Comprehensive Characterization (Chromatography, Spectroscopy, Isotopic, and Digital Color Image) of Tequila 100% Agave Cristalino as Evidence of the Preservation of the Characteristics of Its Aging Process
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Physicochemical Characterization
2.2.1. Gas and Liquid Chromatography
2.2.2. Isotope Ratio Mass Spectrometry (IRMS)
2.2.3. Image Analysis by Artificial Vision
2.2.4. UV-Vis Spectroscopy
2.3. Statistical Analysis
3. Results and Discussion
3.1. Comparison of the Chromatographic and Isotopic Profiles of the Beverage
3.2. Color Perception Comparison: Tequila 100% Agave Aged vs. Tequila 100% Agave Cristalino Using Artificial Vision and UV-Vis Spectroscopy
3.3. Integrated Comparison of Chromatographic, Spectroscopic, and Isotopic Characteristics of Aged and Extra-Aged Tequilas 100% Agave and Their Corresponding Cristalino Versions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Terán-Bustamante, A.; Martínez-Velasco, A.; Castillo-Girón, V.M.; Ayala-Ramírez, S. Innovation and Technological Management Model in the Tequila Sector in Mexico. Sustainability 2022, 14, 7450. [Google Scholar] [CrossRef]
- Benn, S.M.; Peppard, T.L. Characterization of Tequila Flavor by Instrumental and Sensory Analysis. J. Agric. Food Chem. 1996, 44, 557–566. [Google Scholar] [CrossRef]
- López, M.G. Tequila Aroma. In Flavor Chemistry of Ethnic Foods; Springer: Boston, MA, USA, 1999; pp. 211–217. [Google Scholar]
- Vallejo-Cordoba, B.; González-Córdova, A.F.; del Carmen Estrada-Montoya, M. Tequila Volatile Characterization and Ethyl Ester Determination by Solid Phase Microextraction Gas Chromatography/Mass Spectrometry Analysis. J. Agric. Food Chem. 2004, 52, 5567–5571. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W.; Sohnius, E.-M.; Attig, R.; López, M.G. Quantification of Selected Volatile Constituents and Anions in Mexican Agave Spirits (Tequila, Mezcal, Sotol, Bacanora). J. Agric. Food Chem. 2006, 54, 3911–3915. [Google Scholar] [CrossRef]
- Muñoz-Muñoz, A.C.; Grenier, A.C.; Gutiérrez-Pulido, H.; Cervantes-Martínez, J. Development and Validation of a High Performance Liquid Chromatography-Diode Array Detection Method for the Determination of Aging Markers in Tequila. J. Chromatogr. A 2008, 1213, 218–223. [Google Scholar] [CrossRef]
- De León Rodríguez, A.; Escalante Minakata, M.D.P.; Jiménez García, M.I.; Ordoñez Acevedo, L.G.; Flores Flores, J.L.; Barba de la Rosa, A.P. Characterization of Volatile Compounds from Ethnic Agave Alcoholic Beverages by Gas Chromatographymass Spectrometry. Food Technol. Biotechnol. 2008, 46, 448–455. [Google Scholar]
- Cardeal, Z.L.; Marriott, P.J. Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry Analysis and Comparison of Volatile Organic Compounds in Brazilian Cachaça and Selected Spirits. Food Chem. 2009, 112, 747–755. [Google Scholar] [CrossRef]
- Ceballos-Magaña, S.G.; de Pablos, F.; Jurado, J.M.; Martín, M.J.; Alcázar, Á.; Muñiz-Valencia, R.; Gonzalo-Lumbreras, R.; Izquierdo-Hornillos, R. Characterisation of Tequila According to Their Major Volatile Composition Using Multilayer Perceptron Neural Networks. Food Chem. 2013, 136, 1309–1315. [Google Scholar] [CrossRef]
- Magana, A.A.; Wrobel, K.; Elguera, J.C.T.; Escobosa, A.R.C.; Wrobel, K. Determination of Small Phenolic Compounds in Tequila by Liquid Chromatography with Ion Trap Mass Spectrometry Detection. Food Anal. Methods 2015, 8, 864–872. [Google Scholar] [CrossRef]
- Sun, J.; Yin, Z.; Zhao, D.; Sun, B.; Zheng, F. Qualitative and Quantitative Research of Propyl Lactate in Brewed Alcoholic Beverages. Int. J. Food Prop. 2018, 21, 1351–1361. [Google Scholar] [CrossRef]
- Mejia Diaz, L.F.; Wrobel, K.; Corrales Escobosa, A.R.; Aguilera Ojeda, D.A.; Wrobel, K. Identification of Potential Indicators of Time-Dependent Tequila Maturation and Their Determination by Selected Ion Monitoring Gas Chromatography–Mass Spectrometry, Using Salting-out Liquid–Liquid Extraction. Eur. Food Res. Technol. 2019, 245, 1421–1430. [Google Scholar] [CrossRef]
- Charapitsa, S.; Sytova, S.; Kavalenka, A.; Sobolenko, L.; Kostyuk, N.; Egorov, V.; Leschev, S.; Vetokhin, S.; Zayats, N. The Study of the Matrix Effect on the Method of Direct Determination of Volatile Compounds in a Wide Range of Alcoholic Beverages. Food Control 2021, 120, 107528. [Google Scholar] [CrossRef]
- Charapitsa, S.; Sytova, S.; Kavalenka, A.; Sabalenka, L.; Zayats, M.; Egorov, V.; Leschev, S.; Melsitova, I.; Vetokhin, S.; Zayats, N. Intelligent Use of Ethanol for the Direct Quantitative Determination of Methanol in Alcoholic Beverages. J. Food Compos. Anal. 2022, 114, 104772. [Google Scholar] [CrossRef]
- Mejia Diaz, L.F.; Wrobel, K.; Corrales Escobosa, A.R.; Yanez Barrientos, E.; Serrano Torres, O.; Wrobel, K. Characterization of Tequila by High Performance Liquid Chromatography—High Resolution Mass Spectrometry (HPLC-HRMS) and Partial Least Squares Regression (PLS). Anal. Lett. 2023, 56, 1701–1712. [Google Scholar] [CrossRef]
- Aguilar-Cisneros, B.O.; López, M.G.; Richling, E.; Heckel, F.; Schreier, P. Tequila Authenticity Assessment by Headspace SPME-HRGC-IRMS Analysis of 13C/12C and 18O/16O Ratios of Ethanol. J. Agric. Food Chem. 2002, 50, 7520–7523. [Google Scholar] [CrossRef]
- Bauer-Christoph, C.; Christoph, N.; Aguilar-Cisneros, B.O.; Lopez, M.G.; Richling, E.; Rossmann, A.; Schreier, P. Authentication of Tequila by Gas Chromatography and Stable Isotope Ratio Analyses. Eur. Food Res. Technol. 2003, 217, 438–443. [Google Scholar] [CrossRef]
- Thomas, F.; Randet, C.; Gilbert, A.; Silvestre, V.; Jamin, E.; Akoka, S.; Remaud, G.; Segebarth, N.; Guillou, C. Improved Characterization of the Botanical Origin of Sugar by Carbon-13 SNIF-NMR Applied to Ethanol. J. Agric. Food Chem. 2010, 58, 11580–11585. [Google Scholar] [CrossRef]
- Kächele, M.; Monakhova, Y.B.; Kuballa, T.; Lachenmeier, D.W. NMR Investigation of Acrolein Stability in Hydroalcoholic Solution as a Foundation for the Valid HS-SPME/GC–MS Quantification of the Unsaturated Aldehyde in Beverages. Anal. Chim. Acta 2014, 820, 112–118. [Google Scholar] [CrossRef]
- Fonseca-Aguiñaga, R.; Gómez-Ruiz, H.; Miguel-Cruz, F.; Romero-Cano, L.A. Analytical Characterization of Tequila (Silver Class) Using Stable Isotope Analyses of C, O and Atomic Absorption as Additional Criteria to Determine Authenticity of Beverage. Food Control 2020, 112, 107161. [Google Scholar] [CrossRef]
- Portaluri, V.; Thomas, F.; Jamin, E.; Akoka, S.; Remaud, G.S. Authentication of Agave Products through Isotopic Intramolecular 13C Content of Ethanol: Optimization and Validation of 13C Quantitative NMR Methodology. ACS Food Sci. Technol. 2021, 1, 1316–1322. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; González-Gutiérrez, L.V.; Carrasco-Marín, F.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. Chemical Characterization of Tequila Maturation Process and Their Connection with the Physicochemical Properties of the Cask. J. Food Compos. Anal. 2021, 98, 103804. [Google Scholar] [CrossRef]
- Fonseca-Aguiñaga, R.; Warren-Vega, W.M.; Miguel-Cruz, F.; Romero-Cano, L.A. Isotopic Characterization of 100% Agave Tequila (Silver, Aged and Extra-Aged Class) for Its Use as an Additional Parameter in the Determination of the Authenticity of the Beverage Maturation Time. Molecules 2021, 26, 1719. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Salazar, E.; Fonseca-Aguinaga, R.; Warren-Vega, W.M.; Ana, I.Z. Effect of Age of Agave Tequilana Weber Blue Variety on Quality and Authenticity Parameters for the Tequila 100% Agave Silver Class: Evaluation at the Industrial Scale Level. Food 2021, 10, 3103. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Aguiñaga, R.; Warren-Vega, W.M.; Muñoz-Sánchez, M.; Romero-Cano, L.A. Isotopic Differences between Tequila and Tequila 100% Agave Silver Class: Effect of Sugar Enrichment on the Δ13CVPDB on the Beverage Congeners. J. Food Compos. Anal. 2024, 129, 106134. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Richling, E.; López, M.G.; Frank, W.; Schreier, P. Multivariate Analysis of FTIR and Ion Chromatographic Data for the Quality Control of Tequila. J. Agric. Food Chem. 2005, 53, 2151–2157. [Google Scholar] [CrossRef]
- Frausto-Reyes, C.; Medina-Gutiérrez, C.; Sato-Berrú, R.; Sahagún, L.R. Qualitative Study of Ethanol Content in Tequilas by Raman Spectroscopy and Principal Component Analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2657–2662. [Google Scholar] [CrossRef]
- Flores, C.R.; Figueroa, J.A.L.; Wrobel, K.; Wrobel, K. ICP-MS Multi-Element Profiles and HPLC Determination of Furanic Compounds in Commercial Tequila. Eur. Food Res. Technol. 2009, 228, 951–958. [Google Scholar] [CrossRef]
- Ceballos-Magaña, S.G.; Jurado, J.M.; Martín, M.J.; Pablos, F. Quantitation of Twelve Metals in Tequila and Mezcal Spirits as Authenticity Parameters. J. Agric. Food Chem. 2009, 57, 1372–1376. [Google Scholar] [CrossRef]
- Muñoz-Muñoz, A.C.; Pichardo-Molina, J.L.; Ramos-Ortíz, G.; Barbosa-García, O.; Maldonado, J.L.; Meneses-Nava, M.A.; Ornelas-Soto, N.E.; Escobedo, A.; López-de-Alba, P.L. Identification and Quantification of Furanic Compounds in Tequila and Mezcal Using Spectroscopy and Chemometric Methods. J. Braz. Chem. Soc. 2010, 21, 1077–1087. [Google Scholar] [CrossRef]
- Contreras, U.; Barbosa-García, O.; Pichardo-Molina, J.L.; Ramos-Ortíz, G.; Maldonado, J.L.; Meneses-Nava, M.A.; Ornelas-Soto, N.E.; López-de-Alba, P.L. Screening Method for Identification of Adulterate and Fake Tequilas by Using UV–VIS Spectroscopy and Chemometrics. Food Res. Int. 2010, 43, 2356–2362. [Google Scholar] [CrossRef]
- De la Rosa Vázquez, J.M.; Fabila-Bustos, D.A.; Quintanar-Hernández, L.F.d.J.; Valor, A.; Stolik, S. Detection of Counterfeit Tequila by Fluorescence Spectroscopy. J. Spectrosc. 2015, 2015, 403160. [Google Scholar] [CrossRef]
- Pérez-Caballero, G.; Andrade, J.M.; Olmos, P.; Molina, Y.; Jiménez, I.; Durán, J.J.; Fernandez-Lozano, C.; Miguel-Cruz, F. Authentication of Tequilas Using Pattern Recognition and Supervised Classification. TrAC Trends Anal. Chem. 2017, 94, 117–129. [Google Scholar] [CrossRef]
- Andrade, J.M.; Ballabio, D.; Gómez-Carracedo, M.P.; Pérez-Caballero, G. Nonlinear Classification of Commercial Mexican Tequilas. J. Chemom. 2017, 31, e2939. [Google Scholar] [CrossRef]
- Garcia, M.M.; Wrobel, K.; Barrientos, E.Y.; Escobosa, A.R.C.; Serrano, O.; Donis, I.E.; Wrobel, K. Determination of Copper and Lead in Tequila by Conventional Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry and Partial Least Squares Regression. Rapid Commun. Mass Spectrom. 2018, 32, 2174–2184. [Google Scholar] [CrossRef]
- Espinosa-Vega, L.I.; Belio-Manzano, A.; Mercado-Ornelas, C.A.; Cortes-Mestizo, I.E.; Mendez-Garcia, V.H. Aging Spectral Markers of Tequila Observed by Raman Spectroscopy. Eur. Food Res. Technol. 2019, 245, 1031–1036. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, Y.; Shao, F.; Lu, Y.; Zhu, L.; Xu, X. Geographical Origin Identification of Tequila Based on Multielement and Stable Isotopes. J. Food Qual. 2021, 2021, 6615264. [Google Scholar] [CrossRef]
- Pérez-Beltrán, C.H.; Pérez–Caballero, G.; Andrade, J.M.; Cuadros-Rodríguez, L.; Jiménez-Carvelo, A.M. Non-Targeted Spatially Offset Raman Spectroscopy-Based Vanguard Analytical Method to Authenticate Spirits: White Tequilas as a Case Study. Microchem. J. 2022, 183, 108126. [Google Scholar] [CrossRef]
- Ríos-Hernández, P.A.; Gómez-Navarro, C.S.; Warren-Vega, W.M.; Gutiérrez, L.V.G.; Zárate-Guzmán, A.I.; Romero-Cano, L.A. Comprehension of the Adsorption Mechanism in the Selective Color Removal of Extra-Aged Tequila to Produce Cristalino Tequila Using Tailored Carbon Materials. Food Chem. Adv. 2023, 2, 100174. [Google Scholar] [CrossRef]
- Carreon-Alvarez, A.; Casillas, N.; Ibanez, J.G.; Hernandez, F.; Prado-Ramírez, R.; Barcena-Soto, M.; Go’mez-Salazar, S. Determination of Cu in Tequila by Anodic Stripping Voltammetry. Anal. Lett. 2008, 41, 469–477. [Google Scholar] [CrossRef]
- Luna-Moreno, D.; Monzón-Hernández, D.; Noé-Arias, E.; Regalado, L.E. Determination of Quality and Adulteration of Tequila through the Use of Surface Plasmon Resonance. Appl. Opt. 2012, 51, 5161. [Google Scholar] [CrossRef]
- Ruiz-Pérez, A.; Pérez-Castañeda, J.I.; Castañeda-Guzmán, R.; Pérez-Ruiz, S.J. Determination of Tequila Quality by Photoacoustic Analysis. Int. J. Thermophys. 2013, 34, 1695–1702. [Google Scholar] [CrossRef]
- Oliveira, P.R.; Lamy-Mendes, A.C.; Rezende, E.I.P.; Mangrich, A.S.; Marcolino, L.H., Jr.; Bergamini, M.F. Electrochemical Determination of Copper Ions in Spirit Drinks Using Carbon Paste Electrode Modified with Biochar. Food Chem. 2015, 171, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Carreon-Alvarez, A.; Suárez-Gómez, A.; Zurita, F.; Gómez-Salazar, S.; Soltero, J.F.A.; Barcena-Soto, M.; Casillas, N.; Porfirio-Gutierrez; Moreno-Medrano, E.D. Assessment of Physicochemical Properties of Tequila Brands: Authentication and Quality. J. Chem. 2016, 2016, 6254942. [Google Scholar] [CrossRef]
- Kataria, T.K.; Sosa-Morales, M.E.; Olvera-Cervantes, J.L.; Corona-Chavez, A. Dielectric Properties of Tequila in the Microwave Frequency Range (0.5–20 GHz) Using Coaxial Probe. Int. J. Food Prop. 2017, 20, S377–S384. [Google Scholar] [CrossRef]
- Acuña-Avila, P.; Calavia, R.; Vigueras-Santiago, E.; Llobet, E. Identification of Tequila with an Array of ZnO Thin Films: A Simple and Cost-Effective Method. Sensors 2017, 17, 2943. [Google Scholar] [CrossRef]
- Jiménez-Pérez, R.; Sevilla, J.M.; Pineda, T.; Blázquez, M.; Gonzalez-Rodriguez, J. Electrocatalytic Performance Enhanced of the Electrooxidation of Gamma-Hydroxybutyric Acid (GHB) and Ethanol on Platinum Nanoparticles Surface. A Contribution to the Analytical Determination of GHB in the Presence of Ethanol. Sens. Actuators B Chem. 2018, 256, 553–563. [Google Scholar] [CrossRef]
- Necochea-Chamorro, J.I.; Carrillo-Torres, R.C.; Sánchez-Zeferino, R.; Álvarez-Ramos, M.E. Fiber Optic Sensor Using ZnO for Detection of Adulterated Tequila with Methanol. Opt. Fiber Technol. 2019, 52, 101982. [Google Scholar] [CrossRef]
- Maldonado-Arriola, J.A.; Sánchez-Zeferino, R.; Álvarez-Ramos, M.E. Photoluminescent Properties of ZnO Nanorods Films Used to Detect Methanol Contamination in Tequila. Sens. Actuators A Phys. 2020, 312, 112142. [Google Scholar] [CrossRef]
- Franco, M.D.O.K.; Castro, G.A.D.; Vilanculo, C.; Fernandes, S.A.; Suarez, W.T. A Color Reaction for the Determination of Cu2+ in Distilled Beverages Employing Digital Imaging. Anal. Chim. Acta 2021, 1177, 338844. [Google Scholar] [CrossRef]
- Gómez, A.; Bueno, D.; Gutiérrez, J.M. Electronic Eye Based on RGB Analysis for the Identification of Tequilas. Biosensors 2021, 11, 68. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; González-Gutiérrez, L.V.; Romero-Cano, L.A. Use of Electrochemical Color Index as Emerging Analytical Method for Evaluating the Quality of Tequila 100% Agave. Food Biosci. 2023, 56, 103300. [Google Scholar] [CrossRef]
- Montes-Peña, K.D.; Fonseca-Aguiñaga, R.; Warren-Vega, W.M.; Romero-Cano, L.A. Decoding of the Isotopic Fingerprint of Tequila 100% Agave Silver Class and Image Analysis to Evaluate Differences between Spirits. Food Chem. 2024, 460, 140735. [Google Scholar] [CrossRef] [PubMed]
- Gómez, A.; Bueno, D.; Gutiérrez, J.M. Electronic Eye for Identification of Tequila Samples. In Proceedings of the 1st International Electronic Conference on Biosensors, Basel, Switzerland, 2 November 2020; p. 44. [Google Scholar]
- Heil, J.; Marschner, B.; Stumpe, B. Digital Photography as a Tool for Microscale Mapping of Soil Organic Carbon and Iron Oxides. Catena 2020, 193, 104610. [Google Scholar] [CrossRef]
- Granados-Vega, B.V.; Maldonado-Flores, C.; Gómez-Navarro, C.S.; Warren-Vega, W.M.; Campos-Rodríguez, A.; Romero-Cano, L.A. Development of a Low-Cost Artificial Vision System as an Alternative for the Automatic Classification of Persian Lemon: Prototype Test Simulation. Foods 2023, 12, 3829. [Google Scholar] [CrossRef]
- Bortoletto, A.M.; Alcarde, A.R. Congeners in Sugar Cane Spirits Aged in Casks of Different Woods. Food Chem. 2013, 139, 695–701. [Google Scholar] [CrossRef]
- López-Ramírez, J.E.; Martín-del-Campo, S.T.; Escalona-Buendía, H.; García-Fajardo, J.A.; Estarrón-Espinosa, M. Physicochemical Quality of Tequila during Barrel Maturation. A Preliminary Study. CyTA J. Food 2013, 11, 223–233. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; González-Sanjosé, M.L.; González-Huerta, C. Consideration of the Influence of Aging Process, Type of Wine and Oenological Classic Parameters on the Levels of Wood Volatile Compounds Present in Red Wines. Food Chem. 2007, 103, 1434–1448. [Google Scholar] [CrossRef]
- Warren-Vega, W.M.; Contreras-Atrisco, Z.A.; Ramírez-Quezada, M.F.; Romero-Cano, L.A. A Novel Approach of Artificial Intelligence for the Study of the Relation of Physicochemical Profile and Color Acquired by Tequila 100% Agave in Its Maturation Process. J. Food Compos. Anal. 2023, 123, 105533. [Google Scholar] [CrossRef]
- Glories, Y. La Couleur Des Vins Rouges. 2a. Partie Mesure, Origine et Interpretarion. J. Int. Sci. Vigne Vin. 1984, 18, 253–271. [Google Scholar] [CrossRef]
- Zamora, F. Elaboración y Crianza Del Vino Tinto: Aspectos Científicos y Prácticos, 1st ed.; Mundiprensa: Madrid, Spain, 2003. [Google Scholar]
- Andrés-Lacueva, C.; Lamuela-Raventós, R.M.; Buxaderas, S.; De La Torre-Boronat, M.D.C. Influence of Variety and Aging on Foaming Properties of Cava (Sparkling Wine). 2. J. Agric. Food Chem. 1997, 45, 2520–2525. [Google Scholar] [CrossRef]
- Nieto-Delgado, C.; Terrones, M.; Rangel-Mendez, J.R. Development of Highly Microporous Activated Carbon from the Alcoholic Beverage Industry Organic By-Products. Biomass Bioenergy 2011, 35, 103–112. [Google Scholar] [CrossRef]
- Aguilar-Méndez, O.; López-Álvarez, J.A.; Díaz-Pérez, A.L.; Altamirano, J.; Reyes De la Cruz, H.; Rutiaga-Quiñones, J.G.; Campos-García, J. Volatile Compound Profile Conferred to Tequila Beverage by Maturation in Recycled and Regenerated White Oak Barrels from Quercus Alba. Eur. Food Res. Technol. 2017, 243, 2073–2082. [Google Scholar] [CrossRef]
- Ramsay, C.M.; Berry, D.R. Effect of Temperature and PH on the Formation of Higher Alcohols, Fatty Acids and Esters in the Malt Whisky Fermentation. Food Microbiol. 1984, 1, 117–121. [Google Scholar] [CrossRef]
- Huang, X.; Cadwallader, K.R. Chapter: A Critical Review of the Flavor Chemistry of Tequila. In Chemistry of Alcoholic Beverages; American Chemical Society: Washington, DC, USA, 2023; pp. 1–36. [Google Scholar]
Year | Analytical Technique | Matrix | Reference |
---|---|---|---|
1996 | GC-SCD, GC-FID, GC-MS | T100% silver class (SC) | [2] |
1999 | GC-MS | T100% (SC, AC, EC) | [3] |
2004 | SPME, GC-MS | T100% (SC, AC, EC) | [4] |
2006 | GC, IC | T, T100% (SC) | [5] |
2008 | HPLC-DAD | T, T100%, (SC, AC, EC) | [6] |
2008 | HS-SPME-GC-MS | T (SC) | [7] |
2009 | GCxGC/TOFMS | T (SC) | [8] |
2013 | HS-SPME-GC-MS, HPLC-DAD | T100% (SC, AC, EC) | [9] |
2015 | HPLC-ESI-ITMS | T100% (SC, AC, EC) | [10] |
2018 | SPME, LLE, GC-MS | T (SC) | [11] |
2019 | GC-MS-SIM | T (SC, AC, EC, UC) | [12] |
2021 | GC-FID | T | [13] |
2022 | GC-FID | T | [14] |
2022 | HPLC-HRMS | T (SC, AC, EC, UC) | [15] |
Year | Analytical Technique | Matrix | Reference |
---|---|---|---|
2002 | SPME-HRGC-IRMS | T, T100% (SC) | [16] |
2003 | GC-IRMS | T, T100% (SC) | [17] |
2010 | SNIF-NMR | T100% (SC) | [18] |
2014 | HS-SPME/GC-MS | T, T100% (SC) | [19] |
2020 | GC-IRMS | T, T100% (SC) | [20] |
2021 | SNIF-NMR | T (SC) | [21] |
2021 | GC-IRMS | T100% (SC, AC, EC) | [22] |
2021 | GC-IRMS | T100% (SC, AC, EC) | [23] |
2021 | GC-IRMS | T100% (SC) | [24] |
2024 | GC-IRMS | T, T100% (SC) | [25] |
Year | Analytical Technique | Matrix | Reference |
---|---|---|---|
2005 | FTIR | T100%, T (SC) | [26] |
2005 | Raman | T (SC, AC) | [27] |
2009 | ICP-MS | T, T100% (SC, AC, EC) | [28] |
2009 | ICP-OES | T100% (SC, AC, EC) | [29] |
2010 | UV-Vis | T, T100% (SC) | [30] |
2010 | UV-Vis | T, T100% (SC, AC) | [31] |
2015 | XRF | T, T100% (SC, AC, EC) | [32] |
2017 | UV-Vis | T (SC, AC, EC, UC) | [33] |
2017 | UV-Vis | T (SC, AC, EC, UC) | [34] |
2018 | MALDI-TOFMS & ICP-MS | T (SC, AC, EC, UC) | [35] |
2019 | Raman | T100% (SC, AC, EC) | [36] |
2021 | ICP-MS & IRMS | T (SC) | [37] |
2022 | SORS | T, T100% (SC) | [38] |
2023 | UV-Vis | T100% (EC, SC) | [39] |
Year | Analytical Technique | Matrix | Reference |
---|---|---|---|
2008 | Anodic stripping voltammetry | T (100%) | [40] |
2012 | Surface plasmon resonance | T (SC, AC, EC) | [41] |
2013 | Pulsed laser photoacoustic | T, T100% (SC, AC) | [42] |
2015 | Differential pulse adsorptive stripping voltammetry | T (SC) | [43] |
2016 | Physicochemical properties | T (SC, AC, EC) | [44] |
2017 | Open-ended coaxial probe | T100% (SC) | [45] |
2017 | ZnO thin films sensor | T (AC) | [46] |
2018 | Cyclic voltammetry | T (SC) | [47] |
2019 | Fiber optic sensor | T (SC) | [48] |
2020 | ZnO Nanorods films | T (AC) | [49] |
2021 | Digital image analysis | T (SC) | [50] |
2021 | Electronic eye | T100% (SC, AC, EC) | [51] |
2023 | Differential pulse voltammetry | T100% (SC, AC, EC, UC) | [52] |
2024 | Image analysis | T100% (SC) | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warren-Vega, W.M.; Fonseca-Aguiñaga, R.; Villa-González, A.; Gómez-Navarro, C.S.; Romero-Cano, L.A. Comprehensive Characterization (Chromatography, Spectroscopy, Isotopic, and Digital Color Image) of Tequila 100% Agave Cristalino as Evidence of the Preservation of the Characteristics of Its Aging Process. Beverages 2025, 11, 42. https://doi.org/10.3390/beverages11020042
Warren-Vega WM, Fonseca-Aguiñaga R, Villa-González A, Gómez-Navarro CS, Romero-Cano LA. Comprehensive Characterization (Chromatography, Spectroscopy, Isotopic, and Digital Color Image) of Tequila 100% Agave Cristalino as Evidence of the Preservation of the Characteristics of Its Aging Process. Beverages. 2025; 11(2):42. https://doi.org/10.3390/beverages11020042
Chicago/Turabian StyleWarren-Vega, Walter M., Rocío Fonseca-Aguiñaga, Arantza Villa-González, Camila S. Gómez-Navarro, and Luis A. Romero-Cano. 2025. "Comprehensive Characterization (Chromatography, Spectroscopy, Isotopic, and Digital Color Image) of Tequila 100% Agave Cristalino as Evidence of the Preservation of the Characteristics of Its Aging Process" Beverages 11, no. 2: 42. https://doi.org/10.3390/beverages11020042
APA StyleWarren-Vega, W. M., Fonseca-Aguiñaga, R., Villa-González, A., Gómez-Navarro, C. S., & Romero-Cano, L. A. (2025). Comprehensive Characterization (Chromatography, Spectroscopy, Isotopic, and Digital Color Image) of Tequila 100% Agave Cristalino as Evidence of the Preservation of the Characteristics of Its Aging Process. Beverages, 11(2), 42. https://doi.org/10.3390/beverages11020042