Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diet
2.2. Feeding Management
2.3. Sample Collection
2.4. Proximate Chemical Composition Analyses
2.5. Liver Antioxidant Parameters
2.6. qPCR Analysis
2.7. Statistical Analysis
3. Results
3.1. Growth Performance and Feed Utilization
3.2. Whole-Body Composition
3.3. Antioxidant Indicators in Liver
3.4. Gene Expression of Nrf2 Signaling Pathway
3.5. Gene Expression of NF-κB Signaling Pathway
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lorenzoni, M.; DoErr, A.J.M.; Giovinazzo, G.; Mearelli, M.; Selvi, S. Growth and reproduction of largemouth bass (Micropterus salmoides Lacépède, 1802) in Lake Trasimeno (Umbria, Italy). Fish. Res. 2002, 56, 89–95. [Google Scholar] [CrossRef]
- Hussein, G.H.G.; Chen, M.; Qi, P.P.; Cui, Q.K.; Yu, Y.; Hu, W.H.; Tian, Y.; Fan, Q.X.; Gao, Z.X.; Feng, M.W.; et al. Aquaculture industry development, annual price analysis and out-of-season spawning in largemouth bass Micropterus salmoides. Aquaculture 2020, 519, 734901. [Google Scholar] [CrossRef]
- Jiang, B.; Lu, G.; Du, J.; Wang, J.; Hu, Y.; Su, Y.; Li, A. First report of trypanosomiasis in farmed largemouth bass (Micropterus salmoides) from China: Pathological evaluation and taxonomic status. Parasitol. Res. 2019, 118, 1731–1739. [Google Scholar] [CrossRef] [PubMed]
- C.F.S. China Fishery Statistical Yearbook; China Agriculture Press: Beijing, China, 2024. [Google Scholar]
- Wang, P.; Li, X.; Xu, Z.; Ji, D.; He, M.; Dang, J.Y.; Leng, X.J. The digestible phosphorus requirement in practical diet for largemouth bass (Micropterus salmoides) based on growth and feed utilization. Aquac. Fish. 2022, 7, 632–638. [Google Scholar] [CrossRef]
- Kohshahi, A.J.; Sourinejad, I.; Sarkheil, M.; Johari, S.A. Dietary cosupplementation with curcumin and different selenium sources (nanoparticulate, organic, and inorganic selenium): Influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2019, 45, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Hertz, Y.; Madar, Z.; Hepher, B.; Gertler, A. Glucose metabolism in the common carp (Cyprinus carpio L.): The effects of cobalt and chromium. Aquaculture 1989, 76, 255–267. [Google Scholar] [CrossRef]
- Watanabe, T.; Kiron, V.; Satoh, S. Trace minerals in fish nutrition. Aquaculture 1997, 151, 185–207. [Google Scholar] [CrossRef]
- Younus, N.; Zuberi, A.; Rashidpour, A.; Metón, I. Dietary cobalt supplementation improves growth and body composition and induces the expression of growth and stress response genes in Tor putitora. Fish Physiol. Biochem. 2020, 46, 371–381. [Google Scholar] [CrossRef]
- Aquilina, G.; Bories, G.; Brantom, P. Scientific Opinion on the use of cobalt compounds as additives in animal nutrition. EFSA J. 2009, 7, 1–45. [Google Scholar] [CrossRef]
- Al-ghanem, K.A. Effect of cobalt-supplemented diets on bioaccumulation, digestive enzyme activities and growth of Cyprinus carpio. Toxicol. Environ. Chem. 2011, 93, 985–995. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kaviraj, A. Evaluation of growth and bioaccumulation of cobalt in different tissues of common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae), fed cobalt-supplemented diets. Acta Ichthyol. Et Piscat. 2009, 39, 87–93. [Google Scholar] [CrossRef]
- Sapkale, P.H.; Singh, R.K. Dietary Zinc and Cobalt Requirements of Fry of Seabass (Lates calcarifer) and Catfish (Clarias batrachus). Isr. J. Aquac. Bamidgeh 2011, 63, 434–447. [Google Scholar] [CrossRef]
- Li, X.; Lin, H.; Zhu, Z.; Ray, G.W.; Zhou, S.; Yang, Q.; Tan, B. Effects of cobalt sources and levels on growth performance, serum biochemistry, metabolic activities, and cobalt contents in the tissue of juvenile Litopenaeus vannamei. N. Am. J. Aquac. 2022, 84, 336–344. [Google Scholar] [CrossRef]
- Sumana, S.L.; Chen, H.; Shui, Y.; Zhang, C.; Yu, F.; Zhu, J.; Su, S. Effect of Dietary Selenium on the Growth and Immune Systems of Fish. Animals 2023, 13, 2978. [Google Scholar] [CrossRef] [PubMed]
- El, M.F.; Teiba, I.I.; Zaki, M.A.A.; Alabssawy, A.N.; El-hais, A.M.; Gabr, A.A.; Dawood, M.A.O.; Zaineldin, A.I.; Mzengereza, K.; Shadrack, R.S.; et al. Assessing the effectiveness of CoQ10 dietary supplementation on growth performance, digestive enzymes, blood health, immune response, and oxidative-related genes expression of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2020, 98, 420–428. [Google Scholar] [CrossRef]
- Younus, N.; Zuberi, A. Significance of extrinsic factors for the optimization of dietary cobalt supplementation in Tor putitora fingerlings. Fish Physiol. Biochem. 2022, 48, 883–897. [Google Scholar] [CrossRef]
- Song, B.W.; Yang, H.; Li, X.Q.; Wang, P.; He, M.; Xu, Z.; Yang, P.X.; Leng, X.J. Dietary zinc requirement of juvenile largemouth bass (Micropterus salmoides). J. Fish. China 2021, 45, 1715–1725. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2003; Volume 1. [Google Scholar]
- Zhang, L.M.; Zhang, L.; Liang, H.L.; Huang, D.Y.; Ren, M.C. Effects of Taurine and Vitamin C on the Improvement of Antioxidant Capacity, Immunity and Hypoxia Tolerance in Gibel Carp (Carrassius auratus gibeilo). Antioxidants 2024, 13, 1169. [Google Scholar] [CrossRef]
- Kayiira, J.C.; Mi, H.F.; Liang, H.L.; Ren, M.C.; Huang, D.Y.; Zhang, L. Effect of Dietary Copper on Growth Performance, Antioxidant Capacity, and Immunity in Juvenile Largemouth Bass (Micropterus salmoides). Fishes 2024, 9, 369. [Google Scholar] [CrossRef]
- Gu, J.Z.; Liang, H.L.; Ge, X.P.; Xia, D.; Pan, L.K.; Mi, H.F.; Ren, M.C. A study of the potential effect of yellow mealworm (Tenebrio molitor) substitution for fish meal on growth, immune and antioxidant capacity in juvenile largemouth bass (Micropterus salmoides). Fish Shellfish Immunol. 2022, 120, 214–221. [Google Scholar] [CrossRef]
- Yang, P.; Wang, W.Q.; Chi, S.Y.; Mai, K.S.; Song, F.; Wang, L. Effects of dietary lysine on regulating GH-IGF system, intermediate metabolism and immune response in largemouth bass (Micropterus salmoides). Aquac. Rep. 2020, 17, 100323. [Google Scholar] [CrossRef]
- Paul, B.N.; Mukhopadhyay, P.K. Importance of Trace Minerals in Aquaculture Nutrition. Fish. Chimes 2001, 21, 34–36. Available online: https://www.researchgate.net/publication/299367144 (accessed on 23 March 2016).
- Pati, P.; Mondal, K. A Review on the Dietary Requirements of Trace Minerals in Freshwater Fish. J. Environ. Sociobiol. 2019, 16, 171–206. Available online: https://www.researchgate.net/publication/347464039 (accessed on 18 December 2020).
- Mukherjee, S.; Kaviraj, A. Ecotoxicological assessment of cobalt used as supplement in the diet of common carp Cyprinus carpio. Bull. Environ. Contam. Toxicol. 2011, 87, 527–530. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.Y.; Xie, P.; Luo, Z.; Lin, H.Z.; Zhao, Y.H.; Xi, W.Q. Dietary manganese requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on whole body mineral composition and hepatic intermediary metabolism. Aquaculture 2012, 326, 68–73. [Google Scholar] [CrossRef]
- Apak, R.; Özyürek, M.; Güçlü, K.; Çapanoğlu, E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agric. Food Chem. 2016, 64, 997–1027. [Google Scholar] [CrossRef]
- Shukla, A.; Mossman, B.T. Oxidants and Antioxidants | Oxidants. In Encyclopedia of Respiratory Medicine; Academic Press: Cambridge, MA, USA, 2006; Volume 1–4, pp. 271–278. [Google Scholar] [CrossRef]
- Ursini, F.; Maiorino, M. Glutathione Peroxidases. In Encyclopedia of Biological Chemistry, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 399–404. [Google Scholar] [CrossRef]
- Oliva-Teles, A. Nutrition and health of aquaculture fish. J. Fish Dis. 2012, 35, 83–108. [Google Scholar] [CrossRef]
- Mclaughlin, Q.R.; Gunderson, M.P. Effects of selenium treatment on endogenous antioxidant capacity in signal crayfish (Pacifastacus leniusculus). Comp. Biochem. Physiology. Toxicol. Pharmacol. 2022, 256, 109324. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.D.; Bu, X.Y.; Huang, Q.C.; Qiao, F.; Chen, X.F.; Shi, Q.C.; Qin, J.G.; Chen, L.Q. A comparation between different iron sources on growth performance, iron utilization, antioxidant capacity and non-specific immunity in Eriocheir sinensis. Anim. Feed. Sci. Technol. 2022, 288, 115300. [Google Scholar] [CrossRef]
- Yu, L.Y.; Li, L.Y.; Yu, H.R.; Yuan, Z.Y.; Ma, C.Y.; Wu, X.J.; Kong, W.G. Effects of dietary manganese supplementation on the growth performance, tissue manganese content and antioxidant capacity of coho salmon (Oncorhynchus kisutch) post-smolts. Aquac. Rep. 2024, 34, 101924. [Google Scholar] [CrossRef]
- Bergeron, N.; Guay, F. Impact of zinc and arginine on antioxidant status of weanling piglets raised under commercial conditions. Anim. Nutr. 2019, 3, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Gong, C.; Ren, J.; Zhang, X.; Wang, G.; Liu, Y.; Ren, Y.; Zhao, Y.; Yu, Q.; Wang, Y.; et al. Toxicity of nickel and cobalt in Japanese flounder. Environ. Pollut. 2020, 263, 114516. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.Y.; Li, B.S.; Qiao, H.J.; Liu, X.D.; Hao, T.T.; Wang, X.Y. Effects of dietary cobalt methionine on growth performance, mineral deposition, and hepatic enzyme activities in juvenile pearl gentian grouper (Epinephelus lanceolatus♂ × E. fuscoguttatus♀). J. Fish. Sci. China 2016, 23, 574–583. (In Chinese) [Google Scholar] [CrossRef]
- Torun, A.N.; Kulaksizoglu, S.; Kulaksizoglu, M.; Pamuk, B.O.; Isbilen, E.; Tutuncu, N.B. Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin. Endocrinol. 2010, 70, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Heo, S.; Kim, S.; Kang, D. The role of hydrogen peroxide and peroxiredoxins throughout the cell cycle. Antioxidants 2020, 9, 280. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-Antioxidant Response Element Signaling Pathway and Its Activation by Oxidative Stress. J. Biol. Chem. 2009, 284, 13291. [Google Scholar] [CrossRef]
- Mann, G.E.; Forman, H.J. Introduction to Special Issue on ′Nrf2 Regulated Redox Signaling and Metabolism in Physiology and Medicine. Free. Radic. Biol. Med. 2015, 88, 91–92. [Google Scholar] [CrossRef]
- Khedr, N.F.; Talkan, O.F.A. New insights into arsenic, lead, and iron neurotoxicity: Activation of MAPK signaling pathway and oxidative stress. J. Biochem. Mol. Toxicol. 2022, 36, e23040. [Google Scholar] [CrossRef]
- Gao, C.; Fei, X.; Wang, M.; Chen, Q.; Zhao, N. Cardamomin protects from diabetes-induced kidney damage through modulating PI3K/AKT and JAK/STAT signaling pathways in rats. Int. Immunopharmacol. 2022, 107, 108610. [Google Scholar] [CrossRef]
- Silvestre, F. Signaling pathways of oxidative stress in aquatic organisms exposed to xenobiotic. J. Exp. Zool. Part A Ecol. Integr. Physiol. 2020, 333, 436–448. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Khalil, A.A.; Amer, S.A.; Shalaby, S.I.; Badr, H.A.; Farag, M.F.M.; Altohamy, D.E.; Abdel Rahman, A.N. Effects of dietary doum palm fruit powder on growth, antioxidant capacity, immune response, and disease resistance of African catfish, Clarias gariepinus (B.). Animals 2020, 10, 1407. [Google Scholar] [CrossRef] [PubMed]
- Hoseinifar, S.H.; Dadar, M.; Khalili, M.; Cerezuela, R.; Esteban, M.Á. Effect of dietary supplementation of palm fruit extracts on the transcriptomes of growth, antioxidant enzyme and immune-related genes in common carp (Cyprinus carpio) fingerlings. Aquacult. Res. 2017, 48, 3684–3692. [Google Scholar] [CrossRef]
- Xia, Z.B.; Meng, F.R.; Fang, Y.X.; Wu, X.; Zhang, C.W.; Liu, Y.; Liu, D.; Li, G.Q.; Feng, F.B.; Qiu, H.Y. Inhibition of NF-κB signaling pathway induces apoptosis and suppresses proliferation and angiogenesis of human fibroblast-like synovial cells in rheumatoid arthritis. Medicine 2018, 97, e10920. [Google Scholar] [CrossRef]
- Guo, Y.L.; Wu, P.; Jiang, W.D.; Liu, Y.; Kuang, S.Y.; Jiang, J.; Tang, L.; Tang, W.N.; Zhang, Y.A.; Zhou, X.Q. The impaired immune function and structural integrity by dietary iron deficiency or excess in gill of fish after infection with Flavobacterium columnare: Regulation of NF-κB, TOR, JNK, p38MAPK, Nrf2 and MLCK signalling. Fish Shellfish Immunol. 2018, 74, 593–608. [Google Scholar] [CrossRef]
- Guo, Y.L.; Feng, L.; Jiang, W.D.; Wu, P.; Liu, Y.; Kuang, S.Y.; Tang, L.; Tang, W.N.; Zhou, X.Q. Dietary iron deficiency impaired intestinal immune function of on-growing grass carp under the infection of Aeromonas hydrophila: Regulation of NF-kappa B and TOR signaling. Fish Shellfish Immunol. 2019, 93, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Anikumar, S.; Jin, E.W. NF-κB as an Inducible Regulator of Inflammation in the Central Nervous System. Cells 2024, 13, 485. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, M.; Derynck, R.; Miyazono, K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb. Perspect. Biol. 2016, 8, a021873. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2013, 32, 23–63. [Google Scholar] [CrossRef]
- Robert, S.; Gerald, G.; Katarzyna, W.; Stefan, K.; Ellen, W.; Kerstin, W.; Jens, G. Biology of interleukin-10. Cytokine Growth Factor Rev. 2010, 21, 331–344. [Google Scholar] [CrossRef]
Ingredients | Level (%) | Ingredients | Level (%) |
---|---|---|---|
Fish meal 1 | 20 | Choline chloride | 0.5 |
Casein 1 | 28 | Vitamin premix 2 | 1 |
Gelatin 1 | 7 | Mineral premix 3 (without cobalt) | 1 |
Wheat flour 1 | 16 | Calcium phosphate | 4 |
Fish oil | 4 | Microcrystalline cellulose | 14.45 |
Soybean oil | 4 | Vitamin C | 0.05 |
Component analysis | |||
Crude protein (%) | 46.38 ± 0.24 | ||
Crude lipid (%) | 9.86 ± 0.19 |
Genes | Primer Sequence (5′-3′) | Reference | |
---|---|---|---|
gapdh | Forward | ACTGTCACTCCTCCATCTT | AZA04761.1 |
Reverse | CACGGTTGCTGTATCCAA | ||
tgf-β | Forward | GCTCAAAGAGAGCGAGGATG | [22] |
Reverse | TCCTCTACCATTCGCAATCC | ||
il-8 | Forward | CGTTGAACAGACTGGGAGAGATG | [23] |
Reverse | AGTGGGATGGCTTCATTATCTTGT | ||
il-10 | Forward | CGGCACAGAAATCCCAGAGC | [23] |
Reverse | CAGCAGGCTCACAAAATAAACATCT | ||
nrf2 | Forward | AGAGACATTCGCCGTAGA | NM_212855.2 |
Reverse | TCGCAGTAGAGCAATCCT | ||
keap1 | Forward | CGTACGTCCAGGCCTTACTC | XP_018520553.1 |
Reverse | TGACGGAAATAACCCCCTGC | ||
tnf-α | Forward | CTTCGTCTACAGCCAGGCATCG | [22] |
Reverse | TTTGGCACACCGACCTCACC | ||
sod | Forward | TGGCAAGAACAAGAACCACA | [22] |
Reverse | CCTCTGATTTCTCCTGTCACC | ||
gpx | Forward | GAAGGTGGATGTGAATGGA | MK614713.1 |
Reverse | CCAACCAGGAACTTCTCAA | ||
nf-κb | Forward | CCACTCAGGTGTTGGAGCTT | XP_027136364.1 |
Reverse | TCCAGAGCACGACACACTTC |
Dietary Cobalt Levels (mg/kg) | IBW (g) | FBW (g) | WGR (%) | SGR (%/day) | FCR | SR (%) |
---|---|---|---|---|---|---|
0.129 | 1.68 ± 0.02 | 18.69 ± 0.10 a | 1013.58 ± 15.84 a | 4.30 ± 0.03 a | 1.08 ± 0.03 b | 91.67 ± 8.33 |
0.192 | 1.67 ± 0.01 | 20.24 ± 0.40 b | 1110.10 ± 30.06 b | 4.45 ± 0.04 b | 0.99 ± 0.01 a | 91.67 ± 3.33 |
0.201 | 1.69 ± 0.01 | 20.40 ± 0.10 b | 1111.91 ± 10.74 b | 4.45 ± 0.01 b | 0.99 ± 0.02 a | 95.00 ± 2.89 |
0.233 | 1.70 ± 0.01 | 20.58 ± 0.44 b | 1115.42 ± 28.72 b | 4.46 ± 0.04 b | 0.97 ± 0.01 a | 95.00 ± 2.89 |
0.277 | 1.67 ± 0.01 | 19.93 ± 0.24 b | 1097.37 ± 19.31 b | 4.43 ± 0.03 b | 0.99 ± 0.01 a | 93.33 ± 4.41 |
0.316 | 1.67 ± 0.01 | 19.71 ± 0.12 b | 1081.58 ± 11.72 b | 4.41 ± 0.07 b | 0.99 ± 0.01 a | 91.67 ± 1.67 |
F-value | 0.200 | 0.061 | 0.217 | 0.233 | 0.352 | 0.622 |
p-value | 0.467 | 0.005 | 0.037 | 0.022 | 0.007 | 0.981 |
Dietary Cobalt Levels (mg/kg) | Ash (%) | Lipid (%) | Moisture (%) | Protein (%) |
---|---|---|---|---|
0.129 | 3.40 ± 0.11 | 4.35 ± 0.89 | 72.99 ± 0.81 b | 14.92 ± 0.62 a |
0.192 | 3.63 ± 0.24 | 6.98 ± 0.59 | 71.36 ± 0.65 a | 18.70 ± 0.83 b |
0.201 | 3.55 ± 0.12 | 7.33 ± 0.55 | 71.50 ± 0.22 ab | 16.84 ± 1.35 ab |
0.233 | 3.52 ± 0.08 | 5.38 ± 1.58 | 71.88 ± 0.28 ab | 16.89 ± 1.84 ab |
0.277 | 3.69 ± 0.11 | 6.39 ± 0.17 | 71.51 ± 0.93 ab | 17.41 ± 0.27 ab |
0.316 | 3.35 ± 0.05 | 5.46 ± 1.41 | 71.89 ± 0.22 ab | 18.24 ± 0.71 ab |
F-value | 0.404 | 0.483 | 0.284 | 0.097 |
p-value | 0.579 | 0.240 | 0.048 | 0.045 |
Dietary Cobalt Levels (mg/kg) | CAT (U/mgprot) | SOD (U/mgprot) | T-AOC (mmol/mgprot) | GSH (μmol/gprot) | GSH-Px (U/mgprot) | MDA (nmol/mgprot) |
---|---|---|---|---|---|---|
0.129 | 5.25 ± 0.65 ab | 5.91 ± 1.61 | 0.24 ± 0.06 a | 12.45 ± 1.51 | 6.05 ± 3.77 a | 0.77 ± 0.18 ab |
0.192 | 4.44 ± 0.51 ab | 3.35 ± 0.92 | 0.46 ± 0.03 b | 14.47 ± 1.04 | 5.98 ± 2.78 a | 0.79 ± 0.20 ab |
0.201 | 5.14 ± 0.71 ab | 6.33 ± 1.45 | 0.12 ± 0.04 a | 12.81 ± 2.75 | 5.21 ± 2.26 a | 0.95 ± 0.32 b |
0.233 | 6.24 ± 1.03 bc | 5.81 ± 1.59 | 0.12 ± 0.04 a | 15.23 ± 2.85 | 21.42 ± 4.41 b | 0.75 ± 0.16 ab |
0.277 | 8.21 ± 0.74 c | 6.98 ± 1.18 | 0.12 ± 0.04 a | 19.55 ± 3.07 | 15.06 ± 6.96 ab | 0.30 ± 0.10 a |
0.316 | 3.48 ± 0.61 a | 7.38 ± 1.28 | 0.20 ± 0.02 a | 14.62 ± 1.79 | 10.49 ± 4.72 ab | 0.33 ± 0.06 a |
F-value | 0.838 | 0.704 | 0.368 | 0.311 | 0.185 | 0.077 |
p-value | 0.001 | 0.490 | 0.000 | 0.267 | 0.028 | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Jahazi, J.D.; Ren, M.; Zhang, L.; Liang, H. Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides). Vet. Sci. 2024, 11, 576. https://doi.org/10.3390/vetsci11110576
Huang D, Jahazi JD, Ren M, Zhang L, Liang H. Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides). Veterinary Sciences. 2024; 11(11):576. https://doi.org/10.3390/vetsci11110576
Chicago/Turabian StyleHuang, Dongyu, Joshua Daniel Jahazi, Mingchun Ren, Lu Zhang, and Hualiang Liang. 2024. "Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides)" Veterinary Sciences 11, no. 11: 576. https://doi.org/10.3390/vetsci11110576
APA StyleHuang, D., Jahazi, J. D., Ren, M., Zhang, L., & Liang, H. (2024). Effects of Dietary Cobalt Levels on Growth Performance, Antioxidant Capacity, and Immune Status of Juvenile Largemouth Bass (Micropterus salmoides). Veterinary Sciences, 11(11), 576. https://doi.org/10.3390/vetsci11110576