Hu, Y.; Meng, Y.; Liang, Y.; Zhang, Y.; Chen, B.; Qiu, J.; Meng, Z.; Luo, J.
Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole. Bioengineering 2024, 11, 949.
https://doi.org/10.3390/bioengineering11090949
AMA Style
Hu Y, Meng Y, Liang Y, Zhang Y, Chen B, Qiu J, Meng Z, Luo J.
Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole. Bioengineering. 2024; 11(9):949.
https://doi.org/10.3390/bioengineering11090949
Chicago/Turabian Style
Hu, Yuqian, Yongan Meng, Youling Liang, Yiwei Zhang, Biying Chen, Jianing Qiu, Zhishang Meng, and Jing Luo.
2024. "Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole" Bioengineering 11, no. 9: 949.
https://doi.org/10.3390/bioengineering11090949
APA Style
Hu, Y., Meng, Y., Liang, Y., Zhang, Y., Chen, B., Qiu, J., Meng, Z., & Luo, J.
(2024). Machine Learning and Optical-Coherence-Tomography-Derived Radiomics Analysis to Predict the Postoperative Anatomical Outcome of Full-Thickness Macular Hole. Bioengineering, 11(9), 949.
https://doi.org/10.3390/bioengineering11090949