Using Two X-Ray Images to Create a Parameterized Scoliotic Spine Model and Analyze Disk Stress Adjacent to Spinal Fixation—A Finite Element Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subject
2.2. Parameterized Finite Element Model
- Coordinates of the superior posterior points of each vertebral body and vertebral body length along the three axes (Figure 2a);
- Sagittal (θ) and transverse (φ) tilt angles of each vertebral body (Figure 2b);
- Coronal tilt angles (β) of the superior and inferior endplates and their FE model (Figure 2c).
- X0, Y0, and Z0: original nodal coordinate in the vertebral body L5
- X1, Y1, and Z1: new nodal coordinate in a new vertebral body after rotating an angle of β (frontal plane)
- X2, Y2, and Z2: new nodal coordinate in a new vertebral body after rotating an angle of θ (sagittal plane)
- X, Y, and Z: new nodal coordinate in a new vertebral body after rotating an angle of φ (transverse plane)
- A total of 782 nodes were in the vertebral body L5
2.3. Model Validation
- i = 1~18 indicates each vertebral body from L5 to C7.
- MAE indicates the mean absolute error between the FE model and the CT images.
2.4. Boundary and Loading Conditions
3. Results
3.1. Model Validation
3.2. Biomechanical Analysis
3.2.1. Segmental ROM
3.2.2. Maximum Stress in Endplate and Annulus Fibrosus
3.2.3. Overall Stress Distribution
4. Discussion
4.1. Model Reconstruction
4.2. Model Validation
4.3. Biomechanical Analysis
4.4. Study Limitations and Assumptions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.; Danielsson, A.; Morcuende, J.A. Adolescent idiopathic scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef]
- Goldberg, C.J.; Moore, D.P.; Fogarty, E.E.; Dowling, F.E. Scoliosis: A review. Pediatr. Surg. Int. 2008, 24, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liu, F.; Wang, H. Half of the adolescent idiopathic scoliosis patients may have lumbar adjacent segment degeneration following spinal fusion: A systemic review and meta-analysis. J. Orthop. Surg. 2024, 32, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lonner, B.S.; Ren, Y.; Upasani, V.V.; Marks, M.M.; Newton, P.O.; Samdani, A.F.; Chen, K.; Shufflebarger, H.L.; Shah, S.A.; Lefton, D.R.; et al. Disc degeneration in unfused caudal motion segments ten years following surgery for adolescent idiopathic scoliosis. Spine Deform. 2018, 6, 684–690. [Google Scholar] [CrossRef]
- Akazawa, T.; Kotani, T.; Sakuma, T.; Minami, S.; Orita, S.; Fujimoto, K.; Shiga, Y.; Takaso, M.; Inoue, G.; Miyagi, M.; et al. Spinal fusion on adolescent idiopathic scoliosis patients with the level of L4 or lower can increase lumbar disc degeneration with sagittal imbalance 35 years after surgery. Spine Surg. Relat. Res. 2017, 1, 72–77. [Google Scholar] [CrossRef]
- Akazawa, T.; Watanabe, K.; Matsumoto, M.; Tsuji, T.; Kawakami, N.; Kotani, T.; Sakuma, T.; Yamamoto, T.; Demura, S.; Orita, S.; et al. Modic changes and disc degeneration in adolescent idiopathic scoliosis patients who reach middle age without surgery: Can residual deformity cause lumbar spine degeneration? J. Orthop. Sci. 2018, 23, 884–888. [Google Scholar] [CrossRef] [PubMed]
- Akazawa, T.; Kotani, T.; Sakuma, T.; Minami, S.; Orita, S.; Inage, K.; Fujimoto, K.; Shiga, Y.; Torii, Y.; Umehara, T.; et al. Modic changes and disc degeneration of non-fused segments 27 to 45 years after Harrington instrumentation for adolescent idiopathic scoliosis: Comparison to healthy controls. Spine 2018, 43, 556–561. [Google Scholar] [CrossRef]
- Hashimoto, K.; Aizawa, T.; Kanno, H.; Itoi, E. Adjacent segment degeneration after fusion spinal surgery—A systematic review. Int. Orthop. 2019, 43, 987–993. [Google Scholar] [CrossRef]
- Debnath, U.K.; Scammell, B.E.; Freeman, B.J.C.; McConnell, J.R. Predictive factors for the outcome of surgical treatment of lumbar spondylolysis in young sporting individuals. Glob. Spine J. 2018, 8, 121–128. [Google Scholar] [CrossRef]
- Zhang, Q.; Chon, T.E.; Zhang, Y.; Baker, J.S.; Gu, Y. Finite element analysis of the lumbar spine in adolescent idiopathic scoliosis subjected to different loads. Comput. Biol. Med. 2021, 136, 104745. [Google Scholar] [CrossRef]
- Jie, Y.; Li, M.; Dong, A.; Luo, Y.-Y.; Luo, C.-L.; Li, J.; Zheng, P.; Zhang, X.; Wong, M.S.; Ma, C.Z.-H.; et al. Digitalized 3D Spinal decompression and correction device improved initial brace corrections and patients’ comfort among adolescents with Idiopathic scoliosis: A single-centre, single-blinded randomized controlled trial. Bioengineering 2024, 11, 1246. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, T.; Huang, Z.; Yang, J. Finite element analysis in brace treatment on adolescent idiopathic scoliosis. Med. Biol. Eng. Comput. 2022, 60, 907–920. [Google Scholar] [CrossRef] [PubMed]
- Chou, W.K.; Liu, C.L.; Liao, Y.C.; Cheng, F.H.; Zhong, Z.C.; Chen, C.S. Using finite element method to determine pad positions in a Boston brace for enhancing corrective effect on scoliotic spine: A preliminary analysis. J. Med. Biol. Eng. 2012, 32, 29–35. [Google Scholar] [CrossRef]
- Ali, A.; Fontanari, V.; Schmölz, W.; Agrawal, S.K. Active soft brace for scoliotic spine: A finite element study to evaluate in-brace correction. Robotics 2022, 11, 37. [Google Scholar] [CrossRef]
- Somtua, C.; Aroonjarattham, P.; Saengpetch, N.; Rattanapan, N.; Aroonjarattham, K. Biomechanical analysis of scoliosis adjusted by screw fixation system with finite element analysis. Eng. J. 2024, 28, 25–34. [Google Scholar] [CrossRef]
- Chen, C.S.; Cheng, C.K.; Liu, C.L. A Biomechanical Comparison of posterolateral fusion and posterior fusion in the lumbar spine. J. Spinal Disord. Tech. 2002, 15, 53–63. [Google Scholar] [CrossRef]
- Chen, C.S.; Cheng, C.K.; Liu, C.L.; Lo, W.H. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med. Eng. Phys. 2001, 23, 485–493. [Google Scholar] [CrossRef]
- Chen, C.S.; Feng, C.K.; Cheng, C.K.; Tzeng, M.J.; Liu, C.L.; Chen, W.J. Biomechanical analysis of the disc adjacent to posterolateral fusion with laminectomy in lumbar spine. J. Spinal Disord. Tech. 2005, 18, 58–65. [Google Scholar] [CrossRef]
- Pan, J.H.; Chen, C.S.; Liu, C.L.; Chou, P.H. Biomechanical effects of a novel pedicle screw W-Type rod fixation for lumbar spondylolysis: A finite element analysis. Bioengineering 2023, 10, 451. [Google Scholar] [CrossRef]
- Zhong, Z.C.; Chen, S.H.; Hung, C.H. Load- and displacement controlled finite element analyses on fusion and non-fusion spinal implants. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2009, 223, 143–157. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.M.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Ng, S.Y.; Bettany-Saltikov, J. Imaging in the diagnosis and monitoring of children with idiopathic scoliosis. Open Orthop. J. 2017, 11, 1500–1520. [Google Scholar] [CrossRef]
- Goel, V.K.; Monroe, B.T.; Brinkmann, P. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine 1995, 20, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, T.; Yang, J.; Qian, Y.; Dong, Y. Material sensitivity of patient-specific finite element models in the brace treatment of scoliosis. Front. Bioeng. Biotechnol. 2023, 16, 1111449. [Google Scholar] [CrossRef]
- Elfiky, T.; Patil, N.; Shawky, M.; Siam, A.; Ragab, R.; Allam, Y. Oxford Cobbometer versus computer assisted-software for measurement of Cobb Angle in adolescent idiopathic scoliosis. Neurospine 2020, 17, 304–311. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, Q.; Xia, C.; Chen, Z.; Xu, M.; Liang, G.; Zhang, Y.; Ye, C.; Zhang, Y.; Yu, X.; et al. From 2D to 3D: Automatic measurement of the Cobb angle in adolescent idiopathic scoliosis with the weight-bearing 3D imaging. Spine J. 2024, 24, 1282–1292. [Google Scholar] [CrossRef]
- Engsberg, J.R.; Lenke, L.G.; Reitenbach, A.K.; Hollander, K.W.; Bridwell, K.H.; Blanke, K. Prospective evaluation of trunk range of motion in adolescents with idiopathic scoliosis undergoing spinal fusion surgery. Spine 2002, 27, 1346–1354. [Google Scholar] [CrossRef] [PubMed]
- Nohara, A.; Kawakami, N.; Tsuji, T.; Ohara, T.; Saito, T.; Kawakami, K. Intervertebral disc degeneration during postoperative follow-up more than 10 years after corrective surgery in idiopathic scoliosis: Comparison between patients with and without surgery. Spine 2018, 43, 255–261. [Google Scholar] [CrossRef] [PubMed]
- d’Astorg, H.; Bourret, S.; Ramos-Pascual, S.; Szadkowski, M.; Le Huec, J.C. Comparison of Cobb angle measurements for scoliosis assessment using different imaging modalities: A systematic review. EFORT Open Rev. 2023, 8, 489–498. [Google Scholar] [CrossRef]
- Kim, J.H.; Hyeok, J.J.; Woo, J.H.; Kim, S.M. Correlation analysis of suture anchor pull-out strength with cortical bone thickness and cancellous bone density on a finite element model. Bioengineering 2025, 12, 863. [Google Scholar] [CrossRef]
- Fada, R.; Shahgholi, M.; Azimi, R.; Babadi, N.F. Estimation of porosity effect on mechanical properties in calcium phosphate cement reinforced by strontium nitrate nanoparticles: Fabrication and FEM analysis. Arab. J. Sci. Eng. 2024, 49, 1815–1825. [Google Scholar] [CrossRef]









| Material | Young’s Modulus (MPa) | Poisson’s Ratio | Area (mm2) |
|---|---|---|---|
| Bone | |||
| Cortical | 12,000 | 0.3 | - |
| Cancellous | 100 | 0.2 | - |
| Posterior element | 3500 | 0.25 | - |
| Disc | |||
| Nucleus pulposus | 1 | 0.499 | - |
| Ground Substance | 4.2 | 0.46 | - |
| Annulus Fibers | 175 | 0.4 | |
| Endplate | 24 | 0.4 | - |
| Ligament | |||
| ALL | 7.8 | 24 | |
| PLL | 10 | 14.4 | |
| TL | 10 | 3.6 | |
| LF | 15 | 40 | |
| ISL | 10 | 26 | |
| SSL | 8 | 23 | |
| CL | 7.5 | 30 |
| Pre-Op | Post-Op | |
| ROM (°) | ||
| C7-T10 | 21.52 | 36.31 |
| T9-T10 | 1.71 | 2.31 |
| T10-L4 | 14.53 | 3.06 |
| L4-L5 | 5.21 | 2.04 |
| Total | 41.26 | 41.41 |
| Max Endplate Stress (MPa) | ||
| T10 | 3.31 | 5.77 |
| L4 | 6.43 | 1.71 |
| Max Annulus Fibrosus Stress (MPa) | ||
| T9-T10 | 0.63 | 1.46 |
| L4-L5 | 1.67 | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.-H.; Chou, P.-H.; Chen, C.-S. Using Two X-Ray Images to Create a Parameterized Scoliotic Spine Model and Analyze Disk Stress Adjacent to Spinal Fixation—A Finite Element Analysis. Bioengineering 2025, 12, 1212. https://doi.org/10.3390/bioengineering12111212
Wang T-H, Chou P-H, Chen C-S. Using Two X-Ray Images to Create a Parameterized Scoliotic Spine Model and Analyze Disk Stress Adjacent to Spinal Fixation—A Finite Element Analysis. Bioengineering. 2025; 12(11):1212. https://doi.org/10.3390/bioengineering12111212
Chicago/Turabian StyleWang, Te-Han, Po-Hsing Chou, and Chen-Sheng Chen. 2025. "Using Two X-Ray Images to Create a Parameterized Scoliotic Spine Model and Analyze Disk Stress Adjacent to Spinal Fixation—A Finite Element Analysis" Bioengineering 12, no. 11: 1212. https://doi.org/10.3390/bioengineering12111212
APA StyleWang, T.-H., Chou, P.-H., & Chen, C.-S. (2025). Using Two X-Ray Images to Create a Parameterized Scoliotic Spine Model and Analyze Disk Stress Adjacent to Spinal Fixation—A Finite Element Analysis. Bioengineering, 12(11), 1212. https://doi.org/10.3390/bioengineering12111212
