OKEN: A Supervised Evolutionary Optimizable Dimensionality Reduction Framework for Whole Slide Image Classification
Abstract
1. Introduction
- A novel supervised dimensionality reduction of features utilizing an evolutionary algorithm;
- Integration of this technique into a new open framework (OKEN), facilitating its adaptation to various datasets and applications;
- A study to measure the impact of key components within the proposed framework and understand how each affects classification performance.
2. Materials and Methods
2.1. Datasets
2.2. Preprocessing
2.3. Proposed Method
2.3.1. Feature Extraction and Dimensionality Reduction
Algorithm 1 Evolutionary algorithm for dimensionality reduction |
|
2.3.2. Whole Slide Image Classification
2.3.3. Model Training
2.4. Experiments
- Population size: 5, 10, and 15;
- Generation limit: 1000, 5000, 15,000, and 30,000;
- Mutation rate: 0.5, 0.6, 0.7, and 0.8;
- Crossover rate: 0.4, 0.5, 0.6, and 0.7.
Framework | Backbone | Classifier | Data Refinement | Test Set |
---|---|---|---|---|
OKEN | MobileNetV2 [54] | GCNN | None | Biobank1 |
EfficientNetB0 [55] | ||||
ResNet50 [45] | ||||
InceptionV3 [56] | ||||
DenseNet121 [44] | ||||
DINO-ViT-s16 [31] | ||||
OKEN | DenseNet121 | DT | None | Biobank1 HULC |
XGB | ||||
RF | ||||
SVM | ||||
MIL | ||||
TransMIL | ||||
GCNN | ||||
2D-CNN | ||||
1D-CNN | ||||
OKEN | DenseNet121 | 1D-CNN | Aug | Biobank1 HULC * |
Aug + PCA | ||||
Aug + EA | ||||
UMAP | ||||
LDA | ||||
Vim4Path | DINO-ViT-s16 [31] | CLAM | None | Biobank1 HULC |
DINO-Vim-s16 [33] | ||||
OKEN Vim4Path | DenseNet121 | 1D-CNN | Aug + EA | LUAD and LUSC from TCGA |
DINO-ViT-s16 | TransMIL | |||
DINO-Vim-s16 | CLAM |
2.5. Evaluation
2.6. Hardware and Software Configurations
2.7. Visualizing Transformed Features’ Geometries
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Accuracy |
AUC | Area under the curve |
CLAM | Clustering-constrained attention multiple-instance learning |
CNN | Convolutional neural network |
DT | Decision tree |
EA | Evolutionary algorithm |
GCNN | Graph convolutional neural network |
GPU | Graphics processing unit |
HE | Hematoxylin and eosin |
HULC | Haukeland University Lung Cancer |
MIL | Multiple-instance learning |
NSCLC | Non-small cell lung cancer |
PCA | Principal component analysis |
RF | Random forest |
SVM | Support vector machine |
t-SNE | t-distributed stochastic neighbor embedding |
UMAP | Uniform manifold approximation and projection |
Vim | Vision Mamba |
ViT | Vision Transformer |
WSI | Whole slide image |
XGB | Extreme gradient boosting |
References
- Strauss, G.M.; Jemal, A.; McKenna, M.B.; Strauss, J.A.; Cummings, K. B4-06: Lung Cancer Survival in Relation to Histologic Subtype: An Analysis based upon Surveillance Epidemiology and End Results (SEER) Data. J. Thorac. Oncol. 2007, 2, S345–S346. [Google Scholar] [CrossRef]
- Yun, J.K.; Kwon, Y.; Kim, J.; Lee, G.D.; Choi, S.; Kim, H.R.; Kim, Y.H.; Kim, D.K.; Park, S.I. Clinical impact of histologic type on survival and recurrence in patients with surgically resected stage II and III non-small cell lung cancer. Lung Cancer 2023, 176, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Perez-Moreno, P.; Brambilla, E.; Thomas, R.; Soria, J.C. Squamous cell carcinoma of the lung: Molecular subtypes and therapeutic opportunities. Clin. Cancer Res. 2012, 18, 2443–2451. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Chang, C.; Yin, Y.; Wang, R. Machine learning for differentiating lung squamous cell cancer from adenocarcinoma using Clinical-Metabolic characteristics and 18F-FDG PET/CT radiomics. PLoS ONE 2024, 19, e0300170. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Dhahbi, J. Lung adenocarcinoma and lung squamous cell carcinoma cancer classification, biomarker identification, and gene expression analysis using overlapping feature selection methods. Sci. Rep. 2021, 11, 13323. [Google Scholar] [CrossRef]
- Hou, L.; Samaras, D.; Kurc, T.M.; Gao, Y.; Davis, J.E.; Saltz, J.H. Patch-based convolutional neural network for whole slide tissue image classification. In Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2424–2433. [Google Scholar]
- Tao, L.W.; Hwu, A.F.; Huang, Y.J.; Chen, C.C.; Yeh, C.Y.; Hung, S.H. End-to-end performance optimization for training streaming convolutional neural networks using billion-pixel whole-slide images. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA, 15–18 December 2021; pp. 1127–1137. [Google Scholar]
- Sharma, Y.; Shrivastava, A.; Ehsan, L.; Moskaluk, C.A.; Syed, S.; Brown, D. Cluster-to-conquer: A framework for end-to-end multi-instance learning for whole slide image classification. In Proceedings of the Medical Imaging with Deep Learning, Lübeck, Germany, 7–9 July 2021; pp. 682–698. [Google Scholar]
- Tarkhan, A.; Nguyen, T.K.; Simon, N.; Dai, J. Investigation of training multiple instance learning networks with instance sampling. In Resource-Efficient Medical Image Analysis; Springer: Berlin/Heidelberg, Germany, 2022; pp. 95–104. [Google Scholar]
- Bahadir, C.D.; Omar, M.; Rosenthal, J.; Marchionni, L.; Liechty, B.; Pisapia, D.J.; Sabuncu, M.R. Artificial intelligence applications in histopathology. Nat. Rev. Electr. Eng. 2024, 1, 93–108. [Google Scholar] [CrossRef]
- Srinidhi, C.L.; Ciga, O.; Martel, A.L. Deep neural network models for computational histopathology: A survey. Med. Image Anal. 2021, 67, 101813. [Google Scholar] [CrossRef]
- Dosovitskiy, A. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Ding, S.; Wang, J.; Li, J.; Shi, J. Multi-Scale Prototypical Transformer for Whole Slide Image Classification. In Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2023; pp. 602–611. [Google Scholar]
- Zhang, J.; Nguyen, A.T.; Han, X.; Trinh, V.Q.H.; Qin, H.; Samaras, D.; Hosseini, M.S. 2DMamba: Efficient State Space Model for Image Representation with Applications on Giga-Pixel Whole Slide Image Classification. arXiv 2024, arXiv:2412.00678. [Google Scholar]
- Khan, S.; Naseer, M.; Hayat, M.; Zamir, S.W.; Khan, F.S.; Shah, M. Transformers in vision: A survey. ACM Comput. Surv. (CSUR) 2022, 54, 1–41. [Google Scholar] [CrossRef]
- Wang, W.; Xie, E.; Li, X.; Fan, D.P.; Song, K.; Liang, D.; Lu, T.; Luo, P.; Shao, L. Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 568–578. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10012–10022. [Google Scholar]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. Adv. Neural Inf. Process. Syst. 2021, 34, 12077–12090. [Google Scholar]
- Hatamizadeh, A.; Tang, Y.; Nath, V.; Yang, D.; Myronenko, A.; Landman, B.; Roth, H.R.; Xu, D. UNETR: Transformers for 3D Medical Image Segmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 574–584. [Google Scholar]
- Hamilton, J.D. State-space models. Handb. Econom. 1994, 4, 3039–3080. [Google Scholar]
- Gu, A.; Goel, K.; Ré, C. Efficiently Modeling Long Sequences with Structured State Spaces. arXiv 2021, arXiv:2111.00396. [Google Scholar]
- Gu, A.; Dao, T. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv 2023, arXiv:2312.00752. [Google Scholar]
- Zhu, L.; Liao, B.; Zhang, Q.; Wang, X.; Liu, W.; Wang, X. Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model. arXiv 2024, arXiv:2401.09417. [Google Scholar]
- Lloret, P.; Cano, P.; Musulen, E.; Gil, D. CNN Classifier for Helicobacter Pylori Detection in Immunohistochemically Stained Gastric WSI. In Advances in Computational Collective Intelligence; Springer: Cham, Switzerland, 2024; pp. 73–82. [Google Scholar]
- Dwivedi, K.; Gupta, A.; Rajpal, A.; Kumar, N. Deep Learning-based NSCLC Classification from Whole-Slide Images: Leveraging Expectation-Maximization and InceptionV3. Procedia Comput. Sci. 2024, 235, 2422–2433. [Google Scholar] [CrossRef]
- Bishnoi, V.; Lavanya; Handa, P.; Goel, N. Dual-Path Multi-Scale CNN for Precise Classification of Non-Small Cell Lung Cancer. Int. J. Imaging Syst. Technol. 2025, 35, e70066. [Google Scholar] [CrossRef]
- Wang, Y.; Acs, B.; Robertson, S.; Liu, B.; Solorzano, L.; Wählby, C.; Hartman, J.; Rantalainen, M. Improved breast cancer histological grading using deep learning. Ann. Oncol. 2022, 33, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Dietterich, T.G.; Lathrop, R.H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 1997, 89, 31–71. [Google Scholar] [CrossRef]
- Carbonneau, M.A.; Cheplygina, V.; Granger, E.; Gagnon, G. Multiple Instance Learning: A Survey of Problem Characteristics and Applications. Pattern Recognit. 2018, 77, 329–353. [Google Scholar] [CrossRef]
- Lu, M.Y.; Williamson, D.F.; Chen, T.Y.; Chen, R.J.; Barbieri, M.; Mahmood, F. Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 2021, 5, 555–570. [Google Scholar] [CrossRef] [PubMed]
- Caron, M.; Touvron, H.; Misra, I.; Jegou, H.; Mairal, J.; Bojanowski, P.; Joulin, A. Emerging Properties in Self-Supervised Vision Transformers. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 9630–9640. [Google Scholar] [CrossRef]
- Chen, R.J.; Chen, C.; Li, Y.; Chen, T.Y.; Trister, A.D.; Krishnan, R.G.; Mahmood, F. Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 16144–16155. [Google Scholar]
- Nasiri-Sarvi, A.; Trinh, V.Q.H.; Rivaz, H.; Hosseini, M.S. Vim4Path: Self-Supervised Vision Mamba for Histopathology Images. In Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Seattle, WA, USA, 17–18 June 2024; pp. 6894–6903. [Google Scholar] [CrossRef]
- Fischer, A.H.; Jacobson, K.A.; Rose, J.; Zeller, R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb. Protoc. 2008, 2008, pdb–prot4986. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.; Shmulevich, I.; Sander, C.; Stuart, J.M. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Grossman, R.L.; Heath, A.P.; Ferretti, V.; Varmus, H.E.; Lowy, D.R.; Kibbe, W.A.; Staudt, L.M. Toward a shared vision for cancer genomic data. N. Engl. J. Med. 2016, 375, 1109–1112. [Google Scholar] [CrossRef]
- Sveidqvist, K. Mermaid: Generate Diagrams from Markdown-Like Text. 2014. Available online: https://github.com/mermaid-js/mermaid (accessed on 12 April 2025).
- Pedersen, A.; Bouget, D.; Krossa, S.; Smistad, E. Andreped/vsi2tif: v0.1.4. 2024. Available online: https://zenodo.org/records/14775173 (accessed on 7 February 2025).
- Goode, A.; Gilbert, B.; Harkes, J.; Jukic, D.; Satyanarayanan, M. OpenSlide: A vendor-neutral software foundation for digital pathology. J. Pathol. Inform. 2013, 4, 27. [Google Scholar] [CrossRef]
- Lee, G.; Bae, G.; Zaitlen, B.; Kirkham, J.; Choudhury, R. cuCIM—A GPU image I/O and Processing Library; Zenodo: Geneva, Switzerland, 2021. [Google Scholar] [CrossRef]
- Sobel, I.; Duda, R.; Hart, P.; Wiley, J. Sobel-Feldman Operator. 2022. Available online: https://www.researchgate.net/profile/Irwin-Sobel/publication/285159837 (accessed on 19 February 2025).
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Oskouei, S.; Valla, M.; Pedersen, A.; Smistad, E.; Dale, V.G.; Høibø, M.; Wahl, S.G.F.; Haugum, M.D.; Langø, T.; Ramnefjell, M.P.; et al. Segmentation of Non-Small Cell Lung Carcinomas: Introducing DRU-Net and Multi-Lens Distortion. J. Imaging 2025, 11, 166. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ram, P.; Sinha, K. Revisiting kd-tree for Nearest Neighbor Search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 1378–1388. [Google Scholar]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Pedersen, A.; Smistad, E.; Rise, T.V.; Dale, V.G.; Pettersen, H.S.; Nordmo, T.A.S.; Bouget, D.; Reinertsen, I.; Valla, M. H2G-Net: A multi-resolution refinement approach for segmentation of breast cancer region in gigapixel histopathological images. Front. Med. 2022, 9, 971873. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018, arXiv:1802.03426. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467. [Google Scholar]
- Ilse, M.; Tomczak, J.; Welling, M. Attention-based deep multiple instance learning. In Proceedings of the International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 2127–2136. [Google Scholar]
- Shao, Z.; Bian, H.; Chen, Y.; Wang, Y.; Zhang, J.; Ji, X.; Zhang, Y. Transmil: Transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural Inf. Process. Syst. 2021, 34, 2136–2147. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; Volume 2010. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Chen, C.L.; Chen, C.C.; Yu, W.H.; Chen, S.H.; Chang, Y.C.; Hsu, T.I.; Hsiao, M.; Yeh, C.Y.; Chen, C.Y. An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning. Nat. Commun. 2021, 12, 1193. [Google Scholar] [CrossRef]
- Wong, B.; Hong, S.; Yi, M.Y. Rethinking pre-trained feature extractor selection in multiple instance learning for whole slide image classification. arXiv 2024, arXiv:2408.01167. [Google Scholar]
- Li, B.; Li, Y.; Eliceiri, K.W. Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14318–14328. [Google Scholar]
- Zhang, H.; Meng, Y.; Zhao, Y.; Qiao, Y.; Yang, X.; Coupland, S.E.; Zheng, Y. Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 18802–18812. [Google Scholar]
- Ehteshami Bejnordi, B.; Veta, M.; P, J.; Beca, F.; Albarqouni, S.; Cetin-Atalay, R.; Qaiser, T.; Serrano Gracia, I.; Shaban, M.; Kalinovsky, A.; et al. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. JAMA 2017, 318, 2199–2210. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 2009, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. [Google Scholar] [CrossRef]
Subtype | Biobank1—Training and Validation | Biobank1—Test | HULC—Test |
---|---|---|---|
AC | 131 | 22 | 45 |
SCC | 60 | 8 | 41 |
Total | 191 | 30 | 86 |
Backbone | Biobank1 | ||
---|---|---|---|
ACC | AUC | F1-Score | |
MobileNetV2 | 0.566 | 0.569 | 0.466 |
EfficientNetB0 | 0.566 | 0.593 | 0.422 |
ResNet50 | 0.500 | 0.583 | 0.494 |
InceptionV3 | 0.699 | 0.748 | 0.600 |
DenseNet121 | 0.733 | 0.707 | 0.700 |
DINO-ViT-s16 | 0.566 | 0.613 | 0.494 |
Classifier | Biobank1 | HULC | ||||
---|---|---|---|---|---|---|
ACC | AUC | F1-Score | ACC | AUC | F1-Score | |
DT | 0.733 | 0.627 | 0.619 | 0.581 | 0.575 | 0.552 |
XGB | 0.833 | 0.784 | 0.754 | 0.558 | 0.575 | 0.527 |
RF | 0.766 | 0.801 | 0.610 | 0.511 | 0.606 | 0.470 |
SVM | 0.733 | 0.625 | 0.423 | 0.511 | 0.630 | 0.338 |
MIL | 0.699 | 0.792 | 0.600 | 0.593 | 0.647 | 0.593 |
TransMIL | 0.700 | 0.727 | 0.653 | 0.709 | 0.722 | 0.708 |
GCNN | 0.733 | 0.707 | 0.700 | 0.686 | 0.707 | 0.686 |
2D-CNN | 0.666 | 0.737 | 0.625 | 0.558 | 0.636 | 0.527 |
1D-CNN | 0.833 | 0.875 | 0.721 | 0.686 | 0.688 | 0.772 |
Data Refinement | Biobank1 | HULC | ||||
---|---|---|---|---|---|---|
ACC | AUC | F1-Score | ACC | AUC | F1-Score | |
None | 0.633 | 0.686 | 0.612 | – | – | – |
Aug | 0.666 | 0.691 | 0.652 | – | – | – |
PCA | 0.733 | 0.705 | 0.423 | – | – | – |
UMAP | 0.733 | 0.742 | 0.423 | – | – | – |
LDA | 0.699 | 0.611 | 0.653 | – | – | – |
Aug + EA | 0.833 | 0.875 | 0.721 | 0.686 | 0.688 | 0.772 |
Method | Biobank1 | HULC | ||||
---|---|---|---|---|---|---|
ACC | AUC | F1-Score | ACC | AUC | F1-Score | |
Vim4Path-ViT-S-16 () | 0.700 | 0.693 | 0.470 | 0.732 | 0.841 | 0.684 |
Vim4Path-ViT-S-16 (×2.5) | 0.700 | 0.642 | 0.470 | 0.581 | 0.793 | 0.250 |
Vim4Path-Vim-S-16 (×10) | 0.733 | 0.721 | 0.555 | 0.488 | 0.607 | 0.620 |
Vim4Path-Vim-S-16 (×2.5) | 0.700 | 0.625 | 0.526 | 0.511 | 0.533 | 0.086 |
OKEN-DenseNet121 () | 0.733 | 0.836 | 0.582 | 0.709 | 0.837 | 0.695 |
OKEN-DenseNet121 () | 0.833 | 0.875 | 0.721 | 0.686 | 0.688 | 0.772 |
Method | ACC | AUC | F1-Score |
---|---|---|---|
OKEN-DenseNet121-1D-CNN | 0.708 | 0.809 | 0.704 |
OKEN-DenseNet121-TransMIL | 0.714 | 0.749 | 0.714 |
Vim4Path-ViT-S-16 (×10) | 0.489 | 0.670 | 0.329 |
Vim4Path-Vim-S-16 (×10) | 0.595 | 0.608 | 0.612 |
Method | Inference Runtime (s) |
---|---|
Vim4Path-ViT-S-16 | 15.468 ± 0.133 |
Vim4Path-Vim-S-16 | 18.452 ± 0.112 |
OKEN-DenseNet121-GCNN | 14.969 ± 0.022 |
OKEN-DenseNet121-1D-CNN | 13.077 ± 0.063 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oskouei, S.; Pedersen, A.; Valla, M.; Dale, V.G.; Wahl, S.G.F.; Haugum, M.D.; Langø, T.; Ramnefjell, M.P.; Akslen, L.A.; Kiss, G.; et al. OKEN: A Supervised Evolutionary Optimizable Dimensionality Reduction Framework for Whole Slide Image Classification. Bioengineering 2025, 12, 733. https://doi.org/10.3390/bioengineering12070733
Oskouei S, Pedersen A, Valla M, Dale VG, Wahl SGF, Haugum MD, Langø T, Ramnefjell MP, Akslen LA, Kiss G, et al. OKEN: A Supervised Evolutionary Optimizable Dimensionality Reduction Framework for Whole Slide Image Classification. Bioengineering. 2025; 12(7):733. https://doi.org/10.3390/bioengineering12070733
Chicago/Turabian StyleOskouei, Soroush, André Pedersen, Marit Valla, Vibeke Grotnes Dale, Sissel Gyrid Freim Wahl, Mats Dehli Haugum, Thomas Langø, Maria Paula Ramnefjell, Lars Andreas Akslen, Gabriel Kiss, and et al. 2025. "OKEN: A Supervised Evolutionary Optimizable Dimensionality Reduction Framework for Whole Slide Image Classification" Bioengineering 12, no. 7: 733. https://doi.org/10.3390/bioengineering12070733
APA StyleOskouei, S., Pedersen, A., Valla, M., Dale, V. G., Wahl, S. G. F., Haugum, M. D., Langø, T., Ramnefjell, M. P., Akslen, L. A., Kiss, G., & Sorger, H. (2025). OKEN: A Supervised Evolutionary Optimizable Dimensionality Reduction Framework for Whole Slide Image Classification. Bioengineering, 12(7), 733. https://doi.org/10.3390/bioengineering12070733