Introduction to the Special Issue on Advances in Biological Tissue Biomechanics
1. Introduction
2. Individual Contributions
2.1. Experimental Characterizations and Computational Modeling of Cardiac Heart Valves
2.2. Biomechanical Investigations of Cardiovascular/Vascular Tissues
2.3. Hydration Effect on the Compressive Tissue Mechanics of Brain
2.4. High Strain Rate Mechanical Responses of Liver Tissue
2.5. Linking Tissue Mechanics and Extracellular Matrix for Venous Valve Tissue
2.6. Key Considerations for Biomechanical Parameter Estimations of Soft Tissues
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Nishimura, R.A.; Carabello, B.A.; Faxon, D.P.; Freed, M.D.; Lytle, B.W.; O’Gara, P.T.; O’Rourke, R.A.; Shah, P.M. ACC/AHA 2008 Guideline Update on Valvular Heart Disease: Focused Update on Infective Endocarditis—A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 2008, 118, 887–896. [Google Scholar]
- Maganti, K.; Rigolin, V.H.; Sarano, M.E.; Bonow, R.O. Valvular Heart Disease: Diagnosis and Management. Mayo Clin. Proc. 2010, 85, 483–500. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Laurence, D.W.; Ross, C.J.; Kramer, K.E.; Babu, A.R.; Johnson, E.L.; Hsu, M.-C.; Aggarwal, A.; Mir, A.; Burkhart, H.M.; et al. Mechanics of the Tricuspid Valve—From Clinical Diagnosis/Treatment, In-Vivo and In-Vitro Investigations, to Patient-Specific Biomechanical Modeling. Bioengineering 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Hudson, L.T.; Jett, S.V.; Kramer, K.E.; Laurence, D.W.; Ross, C.J.; Towner, R.A.; Baumwart, R.; Lim, K.M.; Mir, A.; Burkhart, H.M.; et al. A Pilot Study on Linking Tissue Mechanics with Load-Dependent Collagen Microstructures in Porcine Tricuspid Valve Leaflets. Bioengineering 2020, 7, 60. [Google Scholar] [CrossRef]
- Salinas, S.D.; Clark, M.M.; Amini, R. Mechanical Response Changes in Porcine Tricuspid Valve Anterior Leaflet Under Osmotic-Induced Swelling. Bioengineering 2019, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.J.; Zheng, J.; Ma, L.; Wu, Y.; Lee, C.-H. Mechanics and Microstructure of the Atrioventricular Heart Valve Chordae Tendineae: A Review. Bioengineering 2020, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Ross, C.J.; Hsu, M.-C.; Baumwart, R.; Mir, A.; Burkhart, H.M.; Holzapfel, G.A.; Wu, Y.; Lee, C.-H. Quantification of Load-Dependent Changes in the Collagen Fiber Architecture for Strut Chordae Tendineae-Leaflet Insertion of Porcine Atrioventricular Heart Valves. Biomech. Model. Mechanobiol. 2020, in press. [Google Scholar]
- Tesfamariam, M.D.; Mirza, A.M.; Chaparro, D.; Ali, A.Z.; Montalvan, R.; Saytashev, I.; Gonzalez, B.A.; Barreto, A.; Ramella-Roman, J.; Hutcheson, J.D.; et al. Elastin-Dependent Aortic Heart Valve Leaflet Curvature Changes During Cyclic Flexure. Bioengineering 2019, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Khalili, F.; Gamage, P.P.T.; Sandler, R.H.; Mansy, H.A. Adverse Hemodynamic Conditions Associated with Mechanical Heart Valve Leaflet Immobility. Bioengineering 2018, 5, 74. [Google Scholar] [CrossRef] [Green Version]
- Carmo, M.; Colombo, L.; Bruno, A.; Corsi, F.R.M.; Roncoroni, L.; Cuttin, M.S.; Radice, F.; Mussini, E.; Settembrini, P.G. Alteration of Elastin, Collagen and Their Cross-Links in Abdominal Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2002, 23, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Patnaik, S.S.; Piskin, S.; Pillalamarri, N.R.; Romero, G.; Escobar, G.P.; Sprague, E.; Finol, E.A. Biomechanical Restoration Potential of Pentagalloyl Glucose after Arterial Extracellular Matrix Degeneration. Bioengineering 2019, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Wayne, R.; Katherine, F.; Karen, F.; Alan, G.; Kurt, G.; Nancy, H.; Susan, M.H.; Michael, H.; Virginia, H.; Brett, K.; et al. Heart Disease and Stroke Statistics—2008 Update. Circulation 2008, 117, e25–e146. [Google Scholar]
- Liu, W.; Wang, Z. Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure. Bioengineering 2020, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Langlois, J.A.; Rutland-Brown, W.; Wald, M.M. The Epidemiology and Impact of Traumatic Brain Injury A Brief Overview. J. Head Trauma Rehabilm 2006, 21, 375–378. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, R.K.; Begonia, M.T.; Whittington, W.R.; Murphy, M.A.; Mao, Y.; Liao, J.; Williams, L.N.; Horstemeyer, M.F.; Sheng, J. Compressive Mechanical Properties of Porcine Brain: Experimentation and Modeling of the Tissue Hydration Effects. Bioengineering 2019, 6, 40. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Patnaik, S.S.; Prabhu, R.K.; Priddy, L.B.; Bouvard, J.-L.; Marin, E.; Horstemeyer, M.F.; Liao, J.; Williams, L.N. Mechanical Response of Porcine Liver Tissue under High Strain Rate Compression. Bioengineering 2019, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Benson, A.A.; Huang, H.-Y.S. Tissue Level Mechanical Properties and Extracellular Matrix Investigation of the Bovine Jugular Venous Valve Tissue. Bioengineering 2019, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, A. Effect of Residual and Transformation Choice on Computational Aspects of Biomechanical Parameter Estimation of Soft Tissues. Bioengineering 2019, 6, 100. [Google Scholar] [CrossRef] [Green Version]
- Gasser, T.C.; Ogden, R.W.; Holzapfel, G.A. Hyperelastic Modelling of Arterial Layers with Distributed Collagen Fibre Orientations. J. R. Soc. Interface 2006, 3, 15–35. [Google Scholar] [CrossRef]
- Humphrey, J.; Yin, F.A. New Constitutive Formulation for Characterizing the Mechanical Behavior of Soft Tissues. Biophys. J. 1987, 52, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Amini, R.; Gorman, R.C.; Gorman, J.H.; Sacks, M.S. An Inverse Modeling Approach for Stress Estimation in Mitral Valve Anterior Leaflet Valvuloplasty for In-Vivo Valvular Biomaterial Assessment. J. Biomech. 2014, 47, 2055–2063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- May-Newman, K.; Yin, F.C.P. A Constitutive Law for Mitral Valve Tissue. J. Biomech. Eng. 1998, 120, 38–47. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-H.; Liao, J. Introduction to the Special Issue on Advances in Biological Tissue Biomechanics. Bioengineering 2020, 7, 95. https://doi.org/10.3390/bioengineering7030095
Lee C-H, Liao J. Introduction to the Special Issue on Advances in Biological Tissue Biomechanics. Bioengineering. 2020; 7(3):95. https://doi.org/10.3390/bioengineering7030095
Chicago/Turabian StyleLee, Chung-Hao, and Jun Liao. 2020. "Introduction to the Special Issue on Advances in Biological Tissue Biomechanics" Bioengineering 7, no. 3: 95. https://doi.org/10.3390/bioengineering7030095
APA StyleLee, C. -H., & Liao, J. (2020). Introduction to the Special Issue on Advances in Biological Tissue Biomechanics. Bioengineering, 7(3), 95. https://doi.org/10.3390/bioengineering7030095