Computational Investigation of the Hemodynamic Effects of the Location of a Re-Entry Tear in Uncomplicated Type B Aortic Dissection
Abstract
:1. Introduction
2. Methods
2.1. Geometry Reconstruction
2.2. Flow Simulation and Boundary Conditions
2.3. Governing Equations
2.4. Computational Method
2.5. Mesh Sensitivity Test
3. Results
3.1. Flow Distribution
3.2. Pressure Distribution
3.3. Wall Shear Stress Distribution
4. Discussion
4.1. Flow Distribution
4.2. Pressure Distribution
4.3. WSS Distribution
4.4. Clinical Value
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clouse, W.D.; Hallett, J.W.; Schaff, H.V.; Spittell, P.C.; Rowland, C.M.; Ilstrup, D.M.; Melton, L.J., 3rd. Acute aortic dissection: Population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin. Proc. 2004, 79, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Schlüter, K.-D.; Wenzel, S. Angiotensin II: A hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol. Ther. 2008, 119, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Coady, M.A.; Rizzo, J.A.; Goldstein, L.J.; Elefteriades, J.A. Natural history, pathogenesis, and etilogy of thoracic aortic aneurysm and dissections. Cardiol. Clin. 1999, 17, 615–635. [Google Scholar] [CrossRef] [PubMed]
- Erbel, R.; Alfonso, F.; Boileau, C.; Dirsch, O.; Eber, B.; Haverich, A.; Rakowski, H.; Struyven, J.; Radegran, K.; Sechtem, U.; et al. Diagnosis and management of aortic dissection: Task Force on Aortic Dissection. Eur. Heart J. 2001, 22, 1642–1681. [Google Scholar] [CrossRef] [PubMed]
- Rudenick, P.A.; Bordone, M.; Bijnens, B.H.; Soudah, E.; Oñate, E.; Garcia-Dorado, D.; Evangelista, A. A multi-method approach towards understanding the pathophysiology of aortic dissections—The complementary role of in silico, in vitro and in vivo information. In Statistical Atlases and Computational Models of the Heart; STACOM-CESC 2010: LNCS, 6364; Springer: Berlin/Heidelberg, Germany, 2010; pp. 114–123. [Google Scholar]
- Tse, K.M.; Chiu, P.; Lee, H.P.; Ho, P. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J. Biomech. 2011, 44, 827–836. [Google Scholar] [CrossRef]
- Cheng, M.; Yang, Y.; Xin, H.; Li, M.; Zong, T.; He, X.; Yu, T.; Xin, H. Non-coding RNAs in aortic dissection: From biomarkers to therapeutic targets. J. Cell. Mol. Med. 2020, 24, 11622–11637. [Google Scholar] [CrossRef]
- Czermak, B.V.; Waldenberger, P.; Fraedrich, G.; Dessl, A.H.; Roberts, K.E.; Bale, R.J.; Perkmann, R.; Jaschke, W.R. Treatment of stanford type B aortic dissection with stent-grafts: Preliminary results. Radiology 2000, 217, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Williams, D.M.; Lee, D.Y.; Hamilton, B.H.; Marx, M.V.; Narasimham, D.L.; Kazanjian, S.N.; Prince, M.R.; Andrews, J.C.; Cho, K.J.; Deeb, G.M. The dissection aorta: Percutaneous treatment of ischemic complications-principles and results. J. Vasc. Intervent. Radiol. 1997, 8, 605–625. [Google Scholar] [CrossRef]
- LePage, M.A.; Quint, L.E.; Sonnad, S.S.; Deeb, G.M.; Williams, D.M. Aortic dissection: CT feautures that distinguish true from false lumen. Am. J. Roentgenol. 2001, 177, 207–211. [Google Scholar] [CrossRef]
- Kapoor, V.; Ferris, J.V.; Fuhrman, C.R. Intimomedial rupture: A new CT finding to distinguish true from false lumen in aortic dissection. Am. J. Roentgenol. 2004, 183, 109–112. [Google Scholar] [CrossRef]
- Rehders, T.C.; Ince, H.; Nienaber, C.A. Aortic dissection: From aetiology to therapeutic management. Medicine 2006, 34, 296–301. [Google Scholar] [CrossRef]
- Golldedge, J.; Eagle, K.A. Acute aortic dissection. Lancet 2008, 372, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Karthikesalingam, A.; Holt, P.J.E.; Hinchliffe, R.J.; Thompson, M.M.; Loftus, I.M. The diagnosis and management of aortic dissection. Vasc. Endovasc. Surg. 2010, 44, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Pretre, R. Aortic dissection. Lancet 1997, 349, 1461–1464. [Google Scholar] [CrossRef]
- De Bakey, M.E.; Henly, W.S.; Cooley, D.A.; Crawford, E.S.; Morris, G.C. Surgical treatment of dissecting aneurysm of the aorta analysis of seventy-two cases. Circulation 1961, 24, 290–303. [Google Scholar] [CrossRef]
- Fattori, R.; Botta, L.; Lovato, L.; Biagini, E.; Russo, V.; Casadei, A.; Buttazzi, K. Malperfusion syndrome in type B aortic dissection: Role of the endovascular procedures. Acta Chir. Belg. 2008, 108, 192–197. [Google Scholar] [CrossRef]
- Tadros, R.O.; Tang, G.H.L.; Barnes, H.J.; Mousavi, I.; Kovacic, J.C.; Faries, P.; Olin, J.W.; Marin, M.L.; Adams, D.H. Optimal treatment of uncomplicated Type B aortic dissection: JACC review topic of the week. J. Am. Coll. Cardiol. 2019, 74, 1494–1504. [Google Scholar] [CrossRef]
- Kazimierczak, A.; Rynio, P.; Jędrzejczak, T.; Samad, R.; Rybicka, A.; Gutowski, P. Aortic remodeling after extended PETTICOAT technique in acute aortic dissection Type III B. Ann. Vasc. Surg. 2020, 66, 183–192. [Google Scholar] [CrossRef]
- Winnerkvist, A.; Lockowandt, U.; Rasmussen, E.; Rådegran, K. A prospective study of medically treated acute type B aortic dissection. Eur. J. Vasc. Endovasc. Surg. 2006, 32, 349–355. [Google Scholar] [CrossRef]
- Tang, D.G.; Dake, M.D. TEVAR for acute uncomplicated aortic dissection: Immediate repair versus medical therapy. Semin. Vasc. Surg. 2009, 22, 145–151. [Google Scholar] [CrossRef]
- Torrent, D.J.; McFarland, G.E.; Wang, G.; Malas, M.; Pearce, B.J.; Aucoin, V.; Neal, D.; Spangler, E.L.; Novak, Z.; Scali, S.T.; et al. Timing of thoracic endovascular aortic repair for uncomplicated acute type B aortic dissection and the association with complications. J. Vasc. Surg. 2021, 73, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Aziz, A.; O’Donnell, H.; Harris, D.G.; Jung, H.S.; DiMusto, P. Evaluation of a standardized protocol for medical management of uncomplicated acute type B aortic dissection. J. Vasc. Surg. 2022, 76, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Cambria, R.P.; Brewster, D.C.; Gertler, J.; Moncure, A.C.; Gusberg, R.; Tilson, M.D.; Darling, R.C.; Hammond, G.; Mergerman, J.; Abbott, W.M. Vascular complications associated with spontaneous aortic dissection. J. Vasc. Surg. 1988, 7, 199–209. [Google Scholar] [CrossRef]
- Elefteriades, J.A.; Hammond, G.L.; Gusberg, R.J.; Kopf, G.S.; Baldwin, J.C. Fenestration revisited: A safe and effective procedure for descending aortic dissection. Arch. Surg. 1990, 125, 786–790. [Google Scholar] [CrossRef]
- Williams, D.M.; Brothers, T.E.; Messina, L.M. Relief of mesenteric ischemia in type III aortic dissection with percutaneous fenestration of the aortic septum. Radiology 1990, 174, 450–452. [Google Scholar] [CrossRef]
- Han, S.M.; Gasper, W.J.; Chuter, T.A.M. Endovascular rescue after inadvertent false lumen stent graft implantation. J. Vasc. Surg. 2016, 63, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, A.; Hanks, S.E.; Han, S.M.; Fleischman, F.; Weaver, F.A.; Magee, G.A. Endovascular septal fenestration using a radiofrequency wire to salvage inadvertent false lumen deployment of a frozen elephant trunk stent graft. J. Vasc. Surg. Cases Innov. Tech. 2019, 5, 553–556. [Google Scholar] [CrossRef]
- Tenorio, E.R.; Lima, G.B.; Marcondes, G.B.; Oderich, G.S. Sizing and planning fenestrated and branched stent-grafts in patients with chronic post-dissection thoracoabdominal aortic aneurysms. J. Cardiovasc. Surg. 2020, 61, 416–426. [Google Scholar] [CrossRef]
- Nabaei, M.; Fatouraee, N. Computational modeling of formation of cerebral aneurysm under the influence of smooth muscle cell relaxation. J. Mech. Med. Biol. 2012, 12, 1250006. [Google Scholar] [CrossRef]
- Wong, K.K.L.; Tu, J.; Sun, Z.; Dissanayake, D.W. Methods in Research and Development of Biomedical Devices; World Scientific Publishing: Singapore, 2013. [Google Scholar]
- Cheng, Z.; Riga, C.; Chan, J.; Hamady, M.; Wood, N.B.; Cheshire, N.J.W.; Xu, Y.; Gibbs, R.G.J. Initial findings and potential applicability of computational simulation of the aorta in acute type B dissection. J. Vasc. Surg. 2013, 57, 35S–43S. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, X.Y.; Rosendahl, U.; Pepper, J.; Mirsadraee, S. Advanced risk prediction for aortic dissection patients using imaging-based computational flow analysis. Clin. Radiol. 2023, 78, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.T.; Schlicht, M.S.; Khanafer, K.; Bull, J.L.; Valassis, D.T.; Williams, D.M.; Berguer, R.; Eagle, K.A. Tear size and location impacts false lumen pressure in an ex vivo model of chronic type B aotic dissection. J. Vasc. Surg. 2008, 47, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Tan, F.P.P.; Riga, C.V.; Bicknell, C.D.; Hamady, M.S.; Gibbs, R.G.J.; Wood, N.B.; Xu, X.Y. Analysis of flow patterns in a patient-specific aortic dissection model. J. Biomech. Eng. 2010, 132, 051007. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.Y.S.; Fan, Y.; Cheng, S.W.K.; Chow, K.W. Biomechanical factors influencing tyep B thoracic aortic dissection: Computational fluid dynamics study. Eng. Appl. Comput. Fluid. Mech. 2012, 6, 622–632. [Google Scholar]
- Karmonik, C.; Bismuth, J.; Shah, D.J.; Davies, M.G.; Purdy, D.; Lumsden, A.B. Computational study of haemodynamic effects of entry- and exit- tear coverage in a Debakey Type III aortic dissection: Technical report. Eur. J. Vasc. Endovasc. Surg. 2011, 42, 172–177. [Google Scholar] [CrossRef]
- van Hout, M.J.; Scholte, A.J.; Juffermans, J.F.; Westenberg, J.J.; Zhong, L.; Zhou, X.; Schalla, S.M.; Hope, M.D.; Bremerich, J.; Kramer, C.M.; et al. How to Measure the Aorta Using MRI: A Practical Guide. J. Magn. Reson. Imaging 2020, 52, 971–977. [Google Scholar] [CrossRef]
- Keramati, H.; Birgersson, E.; Ho, J.P.; Kim, S.; Chua, K.J.; Leo, H.L. The effect of the entry and re-entry size in the aortic dissection: A two-way fluid-structure interaction simulation. Biomech. Model. Mechanobio. 2020, 19, 2643–2656. [Google Scholar] [CrossRef]
- Lam, S.K.; Fung, G.S.K.; Cheng, S.W.K.; Chow, K.W. A computational study on the biomechanical factors related to stent graft models in the thoracic aorta. Med. Biol. Eng. Comput. 2008, 46, 1129–1138. [Google Scholar] [CrossRef]
- Morris, L.; Delassus, P.; Callanan, A.; Walsh, M.; Wallis, F.; Grace, P.; McGloughlin, T. 3-D Numerical simulation of blood flow through models of the human aorta. J. Biomech. Eng. 2005, 127, 767–775. [Google Scholar] [CrossRef]
- Olufsen, M.S.; Peskin, C.S.; Kim, W.Y.; Pedersen, E.M.; Nadim, A.; Larsen, J. Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann. Biomed. Eng. 2000, 28, 1281–1299. [Google Scholar] [CrossRef]
- Naim, W.N.W.A.; Ganesan, P.B.; Sun, Z.; Osman, K.; Lim, E. The impact of the number of tears in patient-specific Stanford type B aortic dissecting aneurysm: CFD simulation. J. Mech. Med. Biol. 2014, 14, 1450017. [Google Scholar]
- Dillon-Murphy, D.; Noorani, A.; Nordsletten, D.; Figueroa, C.A. Multi-modality image-based computational analysis of haemodynamics in aortic dissection. Biomech. Model. Mechanobiol. 2016, 15, 857–876. [Google Scholar] [CrossRef]
- Zhu, Y.; Mirsadraee, S.; Asimakopoulos, G.; Gambaro, A.; Rosendahl, U.; Pepper, J.; Xu, X.Y. Association of hemodynamic factors and progressive aortic dilatation following type A aortic dissection surgical repair. Sci. Rep. 2021, 11, 11521. [Google Scholar] [CrossRef] [PubMed]
- Bluestein, D.; Guteierrez, C.; Londono, M.; Schoephoerster, R.T. Vortex shedding in steady flow through a model of an arterial stenosis and its relevance to mural platelet deposition. Ann. Biomed. Eng. 1999, 27, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, T.; Stefanadis, C. Vascular wall shear stress: Basic principles and methods. Hellenic. J. Cardiol. 2005, 46, 9–15. [Google Scholar] [PubMed]
- Boussel, L.; Rayz, V.; Martin, A.; Acevedo-Bolton, G.; Lawton, M.T.; Higashida, R.; Smith, W.S.; Young, W.L.; Saloner, D. Phase-contrast MRI measurements in intra-cranial aneurysms in vivo of flow patterns, velocity field and wall shear stress: A comparison with CFD. Magn. Reson. Med. 2009, 61, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.K.L.; Tu, J.; Kelso, R.M. Vortical flow analysis. J. Mech. Med. Biol. 2010, 10, 191–212. [Google Scholar] [CrossRef]
- Nienaber, C.A.; Eagle, K.A. Aortic dissection: New frontiers in diagnosis amd management: Part II: Therapeutic management and follo-up. Circulation 2003, 108, 772–778. [Google Scholar] [CrossRef]
- Forneris, A.; Hassanabad, A.F.; Appoo, J.J.; Di Martino, E.S. Predicting Aneurysmal Degeneration in Uncomplicated Residual Type B Aortic Dissection. Bioengineering 2024, 11, 690. [Google Scholar] [CrossRef]
Number of Elements | Time 3.25 s (Peak Systole) | Time 3.47 s (Early Diastole) |
---|---|---|
Maximum WSS (Pa) | Maximum WSS (Pa) | |
8114 | 8.69 | 0.04 |
110,280 | 31.38 | 7.75 |
201,230 | 17.95 | 1.32 |
303,571 | 22.33 | 1.93 |
403,234 | 26.99 | 1.95 |
450,667 | 24.03 | 1.76 |
501,162 | 26.44 | 1.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.; Chung, S.W.; Huh, U.; Song, S.; Lee, C.W.; Wang, I.J.; Song, C.; Goh, T.S.; Park, J.-H.; Ryu, D. Computational Investigation of the Hemodynamic Effects of the Location of a Re-Entry Tear in Uncomplicated Type B Aortic Dissection. Bioengineering 2024, 11, 1085. https://doi.org/10.3390/bioengineering11111085
Kim E, Chung SW, Huh U, Song S, Lee CW, Wang IJ, Song C, Goh TS, Park J-H, Ryu D. Computational Investigation of the Hemodynamic Effects of the Location of a Re-Entry Tear in Uncomplicated Type B Aortic Dissection. Bioengineering. 2024; 11(11):1085. https://doi.org/10.3390/bioengineering11111085
Chicago/Turabian StyleKim, Eunji, Sung Woon Chung, Up Huh, Seunghwan Song, Chung Won Lee, Il Jae Wang, Chanhee Song, Tae Sik Goh, Jong-Hwan Park, and Dongman Ryu. 2024. "Computational Investigation of the Hemodynamic Effects of the Location of a Re-Entry Tear in Uncomplicated Type B Aortic Dissection" Bioengineering 11, no. 11: 1085. https://doi.org/10.3390/bioengineering11111085
APA StyleKim, E., Chung, S. W., Huh, U., Song, S., Lee, C. W., Wang, I. J., Song, C., Goh, T. S., Park, J.-H., & Ryu, D. (2024). Computational Investigation of the Hemodynamic Effects of the Location of a Re-Entry Tear in Uncomplicated Type B Aortic Dissection. Bioengineering, 11(11), 1085. https://doi.org/10.3390/bioengineering11111085