Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives
Abstract
1. Introduction
2. Cancer Therapeutic Strategies Targeting CDK4/6 Cyclins
2.1. The Function of CDK4 and CDK6 Kinases in Normal and Malignant Cells
2.2. Therapeutic Strategies and Dilemma of CDK4/6 Inhibitors
3. Immunomodulatory Effects of CDK4/6 Inhibitors
3.1. Increase in Tumor Cell Immunogenicity
3.2. Increasing T-Cell Infiltration and Altering Myeloid Populations
3.3. The Induction of Memory CD8+ T Cells
3.4. The Induction of Immunogenic Cell Death
4. Disorders of the Immune Environment in CDK4/6i-Resistant Cells
4.1. Aberrant Activation of the IFN Signaling Pathway
4.2. The Immunomodulation Effects of CDK4/6i-Induced Senescence
4.3. PD-L1-Dependent Immune Evasion
4.4. Other Immune Mechanisms of CDK4/6 Inhibitor Resistance
5. Therapeutic Strategies and Risk Assessment for Using CDK4/6 Inhibitors in Clinics
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Arsenijevic, T.; Coulonval, K.; Raspé, E.; Demols, A.; Roger, P.P.; Van Laethem, J.-L. CDK4/6 Inhibitors in Pancreatobiliary Cancers: Opportunities and Challenges. Cancers 2023, 15, 968. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Z.; Tsai, S.-Y.; Leone, G. Emerging Roles of E2Fs in Cancer: An Exit from Cell Cycle Control. Nat. Rev. Cancer 2009, 9, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Bergholz, J.S.; Zhao, J.J. Targeting CDK4 and CDK6 in Cancer. Nat. Rev. Cancer 2022, 22, 356–372. [Google Scholar] [CrossRef] [PubMed]
- Bockstaele, L.; Coulonval, K.; Kooken, H.; Paternot, S.; Roger, P.P. Regulation of CDK4. Cell Div. 2006, 1, 25. [Google Scholar] [CrossRef] [PubMed]
- Kwapisz, D. Cyclin-Dependent Kinase 4/6 Inhibitors in Breast Cancer: Palbociclib, Ribociclib, and Abemaciclib. Breast Cancer Res. Treat. 2017, 166, 41–54. [Google Scholar] [CrossRef] [PubMed]
- Rampioni Vinciguerra, G.L.; Sonego, M.; Segatto, I.; Dall’Acqua, A.; Vecchione, A.; Baldassarre, G.; Belletti, B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front. Oncol. 2022, 12, 891580. [Google Scholar] [CrossRef]
- Álvarez-Fernández, M.; Malumbres, M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020, 37, 514–529. [Google Scholar] [CrossRef]
- Sodir, N.M.; Pathria, G.; Adamkewicz, J.I.; Kelley, E.H.; Sudhamsu, J.; Merchant, M.; Chiarle, R.; Maddalo, D. SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov. 2023, 13, 2339–2355. [Google Scholar] [CrossRef]
- Anderson, N.M.; Simon, M.C. The Tumor Microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef]
- Petroni, G.; Formenti, S.C.; Chen-Kiang, S.; Galluzzi, L. Immunomodulation by Anticancer Cell Cycle Inhibitors. Nat. Rev. Immunol. 2020, 20, 669–679. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, H.; Yang, N.; Yang, J. A Narrative Review about CDK4/6 Inhibitors in the Setting of Drug Resistance: Updates on Biomarkers and Therapeutic Strategies in Breast Cancer. Transl. Cancer Res. 2023, 12, 1617–1634. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Guo, X.; Wang, M.; Li, Y.; Sun, X.; Li, Q. The Application and Prospect of CDK4/6 Inhibitors in Malignant Solid Tumors. J. Hematol. Oncol. 2020, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Fassl, A.; Geng, Y.; Sicinski, P. CDK4 and CDK6 Kinases: From Basic Science to Cancer Therapy. Science 2022, 375, eabc1495. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M.; Barbacid, M. To Cycle or Not to Cycle: A Critical Decision in Cancer. Nat. Rev. Cancer 2001, 1, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Sherr, C.J.; Roberts, J.M. Living with or without Cyclins and Cyclin-Dependent Kinases. Genes Dev. 2004, 18, 2699–2711. [Google Scholar] [CrossRef] [PubMed]
- Zabihi, M.; Lotfi, R.; Yousefi, A.-M.; Bashash, D. Cyclins and Cyclin-Dependent Kinases: From Biology to Tumorigenesis and Therapeutic Opportunities. J. Cancer Res. Clin. Oncol. 2023, 149, 1585–1606. [Google Scholar] [CrossRef]
- Cheng, X.; Sun, Y.; Highkin, M.; Vemalapally, N.; Jin, X.; Zhou, B.; Prior, J.L.; Tipton, A.R.; Li, S.; Iliuk, A.; et al. Breast Cancer Mutations HER2V777L and PIK3CAH1047R Activate the P21-CDK4/6-Cyclin D1 Axis to Drive Tumorigenesis and Drug Resistance. Cancer Res. 2023, 83, 2839–2857. [Google Scholar] [CrossRef]
- Assi, T.; Kattan, J.; Rassy, E.; Nassereddine, H.; Farhat, F.; Honore, C.; Le Cesne, A.; Adam, J.; Mir, O. Targeting CDK4 (Cyclin-Dependent Kinase) Amplification in Liposarcoma: A Comprehensive Review. Crit. Rev. Oncol. Hematol. 2020, 153, 103029. [Google Scholar] [CrossRef]
- Prével, C.; Pellerano, M.; González-Vera, J.A.; Henri, P.; Meunier, L.; Vollaire, J.; Josserand, V.; Morris, M.C. Fluorescent Peptide Biosensor for Monitoring CDK4/Cyclin D Kinase Activity in Melanoma Cell Extracts, Mouse Xenografts and Skin Biopsies. Biosens. Bioelectron. 2016, 85, 371–380. [Google Scholar] [CrossRef]
- Lazarov, M.; Kubo, Y.; Cai, T.; Dajee, M.; Tarutani, M.; Lin, Q.; Fang, M.; Tao, S.; Green, C.L.; Khavari, P.A. CDK4 Coexpression with Ras Generates Malignant Human Epidermal Tumorigenesis. Nat. Med. 2002, 8, 1105–1114. [Google Scholar] [CrossRef]
- Hu, M.G.; Deshpande, A.; Enos, M.; Mao, D.; Hinds, E.A.; Hu, G.; Chang, R.; Guo, Z.; Dose, M.; Mao, C.; et al. A Requirement for Cyclin-Dependent Kinase 6 in Thymocyte Development and Tumorigenesis. Cancer Res. 2009, 69, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Scheicher, R.; Hoelbl-Kovacic, A.; Bellutti, F.; Tigan, A.-S.; Prchal-Murphy, M.; Heller, G.; Schneckenleithner, C.; Salazar-Roa, M.; Zöchbauer-Müller, S.; Zuber, J.; et al. CDK6 as a Key Regulator of Hematopoietic and Leukemic Stem Cell Activation. Blood 2015, 125, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, A.B.; Garcia, D.; Vicente, Y.; Palka, M.; Bellas, C.; Martin, P. Prognostic Significance of Cyclin D1 Protein Expression and Gene Amplification in Invasive Breast Carcinoma. PLoS ONE 2017, 12, e0188068. [Google Scholar] [CrossRef] [PubMed]
- Poratti, M.; Marzaro, G. Third-Generation CDK Inhibitors: A Review on the Synthesis and Binding Modes of Palbociclib, Ribociclib and Abemaciclib. Eur. J. Med. Chem. 2019, 172, 143–153. [Google Scholar] [CrossRef]
- Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The History and Future of Targeting Cyclin-Dependent Kinases in Cancer Therapy. Nat. Rev. Drug Discov. 2015, 14, 130–146. [Google Scholar] [CrossRef]
- Panagiotou, E.; Gomatou, G.; Trontzas, I.P.; Syrigos, N.; Kotteas, E. Cyclin-Dependent Kinase (CDK) Inhibitors in Solid Tumors: A Review of Clinical Trials. Clin. Transl. Oncol. 2022, 24, 161–192. [Google Scholar] [CrossRef]
- Liao, Y.; Feng, Y.; Shen, J.; Hornicek, F.J.; Duan, Z. The Roles and Therapeutic Potential of Cyclin-Dependent Kinases (CDKs) in Sarcoma. Cancer Metastasis Rev. 2016, 35, 151–163. [Google Scholar] [CrossRef]
- Schettini, F.; De Santo, I.; Rea, C.G.; De Placido, P.; Formisano, L.; Giuliano, M.; Arpino, G.; De Laurentiis, M.; Puglisi, F.; De Placido, S.; et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front. Oncol. 2018, 8, 608. [Google Scholar] [CrossRef]
- Goodwin, C.M.; Waters, A.M.; Klomp, J.E.; Javaid, S.; Bryant, K.L.; Stalnecker, C.A.; Drizyte-Miller, K.; Papke, B.; Yang, R.; Amparo, A.M.; et al. Combination Therapies with CDK4/6 Inhibitors to Treat KRAS-Mutant Pancreatic Cancer. Cancer Res. 2023, 83, 141–157. [Google Scholar] [CrossRef]
- Teo, Z.L.; Versaci, S.; Dushyanthen, S.; Caramia, F.; Savas, P.; Mintoff, C.P.; Zethoven, M.; Virassamy, B.; Luen, S.J.; McArthur, G.A.; et al. Combined CDK4/6 and PI3Kα Inhibition Is Synergistic and Immunogenic in Triple-Negative Breast Cancer. Cancer Res. 2017, 77, 6340–6352. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, L.; Huang, B.; Li, X.; Yang, L.; Hu, X.; Jiang, Y.; Shao, Z.; Wang, Z. Efficacy and Mechanism of the Combination of PARP and CDK4/6 Inhibitors in the Treatment of Triple-Negative Breast Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 122. [Google Scholar] [CrossRef] [PubMed]
- Ngamphaiboon, N.; Pattaranutaporn, P.; Lukerak, S.; Siripoon, T.; Jinawath, A.; Arsa, L.; Shantavasinkul, P.C.; Taonam, N.; Trachu, N.; Jinawath, N.; et al. A Phase I Study of the CDK4/6 Inhibitor Palbociclib in Combination with Cetuximab and Radiotherapy for Locally Advanced Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2024, 30, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Raetz, E.A.; Teachey, D.T.; Minard, C.; Liu, X.; Norris, R.E.; Denic, K.Z.; Reid, J.; Evensen, N.A.; Gore, L.; Fox, E.; et al. Palbociclib in Combination with Chemotherapy in Pediatric and Young Adult Patients with Relapsed/Refractory Acute Lymphoblastic Leukemia and Lymphoma: A Children’s Oncology Group Study (AINV18P1). Pediatr. Blood Cancer 2023, 70, e30609. [Google Scholar] [CrossRef] [PubMed]
- Shulman, D.S.; Merriam, P.; Choy, E.; Guenther, L.M.; Cavanaugh, K.L.; Kao, P.-C.; Posner, A.; Bhushan, K.; Fairchild, G.; Barker, E.; et al. Phase 2 Trial of Palbociclib and Ganitumab in Patients with Relapsed Ewing Sarcoma. Cancer Med. 2023, 12, 15207–15216. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Lee, J.S.; Yost, S.E.; Frankel, P.H.; Ruel, C.; Egelston, C.A.; Guo, W.; Padam, S.; Tang, A.; Martinez, N.; et al. Phase I/II Trial of Palbociclib, Pembrolizumab and Letrozole in Patients with Hormone Receptor-Positive Metastatic Breast Cancer. Eur. J. Cancer 2021, 154, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.; Callejo, A.; Bar, J.; Berchem, G.; Bazhenova, L.; Saintigny, P.; Wunder, F.; Raynaud, J.; Girard, N.; Lee, J.J.; et al. A WIN Consortium Phase I Study Exploring Avelumab, Palbociclib, and Axitinib in Advanced Non-Small Cell Lung Cancer. Cancer Med. 2022, 11, 2790–2800. [Google Scholar] [CrossRef]
- Dennis, M.J.; Sacco, A.G.; Qi, Y.; Bykowski, J.; Pittman, E.; Chen, R.; Messer, K.; Cohen, E.E.W.; Gold, K.A. A Phase I Study of Avelumab, Palbociclib, and Cetuximab in Patients with Recurrent or Metastatic Head and Neck Sq5uamous Cell Carcinoma. Oral Oncol. 2022, 135, 106219. [Google Scholar] [CrossRef]
- Wang, S.; Huang, H.-Y.; Wu, D.; Fang, H.; Ying, J.; Bai, Y.; Yu, Y.; Fang, Y.; Jiang, N.; Sun, C.; et al. Platform Study of Genotyping-Guided Precision Medicine for Rare Solid Tumours: A Study Protocol for a Phase II, Non-Randomised, 18-Month, Open-Label, Multiarm, Single-Centre Clinical Trial Testing the Safety and Efficacy of Multiple Chinese-Approved Targeted Drugs and PD-1 Inhibitors in the Treatment of Metastatic Rare Tumours. BMJ Open 2021, 11, e044543. [Google Scholar] [CrossRef]
- Fasching, P.A.; Decker, T.; Hartkopf, A.; Nusch, A.; Heinrich, B.J.; Kurbacher, C.; Fuchs, R.; Tesch, H.; Krabisch, P.; Huober, J.; et al. Efficacy, Safety, and Prognosis Prediction in Patients Treated with Ribociclib in Combination with Letrozole: Final Results of Phase 3b RIBECCA Study in Hormone Receptor Positive, Human Epidermal Growth Factor Receptor-2 Negative, Locally Advanced or Metastatic Breast Cancer. Eur. J. Cancer 2024, 198, 113480. [Google Scholar] [CrossRef]
- Bardia, A.; Hurvitz, S.A.; DeMichele, A.; Clark, A.S.; Zelnak, A.; Yardley, D.A.; Karuturi, M.; Sanft, T.; Blau, S.; Hart, L.; et al. Phase I/II Trial of Exemestane, Ribociclib, and Everolimus in Women with HR+/HER2- Advanced Breast Cancer after Progression on CDK4/6 Inhibitors (TRINITI-1). Clin. Cancer Res. 2021, 27, 4177–4185. [Google Scholar] [CrossRef]
- Prat, A.; Saura, C.; Pascual, T.; Hernando, C.; Muñoz, M.; Paré, L.; González Farré, B.; Fernández, P.L.; Galván, P.; Chic, N.; et al. Ribociclib plus Letrozole versus Chemotherapy for Postmenopausal Women with Hormone Receptor-Positive, HER2-Negative, Luminal B Breast Cancer (CORALLEEN): An Open-Label, Multicentre, Randomised, Phase 2 Trial. Lancet Oncol. 2020, 21, 33–43. [Google Scholar] [CrossRef] [PubMed]
- de Kouchkovsky, I.; Rao, A.; Carneiro, B.A.; Zhang, L.; Lewis, C.; Phone, A.; Small, E.J.; Friedlander, T.; Fong, L.; Paris, P.L.; et al. A Phase Ib/II Study of the CDK4/6 Inhibitor Ribociclib in Combination with Docetaxel plus Prednisone in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2022, 28, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Slamon, D.; Lipatov, O.; Nowecki, Z.; McAndrew, N.; Kukielka-Budny, B.; Stroyakovskiy, D.; Yardley, D.A.; Huang, C.-S.; Fasching, P.A.; Crown, J.; et al. Ribociclib plus Endocrine Therapy in Early Breast Cancer. N. Engl. J. Med. 2024, 390, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- DeWire, M.; Lazow, M.; Campagne, O.; Leach, J.; Fuller, C.; Kumar, S.S.; Stanek, J.; de Blank, P.; Hummel, T.R.; Pillay-Smiley, N.; et al. Phase I Study of Ribociclib and Everolimus in Children with Newly Diagnosed DIPG and High-Grade Glioma: A CONNECT Pediatric Neuro-Oncology Consortium Report. Neurooncol. Adv. 2022, 4, vdac055. [Google Scholar] [CrossRef]
- Raj, N.; Zheng, Y.; Hauser, H.; Chou, J.; Rafailov, J.; Bou-Ayache, J.; Sawan, P.; Chaft, J.; Chan, J.; Perez, K.; et al. Ribociclib and everolimus in well-differentiated foregut neuroendocrine tumors. Endocr. Relat. Cancer 2021, 28, 237–246. [Google Scholar] [CrossRef]
- Movva, S.; Matloob, S.; Handorf, E.A.; Choy, E.; Merriam, P.; Flieder, D.B.; Cai, K.Q.; Zhou, Y.; Tetzlaff, E.D.; Pagan, C.; et al. SAR-096: Phase II Clinical Trial of Ribociclib in Combination with Everolimus in Advanced Dedifferentiated Liposarcoma (DDL) and Leiomyosarcoma (LMS). Clin. Cancer Res. 2024, 30, 315–322. [Google Scholar] [CrossRef]
- Ottenbourgs, T.; van Gorp, T.; Kridelka, F.; Baert, T.; Denys, H.; Selle, F.; Baas, I.; Van Rompuy, A.-S.; Lambrechts, D.; Van Nieuwenhuysen, E. A Phase II, Multicenter, Open-Label Study of Abemaciclib and Letrozole in Patients with Estrogen Receptor-Positive Rare Ovarian Cancer: ALEPRO Trial. Int. J. Gynecol. Cancer 2024, 34, 627–630. [Google Scholar] [CrossRef]
- Chiorean, E.G.; Picozzi, V.; Li, C.-P.; Peeters, M.; Maurel, J.; Singh, J.; Golan, T.; Blanc, J.-F.; Chapman, S.C.; Hussain, A.M.; et al. Efficacy and Safety of Abemaciclib Alone and with PI3K/MTOR Inhibitor LY3023414 or Galunisertib versus Chemotherapy in Previously Treated Metastatic Pancreatic Adenocarcinoma: A Randomized Controlled Trial. Cancer Med. 2023, 12, 20353–20364. [Google Scholar] [CrossRef]
- Damodaran, S.; O’Sullivan, C.C.; Elkhanany, A.; Anderson, I.C.; Barve, M.; Blau, S.; Cherian, M.A.; Peguero, J.A.; Goetz, M.P.; Plourde, P.V.; et al. Open-Label, Phase II, Multicenter Study of Lasofoxifene plus Abemaciclib for Treating Women with Metastatic ER+/HER2- Breast Cancer and an ESR1 Mutation after Disease Progression on Prior Therapies: ELAINE 2. Ann. Oncol. 2023, 34, 1131–1140. [Google Scholar] [CrossRef]
- Rugo, H.S.; Kabos, P.; Beck, J.T.; Chisamore, M.J.; Hossain, A.; Chen, Y.; Tolaney, S.M. A Phase Ib Study of Abemaciclib in Combination with Pembrolizumab for Patients with Hormone Receptor Positive (HR+), Human Epidermal Growth Factor Receptor 2 Negative (HER2-) Locally Advanced or Metastatic Breast Cancer (MBC) (NCT02779751): Interim Results. JCO 2020, 38, 1051. [Google Scholar] [CrossRef]
- Patnaik, A.; Yap, T.A.; Chung, H.C.; de Miguel, M.J.; Bang, Y.-J.; Lin, C.-C.; Su, W.-C.; Italiano, A.; Chow, K.H.; Szpurka, A.M.; et al. Safety and Clinical Activity of a New Anti-PD-L1 Antibody as Monotherapy or Combined with Targeted Therapy in Advanced Solid Tumors: The PACT Phase Ia/Ib Trial. Clin. Cancer Res. 2021, 27, 1267–1277. [Google Scholar] [CrossRef] [PubMed]
- Masuda, J.; Sakai, H.; Tsurutani, J.; Tanabe, Y.; Masuda, N.; Iwasa, T.; Takahashi, M.; Futamura, M.; Matsumoto, K.; Aogi, K.; et al. Efficacy, Safety, and Biomarker Analysis of Nivolumab in Combination with Abemaciclib plus Endocrine Therapy in Patients with HR-Positive HER2-Negative Metastatic Breast Cancer: A Phase II Study (WJOG11418B NEWFLAME Trial). J. Immunother. Cancer 2023, 11, e007126. [Google Scholar] [CrossRef] [PubMed]
- Digiacomo, G.; Fumarola, C.; La Monica, S.; Bonelli, M.; Cavazzoni, A.; Galetti, M.; Terenziani, R.; Eltayeb, K.; Volta, F.; Zoppi, S.; et al. CDK4/6 Inhibitors Improve the Anti-Tumor Efficacy of Lenvatinib in Hepatocarcinoma Cells. Front. Oncol. 2022, 12, 942341. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Barbero, B.; Álvarez-Fernández, M.; Zapatero-Solana, E.; El Bakkali, A.; Menéndez, M.D.C.; López-Casas, P.P.; Di Domenico, T.; Xie, T.; VanArsdale, T.; Shields, D.J.; et al. CDK4/6 Inhibitors Impair Recovery from Cytotoxic Chemotherapy in Pancreatic Adenocarcinoma. Cancer Cell 2020, 37, 340–353.e6. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, S.; Madani, D.; Joshi, S.; Chung, S.A.; Johns, T.; Day, B.; Khasraw, M.; McDonald, K.L. Combination of Palbociclib and Radiotherapy for Glioblastoma. Cell Death Discov. 2017, 3, 17033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-F.; Li, J.; Jiang, K.; Wang, R.; Ge, J.; Yang, H.; Liu, S.-J.; Jia, L.-T.; Wang, L.; Chen, B.-L. CDK4/6 Inhibition Promotes Immune Infiltration in Ovarian Cancer and Synergizes with PD-1 Blockade in a B Cell-Dependent Manner. Theranostics 2020, 10, 10619–10633. [Google Scholar] [CrossRef]
- Xu, X.; Pan, X.; Wang, T.; Wang, J.; Yang, B.; He, Q.; Ding, L. Intrinsic and Acquired Resistance to CDK4/6 Inhibitors and Potential Overcoming Strategies. Acta Pharmacol. Sin. 2021, 42, 171–178. [Google Scholar] [CrossRef]
- Park, J.; Hsueh, P.-C.; Li, Z.; Ho, P.-C. Microenvironment-Driven Metabolic Adaptations Guiding CD8+ T Cell Anti-Tumor Immunity. Immunity 2023, 56, 32–42. [Google Scholar] [CrossRef]
- van der Leun, A.M.; Traets, J.J.H.; Vos, J.L.; Elbers, J.B.W.; Patiwael, S.; Qiao, X.; Machuca-Ostos, M.; Thommen, D.S.; Haanen, J.B.A.G.; Schumacher, T.N.M.; et al. Dual Immune Checkpoint Blockade Induces Analogous Alterations in the Dysfunctional CD8+ T-Cell and Activated Treg Compartment. Cancer Discov. 2023, 13, 2212–2227. [Google Scholar] [CrossRef]
- Ylitalo, A.; Aakko, S.; Kuusanmäki, H.; Björkman, M.; Jalkanen, J.; Fjällskog, M.-L.; Heckman, C.; Hollmén, M.; Kontro, M. Abstract A14: Ex Vivo Immune Activation with the Macrophage-Targeting Immunotherapy, Anti-Clever-1 Antibody Bexmarilimab, in Acute Myeloid Leukemia and Myelodysplastic Syndrome. Blood Cancer Discov. 2023, 4, A14. [Google Scholar] [CrossRef]
- Deng, J.; Wang, E.S.; Jenkins, R.W.; Li, S.; Dries, R.; Yates, K.; Chhabra, S.; Huang, W.; Liu, H.; Aref, A.R.; et al. CDK4/6 Inhibition Augments Antitumor Immunity by Enhancing T-Cell Activation. Cancer Discov. 2018, 8, 216–233. [Google Scholar] [CrossRef] [PubMed]
- Lelliott, E.J.; Kong, I.Y.; Zethoven, M.; Ramsbottom, K.M.; Martelotto, L.G.; Meyran, D.; Zhu, J.J.; Costacurta, M.; Kirby, L.; Sandow, J.J.; et al. CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-Cell Memory. Cancer Discov. 2021, 11, 2582–2601. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; DeCristo, M.J.; Watt, A.C.; BrinJones, H.; Sceneay, J.; Li, B.B.; Khan, N.; Ubellacker, J.M.; Xie, S.; Metzger-Filho, O.; et al. CDK4/6 Inhibition Triggers Anti-Tumour Immunity. Nature 2017, 548, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Blankenstein, T.; Coulie, P.G.; Gilboa, E.; Jaffee, E.M. The Determinants of Tumour Immunogenicity. Nat. Rev. Cancer 2012, 12, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Mangalhara, K.C.; Varanasi, S.K.; Johnson, M.A.; Burns, M.J.; Rojas, G.R.; Molto, P.B.E. Tumor Immunogenicity Is Enhanced by Altering Mitochondrial Electron Flow. Cancer Discov. 2023, 13, 2498. [Google Scholar] [CrossRef]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef]
- Heinhuis, K.M.; Ros, W.; Kok, M.; Steeghs, N.; Beijnen, J.H.; Schellens, J.H.M. Enhancing Antitumor Response by Combining Immune Checkpoint Inhibitors with Chemotherapy in Solid Tumors. Ann. Oncol. 2019, 30, 219–235. [Google Scholar] [CrossRef]
- Keam, S.; Gill, S.; Ebert, M.A.; Nowak, A.K.; Cook, A.M. Enhancing the Efficacy of Immunotherapy Using Radiotherapy. Clin. Transl. Immunol. 2020, 9, e1169. [Google Scholar] [CrossRef]
- Li, K.; Yang, D.; Liu, D. Targeted Nanophotoimmunotherapy Potentiates Cancer Treatment by Enhancing Tumor Immunogenicity and Improving the Immunosuppressive Tumor Microenvironment. Bioconj. Chem. 2023, 34, 283–301. [Google Scholar] [CrossRef]
- Liu, C.; Huang, Y.; Cui, Y.; Zhou, J.; Qin, X.; Zhang, L.; Li, X.; Li, Y.; Guo, E.; Yang, B.; et al. The Immunological Role of CDK4/6 and Potential Mechanism Exploration in Ovarian Cancer. Front. Immunol. 2022, 12, 799171. [Google Scholar] [CrossRef]
- Jerby-Arnon, L.; Shah, P.; Cuoco, M.S.; Rodman, C.; Su, M.-J.; Melms, J.C.; Leeson, R.; Kanodia, A.; Mei, S.; Lin, J.-R.; et al. A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade. Cell 2018, 175, 984–997.e24. [Google Scholar] [CrossRef] [PubMed]
- Watt, A.C.; Cejas, P.; DeCristo, M.J.; Metzger-Filho, O.; Lam, E.Y.N.; Qiu, X.; BrinJones, H.; Kesten, N.; Coulson, R.; Font-Tello, A.; et al. CDK4/6 Inhibition Reprograms the Breast Cancer Enhancer Landscape by Stimulating AP-1 Transcriptional Activity. Nat. Cancer 2021, 2, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Liu, W.; Zeng, Y.; Zhou, Y.; Gao, M.; Yang, L.; Liu, H.; Shi, Y.; Li, L.; Ma, J.; et al. DNA Damage Induced by CDK4 and CDK6 Blockade Triggers Anti-Tumor Immune Responses through CGAS-STING Pathway. Commun. Biol. 2023, 6, 1041. [Google Scholar] [CrossRef] [PubMed]
- Schaer, D.A.; Beckmann, R.P.; Dempsey, J.A.; Huber, L.; Forest, A.; Amaladas, N.; Li, Y.; Wang, Y.C.; Rasmussen, E.R.; Chin, D.; et al. The CDK4/6 Inhibitor Abemaciclib Induces a T Cell Inflamed Tumor Microenvironment and Enhances the Efficacy of PD-L1 Checkpoint Blockade. Cell Rep. 2018, 22, 2978–2994. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Shrestha, P.; Heape, N.M.; Yarchoan, R. CDK4/6 Inhibitors Sensitize Gammaherpesvirus-Infected Tumor Cells to T-Cell Killing by Enhancing Expression of Immune Surface Molecules. J. Transl. Med. 2022, 20, 217. [Google Scholar] [CrossRef]
- Rowe, J.H.; Elia, I.; Shahid, O.; Gaudiano, E.F.; Sifnugel, N.E.; Johnson, S.; Reynolds, A.G.; Fung, M.E.; Joshi, S.; LaFleur, M.W.; et al. Formate Supplementation Enhances Antitumor CD8+ T-Cell Fitness and Efficacy of PD-1 Blockade. Cancer Discov. 2023, 13, 2566–2583. [Google Scholar] [CrossRef]
- Teh, J.L.F.; Erkes, D.A.; Cheng, P.F.; Tiago, M.; Wilski, N.A.; Field, C.O.; Chervoneva, I.; Levesque, M.P.; Xu, X.; Dummer, R.; et al. Activation of CD8+ T Cells Contributes to Antitumor Effects of CDK4/6 Inhibitors plus MEK Inhibitors. Cancer Immunol. Res. 2020, 8, 1114–1121. [Google Scholar] [CrossRef]
- Uzhachenko, R.V.; Bharti, V.; Ouyang, Z.; Blevins, A.; Mont, S.; Saleh, N.; Lawrence, H.A.; Shen, C.; Chen, S.-C.; Ayers, G.D.; et al. Metabolic Modulation by CDK4/6 Inhibitor Promotes Chemokine-Mediated Recruitment of T Cells into Mammary Tumors. Cell Rep. 2021, 35, 108944. [Google Scholar] [CrossRef]
- Bai, X.; Guo, Z.-Q.; Zhang, Y.-P.; Fan, Z.; Liu, L.-J.; Liu, L.; Long, L.-L.; Ma, S.-C.; Wang, J.; Fang, Y.; et al. CDK4/6 Inhibition Triggers ICAM1-Driven Immune Response and Sensitizes LKB1 Mutant Lung Cancer to Immunotherapy. Nat. Commun. 2023, 14, 1247. [Google Scholar] [CrossRef]
- Tungland, B. Role of Gut Microbiota in Immune Homeostasis. In Human Microbiota in Health and Disease; Elsevier: Amsterdam, The Netherlands, 2018; pp. 135–154. ISBN 978-0-12-814649-1. [Google Scholar]
- Turner, S.J.; Bennett, T.J.; La Gruta, N.L. CD8 T-Cell Memory: The Why, the When, and the How. Cold Spring Harb. Perspect. Biol. 2021, 13, a038661. [Google Scholar] [CrossRef]
- Dumauthioz, N.; Tschumi, B.; Wenes, M.; Marti, B.; Wang, H.; Franco, F.; Li, W.; Lopez-Mejia, I.C.; Fajas, L.; Ho, P.-C.; et al. Enforced PGC-1α Expression Promotes CD8 T Cell Fitness, Memory Formation and Antitumor Immunity. Cell Mol. Immunol. 2021, 18, 1761–1771. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, Z.; Sun, H.; Ouyang, X.; Han, Y.; Yu, H.; Wu, N.; Xie, Y.; Su, B. Regulation of CD8+ T Memory and Exhaustion by the MTOR Signals. Cell Mol. Immunol. 2023, 20, 1023–1039. [Google Scholar] [CrossRef] [PubMed]
- Landgren, O.; Kazandjian, D. MRD and Plasma Cell Dynamics after CAR T-Cell Therapy in Myeloma. Blood Cancer Discov. 2023, 4, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Verbist, K.C.; Guy, C.S.; Milasta, S.; Liedmann, S.; Kamiński, M.M.; Wang, R.; Green, D.R. Metabolic Maintenance of Cell Asymmetry Following Division in Activated T Lymphocytes. Nature 2016, 532, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Heckler, M.; Ali, L.R.; Clancy-Thompson, E.; Qiang, L.; Ventre, K.S.; Lenehan, P.; Roehle, K.; Luoma, A.; Boelaars, K.; Peters, V.; et al. Inhibition of CDK4/6 Promotes CD8 T-Cell Memory Formation. Cancer Discov. 2021, 11, 2564–2581. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef]
- Garfall, A.L.; Cohen, A.D.; Susanibar-Adaniya, S.P.; Hwang, W.-T.; Vogl, D.T.; Waxman, A.J.; Lacey, S.F.; Gonzalez, V.E.; Fraietta, J.A.; Gupta, M.; et al. Anti-BCMA/CD19 CAR T Cells with Early Immunomodulatory Maintenance for Multiple Myeloma Responding to Initial or Later-Line Therapy. Blood Cancer Discov. 2023, 4, 118–133. [Google Scholar] [CrossRef]
- Garg, A.D.; Galluzzi, L.; Apetoh, L.; Baert, T.; Birge, R.B.; Bravo-San Pedro, J.M.; Breckpot, K.; Brough, D.; Chaurio, R.; Cirone, M.; et al. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front. Immunol. 2015, 6, 588. [Google Scholar] [CrossRef]
- Green, D.R.; Ferguson, T.; Zitvogel, L.; Kroemer, G. Immunogenic and Tolerogenic Cell Death. Nat. Rev. Immunol. 2009, 9, 353–363. [Google Scholar] [CrossRef]
- Han, G.; Deng, Q.; Marques-Piubelli, M.L.; Dai, E.; Dang, M.; Ma, M.C.J.; Li, X.; Yang, H.; Henderson, J.; Kudryashova, O.; et al. Follicular Lymphoma Microenvironment Characteristics Associated with Tumor Cell Mutations and MHC Class II Expression. Blood Cancer Discov. 2022, 3, 428–443. [Google Scholar] [CrossRef]
- Xiao, J.; Liang, J.; Fan, J.; Hou, P.; Li, X.; Zhang, H.; Li, K.; Bu, L.; Li, P.; He, M.; et al. CDK4/6 Inhibition Enhances Oncolytic Virus Efficacy by Potentiating Tumor-Selective Cell Killing and T-Cell Activation in Refractory Glioblastoma. Cancer Res. 2022, 82, 3359–3374. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, J.D.; Paulson, K.; Voillet, V.; Berndt, A.; Church, C.; Lachance, K.; Park, S.Y.; Yamamoto, N.K.; Cromwell, E.A.; et al. Enhancing Immunogenic Responses through CDK4/6 and HIF2α Inhibition in Merkel Cell Carcinoma. Heliyon 2024, 10, e23521. [Google Scholar] [CrossRef] [PubMed]
- Tong, J.; Tan, X.; Song, X.; Gao, M.; Risnik, D.; Hao, S.; Ermine, K.; Wang, P.; Li, H.; Huang, Y.; et al. CDK4/6 Inhibition Suppresses P73 Phosphorylation and Activates DR5 to Potentiate Chemotherapy and Immune Checkpoint Blockade. Cancer Res. 2022, 82, 1340–1352. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Wu, C.; Zhang, Y.-J. Interplay between Janus Kinase/Signal Transducer and Activator of Transcription Signaling Activated by Type I Interferons and Viral Antagonism. Front. Immunol. 2017, 8, 1758. [Google Scholar] [CrossRef] [PubMed]
- Balandrán, J.C.; Lasry, A.; Aifantis, I. The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms. Blood Cancer Discov. 2023, 4, 254–266. [Google Scholar] [CrossRef]
- De Angelis, C.; Fu, X.; Cataldo, M.L.; Nardone, A.; Pereira, R.; Veeraraghavan, J.; Nanda, S.; Qin, L.; Sethunath, V.; Wang, T.; et al. Activation of the IFN Signaling Pathway Is Associated with Resistance to CDK4/6 Inhibitors and Immune Checkpoint Activation in ER-Positive Breast Cancer. Clin. Cancer Res. 2021, 27, 4870–4882. [Google Scholar] [CrossRef]
- Wherry, E.J.; Kurachi, M. Molecular and Cellular Insights into T Cell Exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
- Pandey, K.; Lee, E.; Park, N.; Hur, J.; Cho, Y.B.; Katuwal, N.B.; Kim, S.K.; Lee, S.A.; Kim, I.; An, H.J.; et al. Deregulated Immune Pathway Associated with Palbociclib Resistance in Preclinical Breast Cancer Models: Integrative Genomics and Transcriptomics. Genes 2021, 12, 159. [Google Scholar] [CrossRef]
- Lypova, N.; Lanceta, L.; Gipson, A.; Vega, S.; Garza-Morales, R.; McMasters, K.; Chesney, J.; Gomez-Gutierrez, J.; Imbert-Fernandez, Y. Targeting Palbociclib-Resistant Estrogen Receptor-Positive Breast Cancer Cells via Oncolytic Virotherapy. Cancers 2019, 11, 684. [Google Scholar] [CrossRef]
- Bailey, S.R.; Vatsa, S.; Larson, R.C.; Bouffard, A.A.; Scarfò, I.; Kann, M.C.; Berger, T.R.; Leick, M.B.; Wehrli, M.; Schmidts, A.; et al. Blockade or Deletion of IFNγ Reduces Macrophage Activation without Compromising CAR T-Cell Function in Hematologic Malignancies. Blood Cancer Discov. 2022, 3, 136–153. [Google Scholar] [CrossRef]
- De Angelis, C.; Fu, X.; Cataldo, M.L.; Nardone, A.; Jansen, V.M.; Veeraraghavan, J.; Nanda, S.; Qin, L.; Sethunath, V.; Pereira, R.; et al. Abstract GS2-01: High Levels of Interferon-Response Gene Signatures Are Associated with de Novo and Acquired Resistance to CDK4/6 Inhibitors in ER+ Breast Cancer. Cancer Res. 2020, 80, GS2-01. [Google Scholar] [CrossRef]
- Marin, I.; Boix, O.; Garcia-Garijo, A.; Sirois, I.; Caballe, A.; Zarzuela, E.; Ruano, I.; Attolini, C.S.-O.; Prats, N.; López-Domínguez, J.A.; et al. Cellular Senescence Is Immunogenic and Promotes Antitumor Immunity. Cancer Discov. 2023, 13, 410–431. [Google Scholar] [CrossRef] [PubMed]
- Mitochondrial DNA Release Is Induced by Apoptotic Stress and Drives the SASP. Cancer Discov. 2023, 13, OF18. [CrossRef]
- Yoshida, A.; Lee, E.K.; Diehl, J.A. Induction of Therapeutic Senescence in Vemurafenib-Resistant Melanoma by Extended Inhibition of CDK4/6. Cancer Res. 2016, 76, 2990–3002. [Google Scholar] [CrossRef]
- Vijayaraghavan, S.; Karakas, C.; Doostan, I.; Chen, X.; Bui, T.; Yi, M.; Raghavendra, A.S.; Zhao, Y.; Bashour, S.I.; Ibrahim, N.K.; et al. CDK4/6 and Autophagy Inhibitors Synergistically Induce Senescence in Rb Positive Cytoplasmic Cyclin E Negative Cancers. Nat. Commun. 2017, 8, 15916. [Google Scholar] [CrossRef]
- Llanos, S.; Megias, D.; Blanco-Aparicio, C.; Hernández-Encinas, E.; Rovira, M.; Pietrocola, F.; Serrano, M. Lysosomal Trapping of Palbociclib and Its Functional Implications. Oncogene 2019, 38, 3886–3902. [Google Scholar] [CrossRef]
- Ruscetti, M.; Morris, J.P.; Mezzadra, R.; Russell, J.; Leibold, J.; Romesser, P.B.; Simon, J.; Kulick, A.; Ho, Y.-J.; Fennell, M.; et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell 2020, 181, 424–441.e21. [Google Scholar] [CrossRef]
- Basisty, N.; Kale, A.; Jeon, O.H.; Kuehnemann, C.; Payne, T.; Rao, C.; Holtz, A.; Shah, S.; Sharma, V.; Ferrucci, L.; et al. A Proteomic Atlas of Senescence-Associated Secretomes for Aging Biomarker Development. PLoS Biol. 2020, 18, e3000599. [Google Scholar] [CrossRef]
- Lin, R.J.; Wong, P.; Flynn, J.R.; Ritter, E.R.; Ho, C.; Ruiz, J.D.; Jakubowski, A.A.; Papadopoulos, E.B.; Shaffer, B.C.; Castro-Malaspina, H.R.; et al. Abstract A48: Aging-Related, Senescence-Associated Secretory Phenotype and Allogeneic Hematopoietic Cell Transplantation Outcomes in Older Adults. Blood Cancer Discov. 2023, 4, A48. [Google Scholar] [CrossRef]
- Gorgoulis, V.; Adams, P.D.; Alimonti, A.; Bennett, D.C.; Bischof, O.; Bishop, C.; Campisi, J.; Collado, M.; Evangelou, K.; Ferbeyre, G.; et al. Cellular Senescence: Defining a Path Forward. Cell 2019, 179, 813–827. [Google Scholar] [CrossRef]
- Wang, B.; Varela-Eirin, M.; Brandenburg, S.M.; Hernandez-Segura, A.; van Vliet, T.; Jongbloed, E.M.; Wilting, S.M.; Ohtani, N.; Jager, A.; Demaria, M. Pharmacological CDK4/6 Inhibition Reveals a P53-Dependent Senescent State with Restricted Toxicity. EMBO J. 2022, 41, e108946. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; LaPak, K.M.; Hennessey, R.C.; Yu, C.Y.; Shakya, R.; Zhang, J.; Burd, C.E. Stromal Senescence By Prolonged CDK4/6 Inhibition Potentiates Tumor Growth. Mol. Cancer Res. 2017, 15, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Zender, L.; Miething, C.; Dickins, R.A.; Hernando, E.; Krizhanovsky, V.; Cordon-Cardo, C.; Lowe, S.W. Senescence and Tumour Clearance Is Triggered by P53 Restoration in Murine Liver Carcinomas. Nature 2007, 445, 656–660. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Tian, B.; Liu, L.; Gao, Y.; Ma, C.; Mwichie, N.; Ma, W.; Han, L.; Huang, B.; Lu, J.; et al. Rb Protein Is Essential to the Senescence-Associated Heterochromatic Foci Formation Induced by HMGA2 in Primary WI38 Cells. J. Genet. Genom. 2013, 40, 391–398. [Google Scholar] [CrossRef]
- Narita, M.; Nũnez, S.; Heard, E.; Narita, M.; Lin, A.W.; Hearn, S.A.; Spector, D.L.; Hannon, G.J.; Lowe, S.W. Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence. Cell 2003, 113, 703–716. [Google Scholar] [CrossRef]
- Wu, Q.; Leng, X.; Zhang, Q.; Zhu, Y.-Z.; Zhou, R.; Liu, Y.; Mei, C.; Zhang, D.; Liu, S.; Chen, S.; et al. IRF3 Activates RB to Authorize CGAS-STING-Induced Senescence and Mitigate Liver Fibrosis. Sci. Adv. 2024, 10, eadj2102. [Google Scholar] [CrossRef]
- Di Mitri, D.; Toso, A.; Chen, J.J.; Sarti, M.; Pinton, S.; Jost, T.R.; D’Antuono, R.; Montani, E.; Garcia-Escudero, R.; Guccini, I.; et al. Tumour-Infiltrating Gr-1+ Myeloid Cells Antagonize Senescence in Cancer. Nature 2014, 515, 134–137. [Google Scholar] [CrossRef]
- Chen, D.S.; Mellman, I. Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature 2017, 541, 321–330. [Google Scholar] [CrossRef]
- Gunawardana, J.; Law, S.C.; Sabdia, M.B.; Bednarska, K.; Brosda, S.; Zaharia, A.; Tsang, H.; de Long, L.M.; Burgess, M.; Talaulikar, D.; et al. Abstract A17: The Immune Checkpoints TIGIT and PD-1 Are Markedly Upregulated in NLPHL Compared to Classical Hodgkin Lymphoma. Blood Cancer Discov. 2022, 3, A17. [Google Scholar] [CrossRef]
- Wei, S.C.; Duffy, C.R.; Allison, J.P. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy. Cancer Discov. 2018, 8, 1069–1086. [Google Scholar] [CrossRef]
- Lin, X.; Kang, K.; Chen, P.; Zeng, Z.; Li, G.; Xiong, W.; Yi, M.; Xiang, B. Regulatory Mechanisms of PD-1/PD-L1 in Cancers. Mol. Cancer 2024, 23, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bu, X.; Wang, H.; Zhu, Y.; Geng, Y.; Nihira, N.T.; Tan, Y.; Ci, Y.; Wu, F.; Dai, X.; et al. Cyclin D-CDK4 Kinase Destabilizes PD-L1 via Cullin 3-SPOP to Control Cancer Immune Surveillance. Nature 2018, 553, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Ding, D.; Yan, Y.; Li, H.; Wang, B.; Ma, L.; Ye, Z.; Ma, T.; Wu, Q.; Rodrigues, D.N.; et al. Phosphorylated RB Promotes Cancer Immunity by Inhibiting NF-ΚB Activation and PD-L1 Expression. Mol. Cell 2019, 73, 22–35.e6. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Zheng, X.; Niu, M.; Zhu, S.; Ge, H.; Wu, K. Combination Strategies with PD-1/PD-L1 Blockade: Current Advances and Future Directions. Mol. Cancer 2022, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Pingili, A.K.; Chaib, M.; Sipe, L.M.; Miller, E.J.; Teng, B.; Sharma, R.; Yarbro, J.R.; Asemota, S.; Al Abdallah, Q.; Mims, T.S.; et al. Immune Checkpoint Blockade Reprograms Systemic Immune Landscape and Tumor Microenvironment in Obesity-Associated Breast Cancer. Cell Rep. 2021, 35, 109285. [Google Scholar] [CrossRef]
- Tang, B.; Yan, X.; Sheng, X.; Si, L.; Cui, C.; Kong, Y.; Mao, L.; Lian, B.; Bai, X.; Wang, X.; et al. Safety and Clinical Activity with an Anti-PD-1 Antibody JS001 in Advanced Melanoma or Urologic Cancer Patients. J. Hematol. Oncol. 2019, 12, 7. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in Patients with Advanced Hepatocellular Carcinoma (CheckMate 040): An Open-Label, Non-Comparative, Phase 1/2 Dose Escalation and Expansion Trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Fecal Microbiota Transplantation plus Anti–PD-1 Is Safe in a First-Line Setting. Cancer Discov. 2023, 13, 1957. [CrossRef]
- Disruption of KAT8–IRF1 Condensate Formation Reduces PD-L1 Expression. Cancer Discov. 2023, 13, 1037. [CrossRef]
- Yu, J.; Yan, J.; Guo, Q.; Chi, Z.; Tang, B.; Zheng, B.; Yu, J.; Yin, T.; Cheng, Z.; Wu, X.; et al. Genetic Aberrations in the CDK4 Pathway Are Associated with Innate Resistance to PD-1 Blockade in Chinese Patients with Non-Cutaneous Melanoma. Clin. Cancer Res. 2019, 25, 6511–6523. [Google Scholar] [CrossRef]
- Kanikarla-Marie, P.; Lam, M.; Sorokin, A.V.; Overman, M.J.; Kopetz, S.; Menter, D.G. Platelet Metabolism and Other Targeted Drugs; Potential Impact on Immunotherapy. Front. Oncol. 2018, 8, 107. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, C.A.; Quintanilla, R.; Olate-Briones, A.; Venturini, W.; Mancilla, D.; Cayo, A.; Moore-Carrasco, R.; Brown, N.E. SASP-Dependent Interactions between Senescent Cells and Platelets Modulate Migration and Invasion of Cancer Cells. Int. J. Mol. Sci. 2019, 20, 5292. [Google Scholar] [CrossRef] [PubMed]
- Mafi, S.; Mansoori, B.; Taeb, S.; Sadeghi, H.; Abbasi, R.; Cho, W.C.; Rostamzadeh, D. MTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front. Immunol. 2021, 12, 774103. [Google Scholar] [CrossRef] [PubMed]
- Scirocchi, F.; Scagnoli, S.; Botticelli, A.; Di Filippo, A.; Napoletano, C.; Zizzari, I.G.; Strigari, L.; Tomao, S.; Cortesi, E.; Rughetti, A.; et al. Immune Effects of CDK4/6 Inhibitors in Patients with HR+/HER2− Metastatic Breast Cancer: Relief from Immunosuppression Is Associated with Clinical Response. eBioMedicine 2022, 79, 104010. [Google Scholar] [CrossRef]
- Tan, A.R.; O’Shaughnessy, J.; Cao, S.; Ahn, S.; Yi, J.S. Investigating Potential Immune Mechanisms of Trilaciclib Administered Prior to Chemotherapy in Patients with Metastatic Triple-Negative Breast Cancer. Breast Cancer Res. Treat. 2023, 201, 307–316. [Google Scholar] [CrossRef]
- Zaemes, J.; Alzeer, A.; Villa, K.; Atkins, M. A Patient with Melanoma That Became Sensitized to Immunotherapy after Treatment with a CDK4/6 Inhibitor. Immunotherapy 2020, 12, 861–867. [Google Scholar] [CrossRef]
- Pujol, J.-L.; Vansteenkiste, J.; Paz-Ares Rodríguez, L.; Gregorc, V.; Mazieres, J.; Awad, M.; Jänne, P.A.; Chisamore, M.; Hossain, A.M.; Chen, Y.; et al. Abemaciclib in Combination With Pembrolizumab for Stage IV KRAS-Mutant or Squamous NSCLC: A Phase 1b Study. JTO Clin. Res. Rep. 2021, 2, 100234. [Google Scholar] [CrossRef]
- Guo, X.; Chen, H.; Zhou, Y.; Shen, L.; Wu, S.; Chen, Y. Cyclin-Dependent Kinase Inhibition and Its Intersection with Immunotherapy in Breast Cancer: More than CDK4/6 Inhibition. Expert Opin. Investig. Drugs 2022, 31, 933–944. [Google Scholar] [CrossRef]
- Charles, A.; Bourne, C.M.; Korontsvit, T.; Aretz, Z.E.H.; Mun, S.S.; Dao, T.; Klatt, M.G.; Scheinberg, D.A. Low-Dose CDK4/6 Inhibitors Induce Presentation of Pathway Specific MHC Ligands as Potential Targets for Cancer Immunotherapy. Oncoimmunology 2021, 10, 1916243. [Google Scholar] [CrossRef]
CDK4/6 Inhibitor | Combinations | Treatments | Disease | Stage | Trial Identifier | References |
---|---|---|---|---|---|---|
Palbociclib | ERK MAPK inhibitor | Palbociclib and ulixertinib | KRASmutant pancreatic cancer | I | NCT03454035 | [29] |
EGFR mAb plus radiotherapy | Palbociclib plus cetuximab and radiotherapy | Locally advanced head and neck squamous cell carcinoma | I | NCT03024489 | [32] | |
Chemotherapy | Palbociclib, and standard four-drug re-induction chemotherapy | Relapsed/refractory B- and T-cell lymphoblastic leukemia and lymphoma | I | NCT02255461 NCT03792256 | [33] | |
IGF-1R monoclonal antibody | Palbociclib and ganitumab | Ewing sarcoma | II | NCT04129151 | [34] | |
Immune checkpoint inhibitor and aromatase inhibitor | Palbociclib, pembrolizumab, and letrozole | Metastatic breast cancer | I/II | NCT02778685 | [35] | |
Anti-PD-L1 immunotherapy and anti-VEGFR | Avelumab, palbociclib, and axitinib | Advanced non-small-cell lung cancer | I | NCT03386929 | [36] | |
EGFR inhibitor and PD-L1 inhibitor | Cetuximab and avelumab | Head and neck squamous cell carcinoma | I | NCT03498378 | [37] | |
Immune checkpoint inhibitor | Palbociclib and PD-1 inhibitor | Metastatic rare solid tumors | II | NCT04423185 | [38] | |
Ribociclib | Aromatase inhibitor | Letrozole | Advanced or metastatic breast cancer | IIIb | NCT03096847 | [39] |
Aromatase inhibitor and tyrosine kinase inhibitor | Exemestane, ribociclib, and everolimus | Advanced breast cancer | I/II | NCT02732119 | [40] | |
Chemotherapy | Doxorubicin, cyclophosphamide, and paclitaxel plus ribociclib | Luminal B breast cancer | II | NCT03248427 | [41] | |
Chemotherapy | Docetaxel plus ribociclib | Metastatic castration-resistant prostate cancer | Ib/II | NCT02494921 | [42] | |
Endocrine therapy | Letrozole or anastrozole | Breast cancer | III | NCT03701334 | [43] | |
Immunotherapy | Everolimus | Intrinsic pontine glioma (DIPG) and high-grade glioma (HGG) | I | NCT02607124” | [44] | |
Immunotherapy | Everolimus | Foregut neuroendocrine tumors | II | NCT03070301 | [45] | |
Tyrosine kinase inhibitor | Ribociclib and everolimus | Liposarcoma and leiomyosarcoma | II | NCIP30CA00692 | [46] | |
Abemaciclib | Aromatase inhibitor | Letrozole | Ovarian cancer | II | NCT05872204 | [47] |
PI3K/mTOR inhibitor or TGF-βRI inhibitor | LY3023414 or galunisertib | Metastatic pancreatic adenocarcinoma | II | NCT02981342 | [48] | |
Endocrine therapy | Lasofoxifene plus abemaciclib | Metastatic breast cancer | II | NCT04432454 | [49] | |
Immune checkpoint inhibitor | Pembrolizumab | Metastatic breast cancer | Ib | NCT02779751 | [50] | |
PD-L1 inhibitor and type II MET kinase inhibitor | LY3300054, ramucirumab, abemaciclib, or merestinib | Advanced, refractory solid tumors | Ia/Ib | NCT02791334 | [51] | |
Immune checkpoint inhibitor and endocrine therapy | Nivolumab and abemaciclib plus endocrine therapy | Metastatic breast cancer | II | WJOG11418B | [52] | |
Tyrosine kinase inhibitor | Lenvatinib | Hepatocarcinoma | II | NCT03781960 | [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Deng, Y.; Yang, C.; Naranmandura, H. Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives. Bioengineering 2024, 11, 1084. https://doi.org/10.3390/bioengineering11111084
Liu Y, Deng Y, Yang C, Naranmandura H. Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives. Bioengineering. 2024; 11(11):1084. https://doi.org/10.3390/bioengineering11111084
Chicago/Turabian StyleLiu, Yongqin, Yiying Deng, Chang Yang, and Hua Naranmandura. 2024. "Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives" Bioengineering 11, no. 11: 1084. https://doi.org/10.3390/bioengineering11111084
APA StyleLiu, Y., Deng, Y., Yang, C., & Naranmandura, H. (2024). Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives. Bioengineering, 11(11), 1084. https://doi.org/10.3390/bioengineering11111084