Hydro-Climate Variability and Trend Analysis in the Jemma Sub-Basin, Upper Blue Nile River, Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Data Collection, Quality Control, and Gap Filling
2.3. Data Analysis
Mann-Kendall (MK) Test and Sen’s Slope
3. Results and Discussion
3.1. Hydro-Climate Features of the Jemma Sub-Basin
3.1.1. Characteristics of Monthly and Seasonal Rainfall
3.1.2. Seasonal and Annual Variability of Rainfall
3.1.3. Belg and Kiremt Season Contribution to Annual Rainfall
3.1.4. Standardized Precipitation Index (SPI)
3.1.5. The Link between Belg and Kiremt Rainfall Anomalies with ENSO
3.1.6. Monthly and Seasonal Stream Flow Characteristics
3.1.7. Seasonal and Inter-Annual Variability of Stream Flow
3.2. Trend Analysis for Hydro-Climate Variables
4. Conclusions
5. Limitation of the Study
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paglia, E.; Parker, C. The Intergovernmental Panel on Climate Change: Guardian of Climate Science; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Yamanaka, M.D.; Ogino, S.Y.; Wu, P.M.; Jun-Ichi, H.; Mori, S.; Matsumoto, J.; Syamsudin, F. Maritime continent coastlines controlling Earth’s climate. Prog. Earth Planet. Sci. 2018, 5, 21. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H.; Castelletti, A.; Magliocca, N. Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Sci. Total Environ. 2019, 662, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Apollo, A.; Mbah, M.F. Challenges and opportunities for climate change education (Cce) in East Africa: A critical review. Climate 2021, 9, 1–16. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and food systems in sub-Saharan Africa in a 4 °C+ world. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 117–136. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, D.F.; Disse, M. Analyzing the future climate change of Upper Blue Nile River basin using statistical downscaling techniques. Hydrol. Earth Syst. Sci. 2018, 22, 2391–2408. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.J. Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Tessema, I.; Simane, B. Vulnerability analysis of smallholder farmers to climate variability and change: An agro-ecological system-based approach in the Fincha’a sub-basin of the upper Blue Nile Basin of Ethiopia. Ecol. Proc. 2019, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Merem, E.C.; Twumasi, Y.A.; Wesley, J.; Olagbegi, D.; Crisler, M.; Romorno, C.; Alsarari, M.; Isokpehi, P.; Hines, A.; Ochai, G.S.; et al. Leggett, Issues in Transboundary Water Use in the River Nile Basin Area of Africa. World Environ. 2020, 10, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Tekleab, S.; Mohamed, Y.; Uhlenbrook, S. Hydro-climatic trends in the Abay/Upper Blue Nile basin, Ethiopia. Phys. Chem. Earth 2013, 61–62, 32–42. [Google Scholar] [CrossRef]
- Orke, Y.A.; Li, M.-H. Hydroclimatic Variability in the Bilate Watershed, Ethiopia. Climate 2021, 9, 98. [Google Scholar] [CrossRef]
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia. Theor. Appl. Climatol. 2018, 135, 839–854. [Google Scholar] [CrossRef]
- Tesemma, Z.K.; Mohamed, Y.A.; Steenhuis, T.S. Trends in rainfall and runoff in the Blue Nile Basin: 1964–2003. Hydrol. Proc. 2010, 24, 3747–3758. [Google Scholar] [CrossRef] [Green Version]
- Gebremicael, T.G.; Mohamed, Y.A.; Betrie, G.D.; Betrie, G.D.; Teferi, E. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile basin: A combined analysis of statistical tests, physically-based models and landuse maps. J. Hydrol. 2013, 10, 10971–10995. [Google Scholar] [CrossRef]
- Samy, A.; Ibrahim, M.G.; Mahmod, W.E.; Fujii, M.; Eltawil, A.; Daoud, W. Statistical assessment of rainfall characteristics in upper Blue Nile basin over the period from 1953 to 2014. Water 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Shawul, A.A.; Chakma, S. Suitability of global precipitation estimates for hydrologic prediction in the main watersheds of Upper Awash basin. Environ. Earth Sci. 2020, 79, 1–18. [Google Scholar] [CrossRef]
- Seleshi, Y.; Zanke, U. Recent changes in rainfall and rainy days in Ethiopia. Int. J. Climatol. 2004, 24, 973–983. [Google Scholar] [CrossRef]
- Rosell, S. Regional perspective on rainfall change and variability in the central highlands of Ethiopia, 1978–2007. Appl. Geogr. 2011, 31, 329–338. [Google Scholar] [CrossRef]
- Segele, Z.T.; Lamb, P.J. Characterization and variability of Kiremt rainy season over Ethiopia. Meteorol. Atmos. Phys. 2005, 89, 153–180. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Mekonen, A.A.; Berlie, A.B. Spatiotemporal variability and trends of rainfall and temperature in the Northeastern Highlands of Ethiopia. Model. Earth Syst. Environ. 2020, 6, 285–300. [Google Scholar] [CrossRef]
- Sattari, M.T.; Rezazadeh-Joudi, A.; Kusiak, A. Assessment of different methods for estimation of missing data in precipitation studies. Hydrol. Res. 2017, 48, 1032–1044. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Hansen, G. The evolution of the evidence base for observed impacts of climate change. Curr. Opin. Environ. Sustain. 2015, 14, 187–197. [Google Scholar] [CrossRef]
- Merino, A.; López, L.; Hermida, L.; Sánchez, J.L.; García-Ortega, E.; Gascón, E.; Fernández-González, S. Identification of drought phases in a 110-year record from Western Mediterranean basin: Trends, anomalies and periodicity analysis for Iberian Peninsula. Glob. Planet. Chang. 2015, 133, 96–108. [Google Scholar] [CrossRef]
- Brooks, N. Drought in the African Sahel: Long term perspectives and future prospects, Tyndall Cent. Clim. Chang. Res. 2004. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.151.8727&rep=rep1&type=pdf%5Cnpapers2://publication/uuid/81C009F8-5A32-4BA3-B927-FE1EA2608311 (accessed on 23 March 2021).
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Proc. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hamed, K.H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 130. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis, Part I. Proc. R. Netherlands Acad. Sci. 1950, 53, 386–392. [Google Scholar]
- Yue, S.; Hashino, M. Long term trends of annual and monthly precipitation in Japan. J. Am. Water Resour. Assoc. 2003, 39, 587–596. [Google Scholar] [CrossRef]
- Bewket, W. Rainfall Variability and Agricultural Vulnerability in the Amhara Region, Ethiopia, Ethiop. J. Dev. Res. 2008, 29, 823–836. [Google Scholar] [CrossRef]
- Belay, A.; Demissie, T.; Recha, J.W.; Oludhe, C.; Osano, P.M.; Olaka, L.A.; Solomon, D.; Berhane, Z. Analysis of climate variability and trends in Southern Ethiopia. Climate 2021, 9, 1–17. [Google Scholar] [CrossRef]
- Gleixner, S.; Keenlyside, N.; Viste, E.; Korecha, D. The El Niño effect on Ethiopian summer rainfall. Clim. Dyn. 2017, 49, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- FAO. An assessment using FAO’s Agricultural Stress Index (ASI) Understanding the drought impact of El Niño on the global agricultural areas, FAO, Rome. 2014. Available online: https://www.uncclearn.org/wp-content/uploads/library/fao15102015_7.pdf (accessed on 22 February 2021).
- Abtew, W.; Melesse, A.M.; Dessalegne, T. El Niñno Southern Oscillation link to the Blue Nile River Basin hydrology Wossenu. Hydrol. Proc. 2009, 23, 3653–3660. [Google Scholar] [CrossRef]
- Amarasekera, K.N.; Lee, R.F.; Williams, E.R.; Eltahir, E.A.B. ENSO and the natural variability in the flow of tropical rivers. J. Hydrol. 1997, 200, 24–39. [Google Scholar] [CrossRef]
- Siam, M.S.; Eltahir, E.A.B. Climate change enhances interannual variability of the Nile river flow. Nat. Clim. Chang. 2017, 7, 350–354. [Google Scholar] [CrossRef]
- Tesfamariam, B.G.; Gessesse, B.; Melgani, F. Characterizing the spatiotemporal distribution of meteorological drought as a response to climate variability: The case of rift valley lakes basin of Ethiopia. Weather Clim. Extrem. 2019, 26, 100237. [Google Scholar] [CrossRef]
- Bewket, W.; Conway, D. A note on the temporal and spatial variability of rainfall in the drought-prone Amhara region of Ethiopia. Int. J. Climatol. 2007, 1477, 1467–1477. [Google Scholar] [CrossRef]
- Haile, A.T.; Akawka, A.L.; Berhanu, B.; Rientjes, T. Changes in water availability in the Upper Blue Nile basin under the representative concentration pathways scenario. Hydrol. Sci. J. 2017, 62, 2139–2149. [Google Scholar] [CrossRef]
No | Stations | Belg | Kiremt | Annual | |||
---|---|---|---|---|---|---|---|
Mean (mm) | CV (%) | Mean (mm) | CV (%) | Mean (mm) | CV (%) | ||
1 | Alemketema | 188 | 52.5 | 904 | 25.0 | 1170 | 29.3 |
2 | Debrebrhan | 162 | 34.3 | 726 | 16.4 | 928.6 | 12.1 |
3 | Gohatsion | 216 | 46.5 | 905 | 16.4 | 1188 | 14.2 |
4 | Lemi | 195.6 | 70.6 | 976 | 28.9 | 1239 | 31.6 |
5 | Mehal-Meda | 161 | 52.7 | 668 | 28.6 | 906 | 23.1 |
6 | Fiche | 214 | 42.7 | 863 | 20.0 | 1130 | 13.7 |
7 | Wereilu | 142 | 48.9 | 543 | 24.6 | 726 | 20.0 |
8 | Andit Tid | 272 | 47.4 | 964 | 29.7 | 1396 | 28.4 |
9 | Mendida | 187 | 35.9 | 742 | 21.8 | 1004 | 18.0 |
10 | Eneware | 217 | 47.9 | 815 | 21.6 | 1065 | 19.9 |
11 | Gundo Meskel | 187 | 56.9 | 905 | 27.8 | 1144 | 23.8 |
Weak | Moderate | Strong |
---|---|---|
1952–1953 | 1951–1952 | 1957–1958 |
1953–1954 | 1963–1964 | 1965–1966 |
1958–1959 | 1968–1969 | 1972–1973 |
1969–1970 | 1986–1987 | 1982–1983 |
1976–1977 | 1991–1992 | 1987–1998 |
1977–1978 | 1994–1995 | 2015–2016 |
2004–2005 | 2002–2003 | 2020–2021 |
2006–2007 | 2009–2010 | |
2014–2015 |
No. | Stations | Belg | Kiremt | Annual | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | Zs | Sen’s Slope | p-Value | Zs | Sen’s Slope | p-Value | Zs | Sen’s Slope | |||
1 | Rainfall | Alemketema | 0.10 | −2.09 | −1.86 | 0.80 | −0.33 | −0.57 | 0.26 | 0.01 | −3.66 |
2 | Debrebrehan | 0.39 | −1.14 | −0.80 | 0.01 * | 3.32 | 3.99 | 0.07 | 2.41 | 2.60 | |
3 | Gohatsion | 0.36 | −1.08 | −1.25 | 0.03 * | 2.58 | 5.00 | 0.10 | −0.01 | 4.44 | |
4 | Lemi | 0.53 | 0.74 | 0.77 | 0.63 | 0.57 | 2.35 | 0.53 | 0.74 | 2.74 | |
5 | Mendida | 0.18 | −2.25 | −1.63 | 0.03 * | 3.59 | 4.54 | 0.20 | 2.13 | 3.67 | |
6 | Wereilu | 0.77 | −0.37 | −0.26 | 0.00 ** | 3.72 | 5.22 | 0.04 * | 2.56 | 4.64 | |
7 | Andit Tid | 0.53 | 0.62 | 1.02 | 0.01 ** | 2.79 | 14.18 | 0.01 ** | 2.79 | 19.80 | |
8 | Fiche | 0.10 | −1.65 | −1.80 | 0.00 ** | 3.72 | 6.94 | 0.00 ** | 3.02 | 5.76 | |
9 | Mehal meda | 0.14 | −1.73 | −1.84 | 0.60 | 0.62 | 1.33 | 0.43 | −0.94 | −2.09 | |
10 | Enewari | 0.02 * | 3.16 | 3.49 | 0.09 | 2.27 | 4.29 | 0.03 * | 2.86 | 7.96 | |
11 | Gundo Meskel | 0.68 | 0.55 | 0.47 | 0.04 * | 2.71 | 4.56 | 0.09 | 2.27 | 4.47 | |
12 | Stream flow | Beressa | 0.94 | −0.07 | −0.00 | 0.18 | −1.33 | −1.00 | 0.26 | −1.12 | −1.06 |
13 | Robi-Lemi | 0.43 | 0.79 | 0.01 | 0.77 | 0.30 | 0.40 | 0.69 | 0.40 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonfa, K.H.; Alamirew, T.; Melesse, A.M. Hydro-Climate Variability and Trend Analysis in the Jemma Sub-Basin, Upper Blue Nile River, Ethiopia. Hydrology 2022, 9, 209. https://doi.org/10.3390/hydrology9120209
Gonfa KH, Alamirew T, Melesse AM. Hydro-Climate Variability and Trend Analysis in the Jemma Sub-Basin, Upper Blue Nile River, Ethiopia. Hydrology. 2022; 9(12):209. https://doi.org/10.3390/hydrology9120209
Chicago/Turabian StyleGonfa, Kidist Hilemicael, Tena Alamirew, and Assefa M Melesse. 2022. "Hydro-Climate Variability and Trend Analysis in the Jemma Sub-Basin, Upper Blue Nile River, Ethiopia" Hydrology 9, no. 12: 209. https://doi.org/10.3390/hydrology9120209
APA StyleGonfa, K. H., Alamirew, T., & Melesse, A. M. (2022). Hydro-Climate Variability and Trend Analysis in the Jemma Sub-Basin, Upper Blue Nile River, Ethiopia. Hydrology, 9(12), 209. https://doi.org/10.3390/hydrology9120209