acid Profile in Japanese Quail. Animal 2021, 15, 100104. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, C.; Yu, X.; Guo, L.; Wan, X.; Xu, J.; Xianga, X.; Yanga, J.; Kang, J.; Deng, Q. Conversion of α-Linolenic Acid into n-3 Long-Chain Polyunsaturated Fatty Acids: Bioavailability and Dietary Regulation. Crit. Rev. Food Sci. Nutr. 2024, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Irawan, A.; Ningsih, N.; Rusli, R.K.; Suprayogi, W.P.S.; Akhirini, N.; Hadi, R.F.; Setyono, W.; Jayanegara, A. Supplementary n-3 Fatty Acids Sources on Performance and Formation of Omega-3 in Egg of Laying Hens: A Meta-Analysis. Poult. Sci. 2022, 101, 101566. [Google Scholar] [CrossRef] [PubMed]
Fatty Acids | SBO | SIO |
---|---|---|
Saturated fatty acids (SFA) | 33.00 | 8.83 |
Lauric acid (C12:0) | 0.08 | nd |
Myristic acid (C14:0) | 0.54 | 0.02 |
Pentadecanoic acid (C15:0) | 0.03 | nd |
Palmitic acid (C16:0) | 27.00 | 3.36 |
Margaric acid (C17:0) | 0.09 | 0.08 |
Stearic acid (C18:0) | 4.27 | 2.81 |
Arachidic acid (C20:0) | 0.54 | nd |
Behenic acid (C22:0) | 0.26 | 0.33 |
Lignoceric acid (C24:0) | 0.12 | 0.19 |
Unsaturated fatty acids (UFA) | 67.00 | 91.17 |
Monounsaturated fatty acids (MUFA) | 34.99 | 13.24 |
Palmitoleic acid (C16:1) | nd | 0.06 |
Oleic acid (C18:1n-9) | 34.82 | 12.81 |
Eicosenoic acid (C20:1) | 0.16 | 0.36 |
Polyunsaturated fatty acids (PUFA) | 32.01 | 77.94 |
Linoleic acid (C18:2n-6) | 29.92 | 39.34 |
Alpha linolenic acid (C18:3n-3, ALA) | 2.05 | 38.54 |
Eicosadienoic acid (C20:2n-6) | 0.02 | 0.05 |
Eicosapentaenoic acid (C20:5n-3, EPA) | 0.01 | nd |
n-3 PUFA | 2.07 | 38.54 |
n-6 PUFA | 29.94 | 39.39 |
n-6/n-3 PUFA | 14.46 | 1.02 |
Item | CONT |
---|---|
Ingredients (as-feed basis, %) | |
Maize | 52.40 |
Soybean meal | 23.50 |
Wheat | 10.00 |
Coarse limestone powder | 5.00 |
Fine limestone powder | 4.00 |
Soybean oil (SBO) | 1.50 |
Meat and bone meal (MBM) | 1.00 |
Monocalcium phosphate (MCP) | 1.22 |
Salt (NaCl) | 0.28 |
Vitamin Premix 1 | 0.25 |
Mineral Premix 2 | 0.23 |
Sodium Bicarbonate (NaHCO3) | 0.26 |
L-Lysine | 0.01 |
DL-Methionine | 0.23 |
L-Threonine | 0.06 |
Choline Chloride 60% | 0.06 |
Chemical composition (% DM) | |
Dry matter (DM, %) | 89.5 |
Crude protein | 16.5 |
Crude lipid | 3.50 |
Total ash | 14.02 |
Crude fibre | 3.20 |
Ca | 4.20 |
P | 0.65 |
Lysine | 0.90 |
Methionine | 0.70 |
Methionine + Cystine | 0.60 |
Metabolised energy (MJ/kg) | 10.73 |
Item | CONT | SI15 | SI30 | SI45 | SEM | Linear | Quadratic |
---|---|---|---|---|---|---|---|
Live body weight (LBW, g; n = 48) | |||||||
Day 0 | 1931 | 1894 | 1908 | 1907 | 45.24 | 0.775 | 0.705 |
Day 56 | 1967 | 1968 | 1942 | 1946 | 46.79 | 0.682 | 0.974 |
Average daily feed intake (ADFI, g/day; n = 12) | |||||||
Day 1–7 | 119.7 a | 118.1 b | 118.4 ab | 117.4 b | 0.39 | 0.001 | 0.368 |
Day 8–14 | 119.4 a | 117.8 ab | 117.4 ab | 116.3 b | 0.57 | 0.001 | 0.628 |
Day 15–21 | 119.8 a | 117.5 ab | 116.5 bc | 114.6 c | 0.71 | 0.001 | 0.706 |
Day 22–28 | 119.7 a | 117.3 a | 115.6 b | 114.8 b | 0.82 | 0.001 | 0.330 |
Day 29–35 | 119.3 a | 116.7 ab | 115.1 b | 115.2 b | 0.96 | 0.002 | 0.179 |
Day 36–42 | 119.0 a | 116.7 ab | 115.3 b | 115.2 b | 0.78 | 0.001 | 0.148 |
Day 43–49 | 117.0 | 114.6 | 114.5 | 115.1 | 0.99 | 0.186 | 0.140 |
Day 50–56 | 117.2 | 115.5 | 114.7 | 114.7 | 1.21 | 0.127 | 0.464 |
Overall 1–56 | 118.9 a | 116.7 b | 115.9 bc | 115.4 c | 0.34 | 0.001 | 0.008 |
Feed consumption (FC, kg feed per 10 eggs; n = 12) | |||||||
Day 1–7 | 1.30 | 1.31 | 1.32 | 1.32 | 0.02 | 0.592 | 0.721 |
Day 8–14 | 1.30 | 1.30 | 1.30 | 1.29 | 0.02 | 0.818 | 0.891 |
Day 15–21 | 1.30 | 1.28 | 1.28 | 1.27 | 0.02 | 0.359 | 0.819 |
Day 22–28 | 1.29 | 1.29 | 1.27 | 1.27 | 0.02 | 0.258 | 0.900 |
Day 29–35 | 1.29 | 1.28 | 1.27 | 1.27 | 0.02 | 0.248 | 0.728 |
Day 36–42 | 1.30 | 1.29 | 1.28 | 1.28 | 0.02 | 0.451 | 0.842 |
Day 43–49 | 1.31 | 1.27 | 1.27 | 1.27 | 0.02 | 0.172 | 0.294 |
Day 50–56 | 1.30 | 1.28 | 1.28 | 1.27 | 0.02 | 0.316 | 0.694 |
Overall 1–56 | 1.30 | 1.29 | 1.28 | 1.28 | 0.01 | 0.224 | 0.569 |
Item | CONT | SI15 | SI30 | SI45 | SEM | Linear | Quadratic |
---|---|---|---|---|---|---|---|
Egg production rate (%; n = 48) | |||||||
Day 1–7 | 92.41 | 90.63 | 90.18 | 89.73 | 1.71 | 0.273 | 0.697 |
Day 8–14 | 91.96 | 91.07 | 90.63 | 90.19 | 1.52 | 0.398 | 0.884 |
Day 15–21 | 92.41 | 92.41 | 91.07 | 90.63 | 1.69 | 0.382 | 0.895 |
Day 22–28 | 92.85 | 91.07 | 91.52 | 90.63 | 1.49 | 0.355 | 0.767 |
Day 29–35 | 92.41 | 91.52 | 90.63 | 91.07 | 1.58 | 0.490 | 0.673 |
Day 36–42 | 91.96 | 90.63 | 90.18 | 90.18 | 1.66 | 0.437 | 0.687 |
Day 43–49 | 89.73 | 90.18 | 90.18 | 90.63 | 1.59 | 0.709 | 0.990 |
Day 50–56 | 90.63 | 90.18 | 89.73 | 90.18 | 1.49 | 0.790 | 0.766 |
Egg weight (g; n = 36) | |||||||
Day 7 | 61.80 | 62.24 | 63.27 | 63.57 | 0.58 | 0.123 | 0.900 |
Day 14 | 61.76 | 62.34 | 63.61 | 64.08 | 0.90 | 0.244 | 0.953 |
Day 21 | 62.22 | 63.05 | 63.96 | 64.11 | 0.83 | 0.338 | 0.682 |
Day 28 | 62.05 | 63.19 | 63.84 | 64.26 | 0.70 | 0.142 | 0.608 |
Day 35 | 62.48 | 63.71 | 64.13 | 64.26 | 0.79 | 0.371 | 0.493 |
Day 42 | 62.50 | 63.69 | 64.01 | 64.25 | 0.80 | 0.432 | 0.555 |
Day 49 | 62.35 | 63.90 | 64.35 | 64.50 | 0.78 | 0.194 | 0.374 |
Day 56 | 62.79 | 63.69 | 64.48 | 64.79 | 0.77 | 0.263 | 0.705 |
Item | CONT | SI15 | SI30 | SI45 | SEM | Linear | Quadratic |
---|---|---|---|---|---|---|---|
On day 28 of the experiment | |||||||
Egg weight (g) | 62.70 | 63.52 | 64.03 | 64.45 | 1.27 | 0.316 | 0.878 |
Shape index | 1.30 | 1.29 | 1.30 | 1.30 | 0.01 | 0.788 | 0.797 |
Yolk colour | 12.25 | 12.50 | 12.58 | 12.58 | 0.19 | 0.227 | 0.530 |
Relative yolk weight (g) | 17.13 b | 17.64 ab | 17.99 ab | 18.58 a | 0.40 | 0.013 | 0.926 |
Relative albumen weight (g) | 37.29 | 37.65 | 37.73 | 37.41 | 1.12 | 0.932 | 0.765 |
Relative shell weight (g) | 8.28 | 8.23 | 8.31 | 8.46 | 0.19 | 0.484 | 0.592 |
Yolk ratio (%) | 27.43 | 27.87 | 28.10 | 28.84 | 0.62 | 0.119 | 0.809 |
Albumen ratio (%) | 59.33 | 59.12 | 58.89 | 58.02 | 0.80 | 0.253 | 0.683 |
Shell ratio (%) | 13.24 | 13.01 | 13.01 | 13.14 | 0.32 | 0.832 | 0.589 |
Shell thickness (mm) | 0.61 | 0.63 | 0.62 | 0.62 | 0.01 | 0.655 | 0.247 |
Haugh units | 88.45 | 87.48 | 88.21 | 90.90 | 1.70 | 0.294 | 0.289 |
On day 56 of the experiment | |||||||
Egg weight (g) | 62.84 | 63.78 | 64.65 | 65.03 | 1.41 | 0.247 | 0.847 |
Shape index | 1.28 | 1.30 | 1.29 | 1.28 | 0.01 | 0.748 | 0.089 |
Yolk colour | 12.42 | 12.67 | 12.67 | 12.75 | 0.22 | 0.306 | 0.701 |
Relative yolk weight (g) | 17.29 b | 18.49 ab | 18.93 a | 19.41 a | 0.43 | 0.001 | 0.412 |
Relative albumen weight (g) | 37.93 | 37.50 | 37.77 | 37.58 | 1.47 | 0.907 | 0.936 |
Relative shell weight (g) | 7.63 | 7.78 | 7.96 | 8.04 | 0.24 | 0.185 | 0.875 |
Yolk ratio (%) | 27.63 | 29.15 | 29.55 | 29.99 | 1.02 | 0.111 | 0.603 |
Albumen ratio (%) | 60.20 | 58.64 | 58.09 | 57.64 | 1.16 | 0.123 | 0.641 |
Shell ratio (%) | 12.17 | 12.21 | 12.36 | 12.37 | 0.35 | 0.632 | 0.974 |
Shell thickness (mm) | 0.58 | 0.59 | 0.61 | 0.60 | 0.01 | 0.242 | 0.621 |
Haugh units | 89.40 | 89.13 | 89.45 | 89.47 | 1.24 | 0.927 | 0.905 |
Item | CONT | SI15 | SI30 | SI45 | SEM | Linear | Quadratic |
---|---|---|---|---|---|---|---|
On day 28 of the experiment | |||||||
Saturated fatty acids (SFA) | 31.76 a | 28.30 b | 28.43 b | 28.00 b | 0.24 | 0.001 | 0.001 |
Lauric acid (C12:0) | nd | 0.02 | 0.04 | 0.11 | 0.03 | na | na |
Myristic acid (C14:0) | 0.52 a | 0.11 b | 0.36 a | 0.40 a | 0.03 | 0.545 | 0.001 |
Pentadecanoic acid (C15:0) | 0.06 | 0.05 | 0.04 | 0.05 | 0.01 | 0.271 | 0.076 |
Palmitic acid (C16:0) | 24.98 a | 22.55 b | 21.78 bc | 21.15 c | 0.22 | 0.001 | 0.001 |
Margaric acid (C17:0) | 0.16 ab | 0.14 bc | 0.13 c | 0.20 a | 0.01 | 0.017 | 0.001 |
Stearic acid (C18:0) | 6.01 a | 5.41 b | 6.07 a | 6.06 a | 0.09 | 0.001 | 0.007 |
Arachidic acid (C20:0) | nd | nd | nd | 0.01 | 0.01 | na | na |
Lignoceric acid (C24:0) | 0.01 | nd | nd | nd | 0.01 | na | na |
Unsaturated fatty acids (UFA) | 68.24 b | 71.70 a | 71.57 a | 72.00 a | 0.24 | 0.001 | 0.001 |
Monounsaturated fatty acids (MUFA) | 45.38 a | 43.53 b | 38.49 c | 37.79 c | 0.35 | 0.001 | 0.146 |
Myristoleic acid (C14:1) | 0.08 a | 0.07 ab | 0.06 ab | 0.05 b | 0.01 | 0.008 | 0.611 |
Palmitoleic acid (C16:1) | 2.61 a | 2.69 a | 2.58 ab | 2.35 b | 0.06 | 0.007 | 0.027 |
Trans-elaidic acid (C18:1) | 0.11 a | 0.09 ab | 0.08 ab | 0.07 b | 0.01 | 0.004 | 0.507 |
Oleic acid (C18:1n-9) | 42.35 a | 40.49 b | 35.61 c | 35.17 c | 0.37 | 0.001 | 0.068 |
Eicosenoic acid (C20:1) | 0.23 a | 0.18 ab | 0.16 b | 0.15 b | 0.01 | 0.001 | 0.224 |
Polyunsaturated fatty acids (PUFA) | 22.86 c | 28.18 b | 33.07 a | 34.21 a | 0.44 | 0.001 | 0.001 |
Linoleic acid (C18:2n-6) | 20.97 b | 21.39 b | 25.19 a | 25.08 a | 0.48 | 0.001 | 0.589 |
Alpha linolenic acid (C18:3n-3, ALA) | 0.68 d | 5.64 c | 6.59 b | 7.98 d | 0.24 | 0.001 | 0.001 |
Beta linolenic acid (C18:3n-6) | 0.12 | 0.09 | 0.10 | 0.10 | 0.01 | 0.144 | 0.055 |
Eicosadienoic acid (C20:2n-6) | 0.17 | 0.13 | 0.15 | 0.17 | 0.01 | 0.495 | 0.008 |
Eicosatrienoic acid (C20:3n-6) | 0.11 ab | 0.10 b | 0.12 ab | 0.14 a | 0.01 | 0.011 | 0.125 |
Eicosapentaenoic acid (C20:5n-3, EPA) | 0.00 b | 0.01 b | 0.04 a | 0.04 a | 0.01 | 0.001 | 0.736 |
Docosahexaenoic acid (C22:6n-3, DHA) | 0.09 b | 0.28 a | 0.30 a | 0.25 a | 0.01 | 0.001 | 0.001 |
n-3 PUFA | 0.79 d | 5.94 c | 6.96 b | 8.29 a | 0.36 | 0.001 | 0.001 |
n-6 PUFA | 21.87 b | 22.06 b | 25.96 a | 25.75 a | 0.49 | 0.001 | 0.693 |
n-6/n-3 PUFA | 28.28 a | 3.80 b | 3.74 b | 3.12 b | 1.08 | 0.001 | 0.001 |
On day 56 of the experiment | |||||||
Saturated fatty acids (SFA) | 30.66 a | 28.14 b | 28.10 b | 27.78 b | 0.38 | 0.001 | 0.001 |
Lauric acid (C12:0) | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 | 0.078 | 0.177 |
Myristic acid (C14:0) | 0.46 a | 0.28 b | 0.37 ab | 0.38 ab | 0.03 | 0.221 | 0.007 |
Pentadecanoic acid (C15:0) | 0.05 | 0.06 | 0.04 | 0.06 | 0.01 | 0.978 | 0.406 |
Palmitic acid (C16:0) | 23.66 a | 22.33 b | 21.34 b | 21.03 c | 0.29 | 0.001 | 0.096 |
Margaric acid (C17:0) | 0.18 ab | 0.15 ab | 0.14 b | 0.19 a | 0.01 | 0.043 | 0.008 |
Stearic acid (C18:0) | 6.26 a | 5.29 b | 6.17 a | 6.11 a | 0.13 | 0.001 | 0.002 |
Arachidic acid (C20:0) | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.163 | 0.126 |
Unsaturated fatty acids (UFA) | 69.34 b | 71.86 a | 71.91 a | 72.22 a | 0.27 | 0.001 | 0.001 |
Monounsaturated fatty acids (MUFA) | 45.04 a | 42.42 b | 37.68 c | 37.38 c | 0.28 | 0.001 | 0.001 |
Myristoleic acid (C14:1) | 0.07 | 0.07 | 0.05 | 0.05 | 0.01 | 0.006 | 0.853 |
Palmitoleic acid (C16:1) | 2.47 ab | 2.63 a | 2.49 ab | 2.33 b | 0.06 | 0.092 | 0.035 |
Trans-elaidic acid (C18:1) | 0.12 | 0.13 | 0.10 | 0.10 | 0.01 | 0.004 | 0.748 |
Oleic acid (C18:1n-9) | 42.08 a | 39.38 b | 34.89 c | 34.74 c | 0.31 | 0.001 | 0.001 |
Eicosenoic acid (C20:1) | 0.29 a | 0.20 ab | 0.16 b | 0.17 b | 0.01 | 0.001 | 0.038 |
Polyunsaturated fatty acids (PUFA) | 24.29 c | 29.44 b | 34.22 a | 34.85 a | 0.40 | 0.001 | 0.001 |
Linoleic acid (C18:2n-6) | 22.23 b | 21.92 b | 25.47 a | 24.80 a | 0.43 | 0.001 | 0.687 |
Alpha linolenic acid (C18:3n-3, ALA) | 0.75 d | 6.19 c | 7.34 b | 8.79 a | 0.21 | 0.001 | 0.001 |
Beta linolenic acid (C18:3n-6) | 0.13 | 0.11 | 0.11 | 0.11 | 0.01 | 0.161 | 0.109 |
Eicosadienoic acid (C20:2n-6) | 0.18 | 0.18 | 0.16 | 0.20 | 0.01 | 0.498 | 0.037 |
Eicosatrienoic acid (C20:3n-6) | 0.13 | 0.12 | 0.14 | 0.13 | 0.01 | 0.686 | 0.681 |
Eicosapentaenoic acid (C20:5n-3, EPA) | 0.01 b | 0.01 b | 0.05 a | 0.05 a | 0.01 | 0.012 | 0.001 |
Docosahexaenoic acid (C22:6n-3, DHA) | 0.12 b | 0.35 a | 0.39 a | 0.34 a | 0.02 | 0.001 | 0.001 |
n-3 PUFA | 0.87 d | 6.61 c | 7.78 b | 9.13 a | 0.21 | 0.001 | 0.001 |
n-6 PUFA | 23.22 b | 22.68 b | 26.31 a | 25.55 a | 0.41 | 0.001 | 0.801 |
n-6/n-3 PUFA | 26.95 a | 3.48 b | 3.38 b | 2.81 b | 0.58 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oanh, N.C.; Thu, C.T.T.; Hornick, J.-L.; Nguyen, D.V. Supplementing Sacha Inchi (Plukenetia volubilis) Oil in Laying Hen Diets: Influences on Production Performance, Egg Quality and Fatty Acid Profile. Vet. Sci. 2025, 12, 953. https://doi.org/10.3390/vetsci12100953
Oanh NC, Thu CTT, Hornick J-L, Nguyen DV. Supplementing Sacha Inchi (Plukenetia volubilis) Oil in Laying Hen Diets: Influences on Production Performance, Egg Quality and Fatty Acid Profile. Veterinary Sciences. 2025; 12(10):953. https://doi.org/10.3390/vetsci12100953
Chicago/Turabian StyleOanh, Nguyen Cong, Cu Thi Thien Thu, Jean-Luc Hornick, and Don Viet Nguyen. 2025. "Supplementing Sacha Inchi (Plukenetia volubilis) Oil in Laying Hen Diets: Influences on Production Performance, Egg Quality and Fatty Acid Profile" Veterinary Sciences 12, no. 10: 953. https://doi.org/10.3390/vetsci12100953
APA StyleOanh, N. C., Thu, C. T. T., Hornick, J.-L., & Nguyen, D. V. (2025). Supplementing Sacha Inchi (Plukenetia volubilis) Oil in Laying Hen Diets: Influences on Production Performance, Egg Quality and Fatty Acid Profile. Veterinary Sciences, 12(10), 953. https://doi.org/10.3390/vetsci12100953