Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. OCT Image Acquisition
2.3. Region of Interest Segmentation and Parameter Measurement
2.4. Feature Extraction and Selection
2.5. Development of OCT-Omics Models
- sampling_strategy = “auto”,
- random_state = None,
- k_neighbors = 5,
- n_jobs = None
2.6. Training and Validation of Machine Learning Models
- SVM: penalty factor C = 1; kernel function, linear; maximum of iterations = 1000; 5-fold cross-validation;
- BPNN: activation function, rectified linear unit (ReLU); solver, Limited-memory Broyden–Fletche–Goldfarb–Shanno (LBFGS); L2 regularization term = 1; number of iterations = 1000; 5-fold cross-validation.
2.7. Statistical Analysis
3. Results
3.1. Summary of Study Design and Baseline Characteristics
3.2. OCT-Omics Model Development and Clinical Implication Evaluation
3.3. Evaluation of Overall Performance in Multiple Models
3.4. Clinical Implications of the OCT-Omics Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
BASE | MIN | N | T | H | HFF | MHI | DHI | THI | OCT-Omics | |
---|---|---|---|---|---|---|---|---|---|---|
BASE | 1 *** | 0.653 *** | 0.719 *** | 0.766 *** | 0.324 *** | −0.131 | −0.805 *** | −0.2 ** | −0.442 *** | 0.217 *** |
MIN | 0.653 *** | 1 *** | 0.141 * | 0.22 *** | −0.04 | −0.658 *** | −0.718 *** | 0.518 *** | −0.904 *** | 0.255 *** |
N | 0.719 *** | 0.141 * | 1 *** | 0.865 *** | 0.52 *** | 0.46 *** | −0.411 *** | −0.591 *** | 0.074 | 0.153 * |
T | 0.766 *** | 0.22 *** | 0.865 *** | 1 *** | 0.557 *** | 0.398 *** | −0.437 *** | −0.532 *** | 0.016 | 0.137 |
H | 0.324 *** | −0.04 | 0.52 *** | 0.557 *** | 1 *** | 0.442 *** | 0.208 ** | −0.384 *** | 0.39 *** | 0.103 |
HFF | −0.131 | −0.658 *** | 0.46 *** | 0.398 *** | 0.442 *** | 1 *** | 0.436 *** | −0.733 *** | 0.787 *** | −0.103 |
MHI | −0.805 *** | −0.718 *** | −0.411 *** | −0.437 *** | 0.208 ** | 0.436 *** | 1 *** | −0.067 | 0.737 *** | −0.2 ** |
DHI | −0.2 ** | 0.518 *** | −0.591 *** | −0.532 *** | −0.384 *** | −0.733 *** | −0.067 | 1 *** | −0.646 *** | 0.055 |
THI | −0.442 *** | −0.904 *** | 0.074 | 0.016 | 0.39 *** | 0.787 *** | 0.737 *** | −0.646 *** | 1 *** | −0.215 ** |
OCT-omics | 0.217 *** | 0.255 *** | 0.153 * | 0.137 | 0.103 | −0.103 | −0.2 ** | 0.055 | −0.215 ** | 1 *** |
Variables | Total (n = 200) | ILM Peeling (n = 136) | ILM Flap (n = 64) | Statistic | p |
---|---|---|---|---|---|
BASE, M (IQR) | 965.50 (591) | 914.00 (565) | 1029.00 (574) | Z = −2.10 | 0.035 ** |
References
- Duker, J.S.; Kaiser, P.K.; Binder, S.; de Smet, M.D.; Gaudric, A.; Reichel, E.; Sadda, S.R.; Sebag, J.; Spaide, R.F.; Stalmans, P. The International Vitreomacular Traction Study Group Classification of Vitreomacular Adhesion, Traction, and Macular Hole. Ophthalmology 2013, 120, 2611–2619. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xu, L.; Jonas, J.B. Prevalence of Full-Thickness Macular Holes in Urban and Rural Adult Chinese: The Beijing Eye Study. Am. J. Ophthalmol. 2006, 141, 589–591. [Google Scholar] [CrossRef]
- Nangia, V.; Jonas, J.B.; Khare, A.; Lambat, S. Prevalence of Macular Holes in Rural Central India. The Central India Eye and Medical Study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 250, 1105–1107. [Google Scholar] [CrossRef] [PubMed]
- McCannel, C.A.; Ensminger, J.L.; Diehl, N.N.; Hodge, D.N. Population-Based Incidence of Macular Holes. Ophthalmology 2009, 116, 1366–1369. [Google Scholar] [CrossRef]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G. Idiopathic Macular Hole Preferred Practice Pattern®. Ophthalmology 2020, 127, P184–P222. [Google Scholar] [CrossRef]
- GASS, J.D.M. Reappraisal of Biomicroscopic Classification of Stages of Development of a Macular Hole. Am. J. Ophthalmol. 1995, 119, 752–759. [Google Scholar] [CrossRef]
- Spiteri Cornish, K.; Lois, N.; Scott, N.; Burr, J.; Cook, J.; Boachie, C.; Tadayoni, R.; la Cour, M.; Christensen, U.; Kwok, A. Vitrectomy with Internal Limiting Membrane (ILM) Peeling versus Vitrectomy with No Peeling for Idiopathic Full-Thickness Macular Hole (FTMH). Cochrane Database Syst. Rev. 2013, CD009306. [Google Scholar] [CrossRef] [PubMed]
- Ternent, L.; Vale, L.; Boachie, C.; Burr, J.M.; Lois, N. Full-Thickness Macular Hole and Internal Limiting Membrane Peeling Study (FILMS) Group Cost-Effectiveness of Internal Limiting Membrane Peeling versus No Peeling for Patients with an Idiopathic Full-Thickness Macular Hole: Results from a Randomised Controlled Trial. Br. J. Ophthalmol. 2012, 96, 438–443. [Google Scholar] [CrossRef]
- Ghoraba, H.; Rittiphairoj, T.; Akhavanrezayat, A.; Karaca, I.; Matsumiya, W.; Pham, B.; Mishra, K.; Yasar, C.; Mobasserian, A.; Abdelkarem, A.A.; et al. Pars Plana Vitrectomy with Internal Limiting Membrane Flap versus Pars Plana Vitrectomy with Conventional Internal Limiting Membrane Peeling for Large Macular Hole. Cochrane Database Syst. Rev. 2023, 2023, CD015031. [Google Scholar] [CrossRef]
- Cundy, O.; Lange, C.A.; Bunce, C.; Bainbridge, J.W.; Solebo, A.L. Face-down Positioning or Posturing after Macular Hole Surgery. Cochrane Database Syst. Rev. 2023, 2023, CD008228. [Google Scholar] [CrossRef]
- Elhusseiny, A.M.; Schwartz, S.G.; Flynn, H.W.; Smiddy, W.E. Long-Term Outcomes after Macular Hole Surgery. Ophthalmol. Retin. 2020, 4, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Ip, M.S. Anatomical Outcomes of Surgery for Idiopathic Macular Hole as Determined by Optical Coherence Tomography. Arch. Ophthalmol. 2002, 120, 29. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, S.; Tartaro, R.; Barca, F.; Caporossi, T.; Bacherini, D.; Giansanti, F. Internal limiting membrane peeling versus inverted flap technique for treatment of full-thickness macular holes. Retina 2018, 38, S73–S78. [Google Scholar] [CrossRef] [PubMed]
- Chatziralli, I.; Machairoudia, G.; Kazantzis, D.; Theodossiadis, G.; Theodossiadis, P. Inverted Internal Limiting Membrane Flap Technique for Myopic Macular Hole: A Meta-Analysis. Surv. Ophthalmol. 2021, 66, 771–780. [Google Scholar] [CrossRef] [PubMed]
- Ramtohul, P.; Parrat, E.; Denis, D.; Lorenzi, U. Inverted Internal Limiting Membrane Flap Technique versus Complete Internal Limiting Membrane Peeling in Large Macular Hole Surgery: A Comparative Study. BMC Ophthalmol. 2020, 20, 11. [Google Scholar] [CrossRef]
- Tam, A.L.C.; Yan, P.; Gan, N.Y.; Lam, W.-C. The current surgical management of large, recurrent, or persistent macular holes. Retina 2018, 38, 1263–1275. [Google Scholar] [CrossRef]
- Ullrich, S. Macular Hole Size as a Prognostic Factor in Macular Hole Surgery. Br. J. Ophthalmol. 2002, 86, 390–393. [Google Scholar] [CrossRef]
- Kusuhara, S.; Teraoka Escaño, M.F.; Fujii, S.; Nakanishi, Y.; Tamura, Y.; Nagai, A.; Yamamoto, H.; Tsukahara, Y.; Negi, A. Prediction of Postoperative Visual Outcome Based on Hole Configuration by Optical Coherence Tomography in Eyes with Idiopathic Macular Holes. Am. J. Ophthalmol. 2004, 138, 709–716. [Google Scholar] [CrossRef]
- Ruiz-Moreno, J.M.; Staicu, C.; Pinero, D.P.; Montero, J.; Lugo, F.; Amat, P. Optical Coherence Tomography Predictive Factors for Macular Hole Surgery Outcome. Br. J. Ophthalmol. 2008, 92, 640–644. [Google Scholar] [CrossRef]
- Antonopoulou, P.G.; Baumann, C.; Jalil, A.; Dhawahir-Scala, F.; Muñoz-Sanz, N.; Lu, V.H.J.; Park, D.; Patton, N. How Big Is the Hole? Measuring Intra- and Inter-Individual Agreement in Macular Hole Size Measurements. Curr. Eye Res. 2020, 45, 1000–1004. [Google Scholar] [CrossRef]
- Karn, P.K.; Abdulla, W.H. On Machine Learning in Clinical Interpretation of Retinal Diseases Using OCT Images. Bioengineering 2023, 10, 407. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Chen, Y.; Li, H.; Zhang, Y.; Yao, X.; Meng, Y.; Shi, W.; Liang, Y.; Hu, Y.; Liu, D.; et al. Machine Learning and Optical Coherence Tomography-Derived Radiomics Analysis to Predict Persistent Diabetic Macular Edema in Patients Undergoing Anti-VEGF Intravitreal Therapy. J. Transl. Med. 2024, 22, 358. [Google Scholar] [CrossRef] [PubMed]
- Balyen, L.; Peto, T. Promising Artificial Intelligence-Machine Learning-Deep Learning Algorithms in Ophthalmology. Asia Pac. J. Ophthalmol. 2019, 8, 264–272. [Google Scholar] [CrossRef]
- Lu, W.; Tong, Y.; Yu, Y.; Xing, Y.; Chen, C.; Shen, Y. Applications of Artificial Intelligence in Ophthalmology: General Overview. J. Ophthalmol. 2018, 2018, 1–15. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.-C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-Sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Shen, W.; Song, Z.; Zhong, X.; Huang, M.; Shen, D.; Gao, P.; Qian, X.; Wang, M.; He, X.; Wang, T.; et al. Sangerbox: A Comprehensive, Interaction-friendly Clinical Bioinformatics Analysis Platform. iMeta 2022, 1, e36. [Google Scholar] [CrossRef]
- Yao, Y.; Qu, J.; Dong, C.; Li, X.; Liang, J.; Yin, H.; Huang, L.; Li, Y.; Liu, P.; Pan, C.; et al. The Impact of Extent of Internal Limiting Membrane Peeling on Anatomical Outcomes of Macular Hole Surgery: Results of a 54-week Randomized Clinical Trial. Acta Ophthalmol. 2019, 97, 303–312. [Google Scholar] [CrossRef]
- Chhablani, J.; Khodani, M.; Hussein, A.; Bondalapati, S.; Rao, H.B.; Narayanan, R.; Sudhalkar, A. Role of Macular Hole Angle in Macular Hole Closure. Br. J. Ophthalmol. 2015, 99, 1634–1638. [Google Scholar] [CrossRef] [PubMed]
- Bajdik, B.; Vajas, A.; Kemenes, G.; Fodor, M.; Surányi, É.; Takács, L. Prediction of Long-Term Visual Outcome of Idiopathic Full-Thickness Macular Hole Surgery Using Optical Coherence Tomography Parameters That Estimate Potential Preoperative Photoreceptor Damage. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, Y.; Quan, W.; Yang, Y.; Lai, W.; Wang, X.; Zhang, X.; Zhang, B.; Wu, Y.; Wu, Q.; et al. Development and Validation of a Deep Learning System to Classify Aetiology and Predict Anatomical Outcomes of Macular Hole. Br. J. Ophthalmol. 2023, 107, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zgolli, H.; El Zarrug, H.H.k.; Meddeb, M.; Mabrouk, S.; Khlifa, N. Anatomical Prognosis after Idiopathic Macular Hole Surgery: Machine Learning Based-Predection. Libyan J. Med. 2022, 17, 2034334. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, Y.; Quan, W.; Zhang, B.; Wu, Y.; Wu, Q.; Liu, B.; Zeng, X.; Lin, Z.; Fang, Y.; et al. Machine Learning-Based Prediction of Anatomical Outcome after Idiopathic Macular Hole Surgery. Ann. Transl. Med. 2021, 9, 830. [Google Scholar] [CrossRef]
- Lachance, A.; Godbout, M.; Antaki, F.; Hébert, M.; Bourgault, S.; Caissie, M.; Tourville, É.; Durand, A.; Dirani, A. Predicting Visual Improvement After Macular Hole Surgery: A Combined Model Using Deep Learning and Clinical Features. Trans. Vis. Sci. Tech. 2022, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Xie, P.; Ding, Y.; Zheng, X.; Yuan, D.; Liu, Q. Face-down or No Face-down Posturing Following Macular Hole Surgery: A Meta-analysis. Acta Ophthalmol. 2016, 94, 326–333. [Google Scholar] [CrossRef]
- Yuksel, K.; Goker, Y.S.; Yazici, A.T.; Ozkaya, A.; Cosar, G. Can Perifoveal Pseudocyst Area Be a Prognostic Factor in Macular Hole Surgery? Medicine 2014, 93, e182. [Google Scholar] [CrossRef]
Variables | Total (n = 200) | Training Set (n = 140) | Test Set (n = 60) | p |
---|---|---|---|---|
Age, years, M (IQR) | 61.00 (12.00) | 61.00 (13.25) | 61.00 (10.00) | 0.393 f |
Age groups, n (%) | 0.086 g | |||
<40 | 17 (8.50) | 2 (2.33) | 15 (10.71) | |
≥40 | 183 (91.50) | 58 (96.67) | 125 (89.29) | |
Sex, n (%) | 0.492 g | |||
Female | 133 (66.50) | 91 (65.00) | 42 (70.00) | |
Male | 67 (33.50) | 49 (35.00) | 18 (30.00) | |
Laterality, n (%) | 0.951 g | |||
Right | 106 (53.00) | 74 (52.86) | 32 (53.33) | |
Left | 94 (47.00) | 66 (47.14) | 28 (46.67) | |
Outcome, n (%) | 0.619 g | |||
Closed | 173 (86.50) | 53 (88.33) | 120 (85.71) | |
Open | 27 (13.50) | 20 (14.29) | 7 (11.67) | |
High myopia, n (%) | 0.387 g | |||
No | 170 (85.00) | 121 (86.43) | 49 (81.67) | |
Yes | 30 (15.00) | 19 (13.57) | 11 (18.33) | |
Surgery, n (%) | 0.055 g | |||
ILM peeling a | 136 (68.00) | 101 (72.14) | 35 (58.33) | |
ILM flap b | 64 (32.00) | 39 (27.86) | 25 (41.67) | |
Size of FTMH c, n (%) | 0.947 g | |||
Large | 122 (61.00) | 36 (60.00) | 86 (61.43) | |
Medium | 43 (17.00) | 11 (18.33) | 23 (16.43) | |
Small | 44 (22.00) | 13 (21.67) | 31 (2214) | |
Examination interval d, day, M (IQR) | 59.00 (194.25) | 70.50 (230.75) | 55.50 (168.5) | 0.156 f |
BCVA (logMAR) e, M (IQR) | 1.00 (0.57) | 1.00 (0.60) | 0.92 (0.40) | 0.895 f |
BASE, μm, M (IQR) | 965.50 (591.00) | 953.00 (546.5) | 1059.50 (598.5) | 0.570 f |
MIN, μm, M (IQR) | 478.00 (377.75) | 478.00 (318.50) | 486.00 427.75) | 0.657 f |
N, μm, M (IQR) | 330.50 (198.00) | 334.00 (195.25) | 327.00 (215.75) | 0.915 f |
T, μm, M (IQR) | 325.00 (196.75) | 327.00 (195.25) | 318.00 (214.25) | 0.832 f |
H, μm, M (IQR) | 428.50 (108.50) | 428.00 (106.00) | 430.50 (126.25) | 0.719 f |
HFF, M (IQR) | 0.73 (0.27) | 0.72 (0.26) | 0.74 (0.27) | 0.897 f |
MHI, M (IQR) | 0.44 (0.24) | 0.45 (0.23) | 0.43 (0.24) | 0.617 f |
DHI, M (IQR) | 0.51 (0.27) | 0.51 (0.26) | 0.47 (0.28) | 0.542 f |
THI, M (IQR) | 0.92 (0.90) | 0.88 (0.86) | 0.95 (0.96) | 0.996 f |
Training Set | Test Set | |||||
---|---|---|---|---|---|---|
Logistic | SVM | BPNN | Logistic | SVM | BPNN | |
SEN | 0.967 | 0.942 | 0.942 | 0.925 | 0.887 | 0.925 |
SPE | 0.975 | 0.975 | 0.958 | 0.857 | 0.857 | 1.000 |
ACC | 0.971 | 0.958 | 0.950 | 0.917 | 0.883 | 0.933 |
PPV | 0.975 | 0.974 | 0.958 | 0.980 | 0.979 | 1.000 |
NPV | 0.967 | 0.944 | 0.943 | 0.600 | 0.500 | 0.636 |
F1 | 0.971 | 0.958 | 0.950 | 0.951 | 0.931 | 0.961 |
AUC | 0.998 | 0.988 | 0.995 | 0.941 | 0.943 | 0.968 |
Algorithm | MH | Surgery Type | Eyes (Patients) (n) | Country | SEN | SPE | ACC | AUC | |
---|---|---|---|---|---|---|---|---|---|
Xiao (2021) [33] | Random forest | Full-thickness IMH | ILM peeling | 288 | China | 0.973 | 0.904 | 0.892 | 0.951 |
ZGOLLI (2022) [34] | MDSS | Full-thickness IMH | IML flap | 120 (114) | Tunis | \ | \ | \ | 0.967 |
Xiao (2023) [35] | MDFN | Full-thickness IMH | ILM peeling | 209 | China | 0.979 | 0.815 | 0.875 | 0.947 |
Xiao (2023) [35] | MDFN | FTMH | ILM peeling | 330 | China | 0.766 | 0.977 | 0.825 | 0.904 |
Our models | Logistic | FTMH | ILM peeling or IML flap | 200 (193) | China | 0.925 | 0.857 | 0.917 | 0.941 |
SVM | 0.887 | 0.857 | 0.883 | 0.943 | |||||
BPNN | 0.925 | 1 | 0.933 | 0.968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Meng, Y.; Liang, Y.; Zhang, Y.; Chen, B.; Qiu, J.; Meng, Z.; Luo, J. Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole. Bioengineering 2024, 11, 949. https://doi.org/10.3390/bioengineering11090949
Hu Y, Meng Y, Liang Y, Zhang Y, Chen B, Qiu J, Meng Z, Luo J. Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole. Bioengineering. 2024; 11(9):949. https://doi.org/10.3390/bioengineering11090949
Chicago/Turabian StyleHu, Yuqian, Yongan Meng, Youling Liang, Yiwei Zhang, Biying Chen, Jianing Qiu, Zhishang Meng, and Jing Luo. 2024. "Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole" Bioengineering 11, no. 9: 949. https://doi.org/10.3390/bioengineering11090949
APA StyleHu, Y., Meng, Y., Liang, Y., Zhang, Y., Chen, B., Qiu, J., Meng, Z., & Luo, J. (2024). Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole. Bioengineering, 11(9), 949. https://doi.org/10.3390/bioengineering11090949