Water Footprint Assessment for Irrigated Paddy Cultivation in Walawe Irrigation Scheme, Sri Lanka
Abstract
:1. Introduction
2. Study Area
2.1. Irrigation Water Allocation
3. Methodology
3.1. Estimation of Water Footprint
3.2. Computation of Total Irrigation Water Issued
3.3. Comparison of Irrigation Water Issued and Irrigation Water Requirement Estimated Based on Irrigation Guidelines for the Crop Growth Period
4. Results
4.1. Water Footprint and Crop Water Use
4.2. Total Irrigation Water Issued and Percolation
4.3. Comparison of Irrigation Water Requirement and Issued
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chu, Y.; Shen, Y.; Yuan, Z. Water footprint of crop production for different crop structures in the Hebei southern plain, North China. Hydrol. Earth Syst. Sci. 2017, 21, 3061–3069. [Google Scholar] [CrossRef] [Green Version]
- Novoa, V.; Ahumada-Rudolph, R.; Rojas, O.; Munizaga, J.; Sáez, K.; Arumí, J. Sustainability assessment of the agricultural water footprint in the Cachapoal River basin, Chile. Ecol. Indic. 2019, 98, 19–28. [Google Scholar] [CrossRef]
- Sidhu, B.; Sharda, R.; Singh, S. Water Footprint of Crop Production: A Review. Indian J. Ecol. 2021, 48, 358–366. [Google Scholar]
- Wanniarachchi, S.; Sarukkalige, R. A Review on Evapotranspiration Estimation in Agricultural Water Management: Past, Present, and Future. Hydrology 2022, 9, 123. [Google Scholar] [CrossRef]
- Cao, X.; Wu, M.; Shu, R.; Zhuo, L.; Chen, D.; Shao, Z.; Guo, X.; Wang, W.; Tang, S. Water footprint assessment for crop production based on field measurements: A case study of irrigated paddy rice in East China. Sci. Total Environ. 2018, 610–611, 84–93. [Google Scholar] [CrossRef]
- Hoekstra, A.; Chapagain, A.; Aldaya, M.; Mekonnen, M. Water Footprint Manual; Water Footprint Network: Enschede, The Netherlands, 2009. [Google Scholar]
- Chapagain, A.; Hoekstra, A. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Bouman, B.; Humphreys, E.; Tuong, T.; Barker, R. Rice and Water. Adv. Agron. 2007, 92, 187–237. [Google Scholar] [CrossRef]
- Morita. Chapter 7—Past growth in agricultural productivity in South Asia. In Water Productivity and Food Security: Global Trends and Regional Patterns; Kumar, D.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 3, pp. 137–156. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, A. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 2011, 15, 1577–1600. [Google Scholar] [CrossRef] [Green Version]
- Department of Census and Statistics (DoCS). Agriculture. 2022. Available online: http://www.statistics.gov.lk/Agriculture/StaticalInformation/rubpaddy (accessed on 11 September 2021).
- Davis, K.; Gephart, J.; Gunda, T. Sustaining food self-sufficiency of a nation: The case of Sri Lankan rice production and related water and fertilizer demands. Ambio 2015, 45, 302–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Department of Agriculture Sri Lanka (DOA). 2022. Available online: https://doa.gov.lk/home-page/ (accessed on 11 September 2021).
- Ratnasiri, S.; Walisinghe, R.; Rohde, N.; Guest, R. The effects of climatic variation on rice production in Sri Lanka. Appl. Econ. 2019, 51, 4700–4710. [Google Scholar] [CrossRef]
- Ponrajah, A.J.P. Design of Irrigation Headworks for Small Catchments; Department of Irrigation: Colombo, Sri Lanka, 1984. [Google Scholar]
- Abeysiriwardana, H.D.; Muttil, N.; Rathnayake, U.A. Comparative Study of Potential Evapotranspiration Estimation by Three Methods with FAO Penman–Monteith Method across Sri Lanka. Hydrology 2022, 9, 206. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements); FAO Irrigation and Drainage Paper No. 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; pp. 65–275. [Google Scholar]
- Nandagiri, L.; Kovoor, G.M. Performance Evaluation of Reference Evapotranspiration Equations across a Range of Indian Climates. J. Irrig. Drain. Eng. 2006, 132, 238–249. [Google Scholar] [CrossRef]
- Bulsink, F.; Hoekstra, A.; Booij, M. The water footprint of Indonesian provinces related to the consumption of crop products. Hydrol. Earth Syst. Sci. 2010, 14, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Mekonnen, M.; Hoekstra, A. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978–2008). Water Res. 2016, 94, 73–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Zehnder, A.; Yang, H. Historical Trends in China’s Virtual Water Trade. Water Int. 2007, 32, 78–90. [Google Scholar] [CrossRef]
- Gheewala, S.; Silalertruksa, T.; Nilsalab, P.; Mungkung, R.; Perret, S.; Chaiyawannakarn, N. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand. Water 2014, 6, 1698–1718. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, L.; Mekonnen, M.; Hoekstra, A. Sensitivity and uncertainty in crop water footprint accounting: A case study for the Yellow River basin. Hydrol. Earth Syst. Sci. 2014, 18, 2219–2234. [Google Scholar] [CrossRef] [Green Version]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of crop productions: A review. Sci. Total Environ. 2016, 548–549, 236–251. [Google Scholar] [CrossRef]
- Yoo, S.; Choi, J.; Lee, S.; Kim, T. Estimating water footprint of paddy rice in Korea. Paddy Water Environ. 2013, 12, 43–54. [Google Scholar] [CrossRef]
- Chukalla, A.; Krol, M.; Hoekstra, A. Green and blue water footprint reduction in irrigated agriculture: Effect of irrigation techniques, irrigation strategies and mulching. Hydrol. Earth Syst. Sci. 2015, 19, 4877–4891. [Google Scholar] [CrossRef]
- Jayawardane, S.; Weerasena, L. Crop diversification in Sri Lanka. In Proceedings of the Crop Diversification in the Asia-Pacific Region, Bangkok, Thailand, 4–6 July 2000; Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific: Bangkok, Thailand, 2000. Available online: https://www.fao.org/3/x6906e/x6906e00.htm#Contents (accessed on 4 December 2021).
- Mekonnen, M.; Hoekstra, A. Sustainability of blue water footprint of crops. Adv. Water Resour. 2020, 143, 103679. [Google Scholar] [CrossRef]
- Alauddin, M.; Sarker, A.R.; Islam, Z.; Tisdell, C. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use Policy 2019, 91, 104430. [Google Scholar] [CrossRef]
Canal | Length (m) | Command Area (ha) | Number of Days Per Week | Discharge Capacity (10−3 m/s) | Canal Lining | Canal | Length (m) | Command Area (ha) | Number of Days Per Week | Discharge Capacity (10−3 m/s) | Canal Lining |
---|---|---|---|---|---|---|---|---|---|---|---|
D1 | 598 | 6.5 | 2 | 15 | L | D16 FC1 | 12 | 24.7 | 2 | 16 | L |
D2 | 482 | 10.4 | 2 | 19 | UL | D17 | 2068 | 48 | 2 | 25 | L |
D3 | 543 | 48.8 | 3 | 20 | L | CW FC1 | 581 | 8.4 | 2 | 12 | L |
D4 | 695 | 14.4 | 3 | 20 | L | CWFC2 | 244 | 10 | 2 | 12 | UL |
D5 FC1 | 20 | 28.9 | 3 | 20 | UL | CWFC3 | 385 | 11.2 | 2 | 15 | UL |
D6 | 3181 | 208.6 | 4 | 27 | L | D18 | 361 | 38.4 | 3 | 12 | L |
D7 FC1 | 12 | 27 | 2 | 20 | UL | CWFC4 | 639 | 11.1 | 2 | 12 | UL |
D8 | 2205 | 149.5 | 4 | 28 | L | CWFC5 | 425 | 10.5 | 2 | 12 | UL |
D9 | 530 | 36.9 | 3 | 23 | UL | D20 | 2769 | 131 | 4 | 22 | UL |
D10 | 4922 | 234.5 | 5 | 28 | L | CWFC6 | 217 | 4.7 | 2 | 10 | UL |
D11 | 587 | 27.7 | 3 | 15 | L | CWFC7 | 388 | 7.2 | 2 | 12 | UL |
D12 | 782 | 27.8 | 3 | 15.5 | L | CWFC8 | 693 | 13 | 2 | 15 | UL |
D13 | 600 | 22.6 | 3 | 15.5 | L | CWFC9 | 306 | 6.1 | 2 | 15 | UL |
D14 | 140 | 28.4 | 3 | 15 | L | D21 | 742 | 50.7 | 3 | 18 | UL |
D15 | 3448 | 233.6 | 5 | 26 | L | D22 | 2687 | 68.4 | 3 | 27 | UL |
Stage | Number of Weeks | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Yala | Maha | |||||||||
Apr | May | Jun | Jul | Aug | Nov | Dec | Jan | Feb | Mar | |
Lp | 4 | 4 | ||||||||
Initial | 3 | 3 | ||||||||
Crop dev. | 1 | 3 | 1 | 3 | ||||||
Mid | 1 | 4 | 1 | 4 | ||||||
Late | 3 | 3 |
Month | ETo (mm/month) | 75% Probable Rainfall (mm/Month) | Month | ETo (mm/Month) | 75% Probable Rainfall (mm/Month) |
---|---|---|---|---|---|
January | 96.520 | 304.8 | July | 154.94 | 12.7 |
February | 114.300 | 114.3 | August | 161.29 | 12.7 |
March | 129.032 | 88.9 | September | 161.29 | 50.8 |
April | 129.032 | 114.3 | October | 129.032 | 152.4 |
May | 135.382 | 38.1 | November | 91.44 | 228.6 |
June | 148.336 | 12.7 | December | 91.44 | 330.2 |
Initial | Development | Mid | Late | |
---|---|---|---|---|
kc | 1.00 | 1.15 | 1.20 | 0.90 |
No of days | 30 (21) | 40 (21) | 45 (21) | 20 (14) |
Year | (m3/ha) | |||||||
---|---|---|---|---|---|---|---|---|
Stage | Seasonal | Annual | ||||||
Lp | Initial | Crop Dev | Mid | Late | ||||
2018/19 | Yala | 1471.9 | 788.0 | 1556.0 | 2630.9 | 1277.2 | 7724.0 | 15,265.5 |
Maha | 1396.9 | 713.1 | 1780.8 | 2477.7 | 1172.9 | 7541.4 | ||
2019/20 | Yala | 2045.5 | 1063.0 | 1823.4 | 2618.4 | 766.1 | 8316.4 | 15,101.8 |
Maha | 1399.7 | 572.9 | 1855.5 | 2009.3 | 948.1 | 6785.4 | ||
2020/21 | Yala | 1759.8 | 930.5 | 1708.2 | 2449.7 | 829.6 | 7677.8 | 13,977.1 |
Maha | 1292.6 | 500.3 | 1497.7 | 2096.2 | 912.4 | 6299.3 |
Year | Season | (m3/kg) |
---|---|---|
2018/19 | Yala | 1.19 |
Maha | 1.16 | |
Annual | 2.35 | |
2019/20 | Yala | 1.28 |
Maha | 1.04 | |
Annual | 2.32 | |
2020/21 | Yala | 1.18 |
Maha | 0.97 | |
Annual | 2.15 |
(BW + Percolation) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lp | Initial | Crop Dev | Mid | Late | Total | |||||||
106 m3 | 103 m3/ha | 106 m3 | 103 m3/ha | 106 m3 | 103 m3/ha | 106 m3 | 103 m3/ha | 106 m3 | 103 m3/ha | 106 m3 | 103 m3/ha | |
Yala | 9.049 | 5.842 | 5.028 | 3.246 | 4.470 | 2.885 | 8.380 | 5.410 | 3.352 | 2.164 | 30.280 | 19.550 |
Maha | 9.049 | 5.842 | 5.028 | 3.246 | 4.470 | 2.885 | 8.380 | 5.410 | 3.352 | 2.164 | 30.280 | 19.550 |
Annual | 18.099 | 11.680 | 10.056 | 6.492 | 8.939 | 5.771 | 16.761 | 10.820 | 6.704 | 4.328 | 60.559 | 3.910 |
Year | (106 m3) | (106 m3) | (106 m3) | Average Annual Percolation Rate (mm/Day) |
---|---|---|---|---|
2018/19 | 60.559 | 23.646 | 36.913 | 6.53 |
2019/20 | 60.559 | 23.393 | 37.167 | 6.57 |
2020/21 | 60.559 | 21.651 | 38.909 | 6.88 |
(BW + Percolation) (106 m3) | ||||||
---|---|---|---|---|---|---|
Lp | Initial | Crop Dev | Mid | Late | Total | |
Yala | 3.840 | 3.931 | 7.277 | 8.285 | 5.721 | 29.028 |
Maha | 2.428 | 5.077 | 0.395 | 1.455 | 2.587 | 7.3722 |
Annual | 6.268 | 4.439 | 7.672 | 9.713 | 8.308 | 36.400 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janani, H.K.; Abeysiriwardana, H.D.; Rathnayake, U.; Sarukkalige, R. Water Footprint Assessment for Irrigated Paddy Cultivation in Walawe Irrigation Scheme, Sri Lanka. Hydrology 2022, 9, 210. https://doi.org/10.3390/hydrology9120210
Janani HK, Abeysiriwardana HD, Rathnayake U, Sarukkalige R. Water Footprint Assessment for Irrigated Paddy Cultivation in Walawe Irrigation Scheme, Sri Lanka. Hydrology. 2022; 9(12):210. https://doi.org/10.3390/hydrology9120210
Chicago/Turabian StyleJanani, Higgoda K., Himasha Dilshani Abeysiriwardana, Upaka Rathnayake, and Ranjan Sarukkalige. 2022. "Water Footprint Assessment for Irrigated Paddy Cultivation in Walawe Irrigation Scheme, Sri Lanka" Hydrology 9, no. 12: 210. https://doi.org/10.3390/hydrology9120210
APA StyleJanani, H. K., Abeysiriwardana, H. D., Rathnayake, U., & Sarukkalige, R. (2022). Water Footprint Assessment for Irrigated Paddy Cultivation in Walawe Irrigation Scheme, Sri Lanka. Hydrology, 9(12), 210. https://doi.org/10.3390/hydrology9120210