Impact of Chlorella vulgaris Intake Levels on Performance Parameters and Blood Health Markers in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Impact of Cumulative Chlorella vulgaris Intake Levels on the Growth Performance of Broilers
Initial Age and Weight | Alga Level (% Feed) and Duration of Trial (Days) 1 | Cumulative Alga Intake (g/bird) 2 | Growth Performance | Reference | |||
---|---|---|---|---|---|---|---|
Final Body Weight (g) | Cumulative Body Weight Gain (g) | Body Weight Gain (g/d) | Feed Conversion Ratio | ||||
39.43 g, 1 d-old 3 | 0.50%, 9 d | 0.800 | 190.3 | 150.9 | 16.8 | 1.12 | [26] |
45.1 g, 1 d-old 3 | 0.05%, 34 d | 1.40 | 1533 | 1488 | 43.8 | 1.88 | [27] |
1 d-old 3 | 0.07%, 41 d | 2.95 | - | 2723.1 | 66.4 | 1.55 | [30] |
72.56 g, 4 d-old 3,4 | 0.10%, 31 d | 3.52 | 1990 | 1916 | 61.8 | 1.84 | [28] |
45.1 g, 1 d-old 3 | 0.15%, 34 d | 4.27 | 1619 | 1574 | 46.3 | 1.81 | [27] |
40.03 g, 1 d-old | 0.10%, 41 d | 4.35 | 2501.3 | 2461.3 | 60 | 1.77 | [31] |
1 d-old 3 | 0.14%, 41 d | 5.94 | - | 2755 | 67.2 | 1.54 | [30] |
41.8 g, 1 d-old | 0.20%, 41 d | 6.71 | 2001 | 1959 | 47.8 | 1.713 | [29] |
40.03 g, 1 d-old | 0.20%, 41 d | 8.73 | 2520.8 | 2480.8 | 60.5 | 1.76 | [31] |
1 d-old 3 | 0.21%, 41 d | 9.22 | - | 2850.8 | 69.5 | 1.54 | [30] |
41.8 g, 1 d-old | 0.40%, 41 d | 13.0 | 2077 | 2035 | 49.6 | 1.602 | [29] |
45.1 g, 1 d-old 3 | 0.50%, 34 d | 14.1 | 1643 | 1598 | 47 | 1.78 | [27] |
41.8 g, 1 d-old | 0.60%, 41 d | 20.0 | 2166 | 2124 | 51.8 | 1.571 | [29] |
1 d-old 3 | 1.0%, 34 d | 24.4 | - | 1603 | 47.1 | 1.52 | [32] |
1 d-old 3,5 | 1.0%, 34 d | 25.2 | - | 1647 | 48.4 | 1.53 | [32] |
47.1 g, 1 d-old 3 | 0.80%, 34 d | 28.9 | 2606.3 | 2559 | 73.1 | 1.45 | [33] |
788 g, 21 d-old 3 | 10%, 14 d | 176 | 1928 | 1140 | 81.4 | 1.54 | [15] |
107 g, 5 d-old 3 | 10%, 34 d | 401 | 2819 | 2712 | 77.49 | 1.5 | [6] |
109 g, 5 d-old 3 | 15%, 34 d | 561 | 2587 | 2478 | 70.8 | 1.53 | [6] |
106 g, 5 d-old 4 | 20%, 34 d | 718 | 2342 | 2236 | 63.87 | 1.61 | [6] |
3. Impact of Cumulative Chlorella vulgaris Intake Levels on Plasma Metabolites and Immunoglobulin Levels in Broilers
4. Safety Precautions and Regulatory Aspects
5. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Initial Age and Weight | Alga Level (% Feed) and Duration of Trial (days) 1 | Cumulative Alga Intake (g/bird) 2 | Plasma Metabolites | Phitohemoglotenine-P Response | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|
Total Lipid (mg/dL) | LDL (mg/dL) | Glucose (mg/dL) | ALT (U/L) | SOD (U/mL) | MDA (nmol/mL) | |||||
45.1 g, 1 d-old 3 | 0.05%, 34 d | 1.40 | 314.6 | - | - | - | - | - | - | [27] |
1 d-old 3 | 0.07%, 41 d | 2.95 | - | - | - | - | - | - | 1.39 | [30] |
45.1 g, 1 d-old 3 | 0.15%, 34 d | 4.27 | 308.4 | - | - | - | - | - | - | [27] |
1 d-old 3 | 0.14%, 41 d | 5.94 | - | - | - | - | - | - | 1.51 | [30] |
41.8 g, 1 d-old | 0.20%, 41 d | 6.71 | - | 113.4 | 220.0 | 8.333 | 381.7 | 59.26 | - | [29] |
1 d-old 3 | 0.21%, 41 d | 9.22 | - | - | - | - | - | 1.54 | [30] | |
41.8 g, 1 d-old | 0.40%, 41 d | 13.0 | - | 90.00 | 208.3 | 7.000 | 434.5 | 43.66 | - | [29] |
45.1 g, 1 d-old 3 | 0.50%, 34 d | 14.1 | 252.0 | - | - | - | - | - | - | [27] |
41.8 g, 1 d-old | 0.60%, 41 d | 20.0 | - | 125.5 | 231.6 | 8.333 | 475.6 | 42.66 | - | [29] |
788.3 g, 21 d-old 3 | 10%, 14 d | 175 | 350 | 15 | 246.3 | 4.60 | - | - | - | [16] |
Initial Age and Weight | Alga Level (% feed) and Duration of Trial (days) 1 | Cumulative Alga Intake (g/bird) 2 | Blood Leucocytes | Hb (×103/µL) | RBC (×106/µL) | PCV (%) | MCV (fL) | MCH (pg) | MCHC (%) | PL (×103/µL) | Reference | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WBC (×103/µL) | HE (×103/µL) | LY (×103/µL) | MO (×103/µL) | EO (×103/µL) | BA (×103/µL) | |||||||||||
41.8 g, 1 d-old | 0.20%, 41 d | 6.71 | 19.33 | 19.33 | 74.66 | 5.666 | 0.333 | - | 13.53 | 4.066 | 38.36 | 86.53 | 28.20 | 34.20 | 429.3 | [29] |
41.8 g, 1 d-old | 0.40%, 41 d | 13.0 | 22.66 | 14.66 | 83.33 | 2.000 | 0.000 | - | 15.40 | 5.400 | 44.53 | 85.76 | 28.93 | 35.06 | 403.3 | [29] |
41.8 g, 1 d-old | 0.60%, 41 d | 20.0 | 20.66 | 16.66 | 79.00 | 2.666 | 1.666 | - | 13.93 | 4.933 | 40.46 | 87.50 | 28.56 | 32.73 | 413.0 | [29] |
1 d-old 3 | 1.0%, 34 d | 24.4 | 23.81 | 6.6 | 13.5 | 2.69 | 0.82 | 0.19 | - | - | - | - | - | - | - | [32] |
1 d-old 3,4 | 1.0%, 34 d | 25.2 | 31.65 | 8.92 | 17.93 | 3.39 | 1.10 | 0.30 | - | - | - | - | - | - | - | [32] |
References
- United Nations. Department of Economic and Social Affairs, Population Division. World Population Prospects 2022: Summary of Results. 2022. UN DESA/POP/2022/TR/NO. 3. Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf (accessed on 28 May 2024).
- Abdel-Wareth, A.A.A.; Williams, A.N.; Salahuddin, M.; Gadekar, S.; Lohakare, J. Algae as an alternative source of protein in poultry diets for sustainable production and disease resistance: Present status and future considerations. Front. Vet. Sci. 2024, 11, 1382163. [Google Scholar] [CrossRef] [PubMed]
- Chaves, A.A.M.; Martins, C.F.; Carvalho, D.F.P.; Ribeiro, D.M.; Lordelo, M.; Freire, J.P.B.; Almeida, A.M. A viewpoint on the use of microalgae as an alternative feedstuff in the context of pig and poultry feeding-a special emphasis on tropical regions. Trop. Anim. Health Prod. 2021, 53, 396. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Chlorella vulgaris safety assessment. EFSA J. 2021. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/ (accessed on 26 May 2024).
- Allmicroalgae. Quality control in the production of Chlorella vulgaris. 2021. Available online: https://allmicroalgae.com/quality-control (accessed on 26 May 2024).
- Cabrol, M.B.; Martins, J.C.; Malhão, L.P.; Alves, S.P.; Bessa, R.J.; Almeida, A.M.; Raymundo, A.; Lordelo, M. Partial replacement of soybean meal with Chlorella vulgaris in broiler diets influences performance and improves breast meat quality and fatty acid composition. Poult. Sci. 2022, 101, 101955. [Google Scholar] [CrossRef] [PubMed]
- Cabrol, M.B.; Martins, J.C.; Malhão, L.P.; Alfaia, C.M.; Prates, J.A.M.; Almeida, A.M.; Lordelo, M.; Raymundo, A. Digestibility of Meat Mineral and Proteins from Broilers Fed with Graded Levels of Chlorella vulgaris. Foods 2022, 11, 1345. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.M.; Andrade, C.J.; Dias, M.; Nascimento, C.A.O.; Mendes, M.A. Chlorella and spirulina microalgae as sources of functional foods, nutraceuticals, and food supplements; an overview. MOJ Food Process. Technol. 2018, 6, 45–58. [Google Scholar] [CrossRef]
- Maurício, T.; Couto, D.; Lopes, D.; Conde, T.; Pais, R.; Batista, J.; Melo, T.; Pinho, M.; Moreira, A.S.P.; Trovão, M.; et al. Differences and Similarities in Lipid Composition, Nutritional Value, and Bioactive Potential of Four Edible Chlorella vulgaris Strains. Foods 2023, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Lum, K.K.; Kim, J.; Lei, X.G. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J. Anim. Sci. Biotechnol. 2013, 4, 53. [Google Scholar] [CrossRef]
- Ru, I.T.K.; Sung, Y.Y.; Jusoh, M.; Wahid, M.E.A.; Nagappan, T. Chlorella vulgaris: A perspective on its potential for combining high biomass with high-value bioproducts. Appl. Phycol. 2020, 1, 2–11. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Coudert, E.; Baéza, E.; Berri, C. Use of algae in poultry production: A review. J. World’s Poult. Sci. 2020, 76, 767–786. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Pestana, J.M.; Rodrigues, M.; Coelho, D.; Aires, M.J.; Ribeiro, D.M.; Major, V.T.; Martins, C.F.; Santos, H.; Lopes, P.A.; et al. Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens. Poult. Sci. 2021, 100, 926–937. [Google Scholar] [CrossRef]
- Coelho, D.F.M.; Alfaia, C.M.R.P.M.; Assunção, J.M.P.; Costa, M.; Pinto, R.M.A.; Fontes, C.M.G.A.; Lordelo, M.M.; Prates, J.A.M. Impact of dietary Chlorella vulgaris and carbohydrate-active enzymes incorporation on plasma metabolites and liver lipid composition of broilers. BMC Vet. Res. 2021, 17, 229. [Google Scholar] [CrossRef] [PubMed]
- Korczyński, M.; Witkowska, Z.; Opaliński, S.; Świniarska, M.; Dobrzański, Z. Algae extract as a potential feed additive. In Marine Algae Extracts: Processes, Products, Applications; Kim, S.K., Chojnacka, K., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 603–626. [Google Scholar] [CrossRef]
- Coronado-Reyes, J.A.; Salazar-Torres, J.A.; Juárez-Campos, B.; González-Hernández, J.C. Chlorella Vulgaris, a Microalgae Important to Be Used in Biotechnology: A Review. Food Sci. Technol. 2022, 42, e37320. [Google Scholar] [CrossRef]
- Pantami, H.A.; Ahamad Bustamam, M.S.; Lee, S.Y.; Ismail, I.S.; Mohd Faudzi, S.M.; Nakakuni, M.; Shaari, K. Comprehensive GCMS and LC-MS/MS Metabolite Profiling of Chlorella vulgaris. Mar. Drugs 2020, 18, 367. [Google Scholar] [CrossRef] [PubMed]
- Coulombier, N.; Jauffrais, T.; Lebouvier, N. Antioxidant Compounds from Microalgae: A Review. Mar. Drugs 2021, 19, 549. [Google Scholar] [CrossRef] [PubMed]
- Agarwalla, A.; Komandur, J.; Mohanty, K. Current trends in the pretreatment of microalgal biomass for efficient and enhanced bioenergy production. Bioresour. Technol. 2023, 369, 128330. [Google Scholar] [CrossRef] [PubMed]
- Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M.S.L. Microalgae disruption techniques for product recovery: Influence of cell wall composition. J. Appl. Phycol. 2019, 31, 61–88. [Google Scholar] [CrossRef]
- Costa, M.M.; Spínola, M.P.; Alves, V.D.; Prates, J.A.M. Improving protein extraction and peptide production from Chlorella vulgaris using combined mechanical/physical and enzymatic pre-treatments. Heliyon 2024, 10, i32704. [Google Scholar] [CrossRef]
- Van Nerom, S.; Buyse, K.; Van Immerseel, F.; Robbens, J.; Delezie, E. Pulsed electric field (PEF) processing of microalga Chlorella vulgaris and its digestibility in broiler feed. Poult. Sci. 2024, 103, 103721. [Google Scholar] [CrossRef]
- Spínola, M.P.; Costa, M.M.; Prates, J.A.M. Enhancing Digestibility of Chlorella vulgaris Biomass in Monogastric Diets: Strategies and Insights. Animals 2023, 13, 1017. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Yoon, J.H.; An, S.H.; Cho, I.H.; Lee, C.W.; Jeon, Y.J.; Joo, S.S.; Ban, B.C.; Lee, J.Y.; Jung, H.J.; et al. Intestinal Immune Cell Populations, Barrier Function, and Microbiomes in Broilers Fed a Diet Supplemented with Chlorella vulgaris. Animals 2023, 13, 2380. [Google Scholar] [CrossRef] [PubMed]
- An, B.-K.; Kim, K.-E.; Jeon, J.-Y.; Lee, K.W. Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. SpringerPlus 2016, 5, 718. [Google Scholar] [CrossRef] [PubMed]
- El-Bahr, S.; Shousha, S.; Shehab, A.; Khattab, W.; Ahmed-Farid, O.; Sabike, I.; El-Garhy, O.; Albokhadaim, I.; Albosadah, K. Effect of dietary microalgae on growth performance, profiles of amino and fatty acids, antioxidant status, and meat quality of broiler chickens. Animals 2020, 10, 761. [Google Scholar] [CrossRef] [PubMed]
- El-Gogary, M.; Dorra, T.; Megahed, A. Evaluation of the Role of Spirulina platensis and Chlorella vulgaris on Growth Performance, Meat Quality and Blood Parameters of Broiler Chickens. J. Anim. Poult. Prod. 2023, 14, 149–156. [Google Scholar] [CrossRef]
- Rezvani, M.; Com, M.R.; Shivazad, M.; Zaghari, M. A survey on Chlorella vulgaris effects on performance and cellular immunity in broilers. Int. J. Agric. Sci. 2012, 3, 9–15. [Google Scholar]
- Abou-Zeid, A.E.; El-Damarawy, S.Z.; Mariey, Y.A.; El-Mansy, M.M. Effect of using Spirulina platensis and/or Chlorella vulgaris algae as feed additives on productive performance of broiler chicks. J. Anim. Poult. Prod. 2015, 6, 623–634. [Google Scholar] [CrossRef]
- Kang, H.K.; Salim, H.M.; Akter, N.; Kim, D.W.; Kim, J.H.; Bang, H.T.; Kim, M.J.; Na, J.C.; Hwangbo, J.; Choi, H.C.; et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J. Appl. Poult. Res. 2013, 22, 100–108. [Google Scholar] [CrossRef]
- Roques, S.; Koopmans, S.J.; Mens, A.; van Harn, J.; van Krimpen, M.; Kar, S.K. Effect of Feeding 0.8% Dried Powdered Chlorella vulgaris Biomass on Growth Performance, Immune Response, and Intestinal Morphology during Grower Phase in Broiler Chickens. Animals 2022, 12, 1114. [Google Scholar] [CrossRef]
- Takyar, M.B.T.; Khajavi, S.H.; Safari, R. Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. LWT—Food Sci. Technol. 2019, 100, 244–249. [Google Scholar] [CrossRef]
Variable | Best Model Type | R-Square | Degrees of Freedom | p-Value | Model Equation |
---|---|---|---|---|---|
Final body weight (g) | Sigmoid | 0.616 | 18 | <0.001 | y = 7.811/(1 + e−1.550 × (x − x0)) |
Cumulative body weight gain (g) | Sigmoid | 0.627 | 18 | <0.001 | y = 7.830/(1 + e−1.685 × (x − x0)) |
Body weight gain (g/d) | Sigmoid | 0.639 | 18 | <0.001 | y = 4.185/(1 + e−0.905 × (x − x0)) |
Feed conversion ratio | Sigmoid | 0.131 | 18 | 0.117 | y = 0.496/(1 + e−0.138 × (x − x0)) |
Initial Age and Weight | Alga Level (% Feed) and Duration of Trial (Days) 1 | Cumulative Alga Intake (g/bird) 2 | Plasma Metabolites | Plasma Immunoglobulins | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total Protein (g/dL) | Triacylglycerols (mg/dL) | Cholesterol (mg/dL) | HDL (mg/dL) | Albumin (g/dL) | AST (U/L) | IgA (µg/mL) | IgM (µg/mL) | IgG (µg/mL) | ||||
45.1 g, 1 d-old 3 | 0.05%, 34 d | 1.40 | 2.77 | 30.7 | 120.3 | 97.1 | 1.16 | 236.6 | 721 | 480 | 3814 | [27] |
45.1 g, 1 d-old 3 | 0.15%, 34 d | 4.27 | 2.78 | 34.4 | 120.1 | 93.2 | 1.11 | 237.0 | 710 | 501 | 3563 | [27] |
41.8 g, 1 d-old | 0.20%, 41 d | 6.71 | 5.050 | 79.66 | 161.0 | 31.66 | 2.90 | 132.6 | 290.3 | 431.0 | 4065 | [29] |
41.8 g, 1 d-old | 0.40%, 41 d | 13.0 | 5.600 | 85.00 | 143.3 | 36.33 | 3.30 | 97.00 | 280.6 | 328.3 | 4600 | [29] |
45.1 g, 1 d-old 3 | 0.50%, 34 d | 14.1 | 2.72 | 34.1 | 109.5 | 86.1 | 1.09 | 242.5 | 602 | 322 | 3827 | [27] |
41.8 g, 1 d-old | 0.60%, 41 d | 20.0 | 4.300 | 74.00 | 168.6 | 28.33 | 2.50 | 71.00 | 282.3 | 454.0 | 5613 | [29] |
1 d-old 3 | 1.0%, 34 d | 24.4 | - | - | - | - | - | - | 291.37 | 70.95 | 645.15 | [32] |
1 d-old 3,4 | 1.0%, 34 d | 25.2 | - | - | - | - | - | - | 291.95 | 70.58 | 686.40 | [32] |
788.3 g, 21 d-old 3 | 10%, 14 d | 175 | 2.893 | 40.2 | 79.9 | 56.6 | - | 297.2 | - | - | - | [16] |
Variable | Best Model Type | R-Square | Degrees of Freedom | p-Value | Model Equation |
---|---|---|---|---|---|
Total protein (g/dL) | Quadratic | 0.222 | 4 | 0.605 | y = 3.143 + 0.080x |
Triacylglycerols (mg/dL) | Quadratic | 0.296 | 4 | 0.495 | y = 37.286 + 2.083x − 0.012x2 |
Cholesterol (mg/dL) | Exponential | 0.559 | 5 | 0.053 | y = 139.056 × e−0.003x |
HDL (mg/dL) | Cubic | 0.369 | 4 | 0.399 | y = 91.784 − 3.232x + 0.017x2 + 0.000x3 |
Albumin (g/dL) | Power | 0.253 | 4 | 0.310 | y = 1.053 × x0.269 |
AST (U/L) | Cubic | 0.592 | 4 | 0.166 | y = 240.834 − 7.247x (b2 and b3 are 0) |
IgA (µg/mL) | Logarithmic | 0.569 | 6 | 0.031 | y = 786.178 − 153.886 × log(x) |
IgM (µg/mL) | Quadratic | 0.746 | 5 | 0.033 | y = 463.123 + 4.418x − 0.740x2 |
IgG (µg/mL) | Cubic | 0.842 | 4 | 0.045 | y = 4805.081 − 614.095x + 77.663x2 − 2.389x3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendes, A.R.; Spínola, M.P.; Lordelo, M.; Prates, J.A.M. Impact of Chlorella vulgaris Intake Levels on Performance Parameters and Blood Health Markers in Broiler Chickens. Vet. Sci. 2024, 11, 290. https://doi.org/10.3390/vetsci11070290
Mendes AR, Spínola MP, Lordelo M, Prates JAM. Impact of Chlorella vulgaris Intake Levels on Performance Parameters and Blood Health Markers in Broiler Chickens. Veterinary Sciences. 2024; 11(7):290. https://doi.org/10.3390/vetsci11070290
Chicago/Turabian StyleMendes, Ana R., Maria P. Spínola, Madalena Lordelo, and José A. M. Prates. 2024. "Impact of Chlorella vulgaris Intake Levels on Performance Parameters and Blood Health Markers in Broiler Chickens" Veterinary Sciences 11, no. 7: 290. https://doi.org/10.3390/vetsci11070290
APA StyleMendes, A. R., Spínola, M. P., Lordelo, M., & Prates, J. A. M. (2024). Impact of Chlorella vulgaris Intake Levels on Performance Parameters and Blood Health Markers in Broiler Chickens. Veterinary Sciences, 11(7), 290. https://doi.org/10.3390/vetsci11070290