Abstract
Background: Static coronal alignment is considered a key of lower limb biomechanics after total knee replacement (TKR); however, its relationship with dynamic foot loading patterns and gait characteristics remains unclear. The primary objective of this prospective study was to investigate whether there is a correlation between dynamic plantar pressures and spatiotemporal parameters of gait and the coronal alignment of the lower limb after unilateral TKR for primary knee osteoarthritis (KOA). Methods: Thirty-two consecutive patients scheduled for TKR were evaluated preoperatively and at six months postoperatively. Changes in plantar pressure distribution and spatiotemporal gait parameters were collected using a multiplatform plantar pressure analysis system (PPAS), while coronal alignment was assessed using the femorotibial angle (FTA). Relationships with preoperative, postoperative, and correction-related alignment measures were examined using non-parametric statistical methods. Results: Dynamic plantar pressures and spatiotemporal gait parameters were not found to be consistently associated with pre- or postoperative values of FTA, respectively. Furthermore, the degree of correction did not appear to influence baropodometric outcomes. Conclusions: Static coronal alignment, as defined by the FTA, was not found to be consistently associated with dynamic plantar pressure patterns or spatiotemporal gait parameters at six months following unilateral TKR in our study population. These findings highlight the potential limitations of using solely static radiographic markers to evaluate complex functional outcomes such as gait.