The Status, Applications, and Modifications of the Snowmelt Runoff Model (SRM): A Comprehensive Review
Abstract
1. Introduction
2. Snowmelt Runoff Model
Literature Review
3. Input Variables for SRM
4. Parameters Required for the SRM
4.1. Critical Temperature (TCRIT)
4.2. Degree-Day Factor (DDF, α)
4.3. Temperature Lapse Rate (γ)
4.4. Runoff Coefficient for Snowmelt (CS)
4.5. Runoff Coefficient for Rain (CR)
4.6. Recession Coefficients X and Y
4.7. Time Lag
4.8. Rainfall Contributing Area (RCA)
4.9. SRM Parameter Values Used in the Literature, Calibration, and Validation
5. Modification of SRM and Prospects
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
SRM | Snowmelt Runoff Model |
MODIS | Moderate Resolution Imaging Spectroradiometer |
AMSR-E | Advanced Microwave Scanning Radiometer |
UEB | Utah Energy Balance model |
HSPF | Hydrological Simulation Program—FORTRAN |
SNTHERM89 | Snow Thermal Model |
MCMC | Markov Chain Monte Carlo |
ANN | Artificial Neural Network |
ANFIS | Adaptive Neuro-Fuzzy Inference System |
GEP | Gene Expression Programming |
LSTM | Long Short-Term Memory |
MT | Montana |
NSE | Nash–Sutcliffe Efficiency |
Dv | Volume difference |
NOAA | National Oceanic and Atmospheric Administration |
AVHRR | Advanced Very High-Resolution Radiometer |
SPOT | Satellite Pour l’Observation de la Terre |
NOHRSC | National Operational Hydrologic Remote Sensing Center |
SDC | Snow Cover Depletion |
NASA | National Aeronautics and Space Administration |
NDSI | Normalized Difference Snow Index |
TRMM | Tropical Rainfall Measurement Mission |
LST | Land Surface Temperature |
NCEI | National Centers for Environmental Information |
SOA | Segmented Optimization Algorithm |
PSOA | Progressive Segmented Optimization Algorithm |
GUI | Graphic User Interface |
ROR | Run-of-River |
UAV | Unmanned Aerial Vehicle |
LiDAR | Light Detection and Ranging |
References
- Adam, J.; Hamlet, A.; Lettenmaier, D. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. Int. J. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Abudu, S.; Cui, C.; Saydi, M.; King, J. Application of snowmelt runoff model (SRM) in mountainous watersheds: A review. Water Sci. Eng. 2012, 5, 123–136. [Google Scholar] [CrossRef]
- Siemens, K.; Dibike, Y.; Shrestha, R.; Prowse, T. Runoff projection from an alpine watershed in Western Canada: Application of a snowmelt runoff model. Water 2021, 13, 1199. [Google Scholar] [CrossRef]
- Vuyovich, C.; Jacobs, J.; Daly, S. Comparison of passive microwave and modeled estimates of total watershed SWE in the continental United States. Water Resour. Res. 2014, 50, 9088–9102. [Google Scholar] [CrossRef]
- Brubaker, K.; Rango, A. A new version of the snowmelt runoff model incorporating radiation. Environ. Prof. 1997, 19, 109–116. [Google Scholar]
- Ferguson, R. Snowmelt runoff models. Prog. Phys. Geogr. 1999, 23, 205–227. [Google Scholar] [CrossRef]
- Kumar, S. Satellite snow cover mapping and snowmelt runoff modelling in Beas basin. IAHS 1991, 205, 1–11. [Google Scholar]
- Ma, Y.; Huang, Y.; Chen, X.; Li, Y.; Bao, A. Modelling snowmelt runoff under climate change scenarios in an ungauged mountainous watershed, Northwest China. Math. Probl. Eng. 2013, 2013, 808565. [Google Scholar] [CrossRef]
- Semmens, K.; Ramage, J. Recent changes in spring snowmelt timing in the Yukon River basin detected by passive microwave satellite data. Cryosphere 2013, 7, 905–916. [Google Scholar] [CrossRef]
- He, Z.; Parajka, J.; Tian, Q.; Blöschl, G. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrol. Earth Syst. Sci. 2014, 18, 4773–4789. [Google Scholar] [CrossRef]
- Griessinger, N.; Seibert, J.; Magnusson, J.; Jonas, T. Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments. Hydrol. Earth Syst. Sci. 2016, 20, 3895–3905. [Google Scholar] [CrossRef]
- Vuyovich, C.; Jacobs, J.; Hiemstra, C.; Deeb, E. Effect of spatial variability of wet snow on modeled and observed microwave emissions. Remote Sens. Environ. 2017, 198, 310–320. [Google Scholar] [CrossRef]
- Kumar, M.; Tiwari, R.; Kumar, K.; Rautela, K. Statistical evaluation of snow accumulation and depletion from remotely sensed MODIS snow time series data using the SARIMA model. AQUA-Water Infrastruct. Ecosyst. Soc. 2023, 72, 348–362. [Google Scholar] [CrossRef]
- Kumar, R.; Manzoor, S.; Mahrukh. Modelling of snowmelt runoff across the Himalayan Region. J. Agrometeorol. 2022, 24, 38–41. [Google Scholar] [CrossRef]
- DeWalle, D.; Rango, A. Principles of Snow Hydrology; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Zhou, G.; Cui, M.; Wan, J.; Zhang, S. A review on snowmelt models: Progress and prospect. Sustainability 2021, 13, 11485. [Google Scholar] [CrossRef]
- Li, F.; Vanrolleghem, P. Including snowmelt in influent generation for cold climate WRRFs: Comparison of data-driven and phenomenological approaches. Environ. Sci. Water Res. Technol. 2022, 8, 2087–2098. [Google Scholar] [CrossRef]
- Islam, K.; Elias, E.; Carroll, K.; Brown, C. Exploring random forest machine learning and remote sensing data for streamflow prediction: An alternative approach to a process-based hydrologic modeling in a snowmelt-driven watershed. Remote Sens. 2023, 15, 3999. [Google Scholar] [CrossRef]
- Kumar, V.; Kedam, N.; Sharma, K.V.; Mehta, D.J.; Caloiero, T. Advanced machine learning techniques to improve hydrological prediction: A comparative analysis of streamflow prediction models. Water 2023, 15, 2572. [Google Scholar] [CrossRef]
- Huss, M.; Farinotti, D.; Bauder, A.; Funk, M. Modelling runoff from highly glacierized alpine drainage basins in a changing climate. Hydrol. Process. 2008, 22, 3888–3902. [Google Scholar] [CrossRef]
- Ahluwalia, R.; Rai, S.; Jain, S.; Kumar, B.; Dobhal, D. Assessment of snowmelt run-off modelling and isotope analysis: A case study from the western Himalaya, India. Ann. Glaciol. 2013, 54, 299–304. [Google Scholar] [CrossRef]
- Morris, E. Sensitivity of the European hydrological system snow models. Int. Assoc. Hydrol. Sci. Publ. 1982, 138, 222–231. [Google Scholar]
- Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y. Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites. Hydrol. Earth Syst. Sci. 2010, 14, 2577–2594. [Google Scholar] [CrossRef]
- Lehning, M.; Bartelt, P.; Brown, B.; Fierz, C.; Satyawali, P. A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure. Cold Reg. Sci. Technol. 2002, 35, 147–167. [Google Scholar] [CrossRef]
- Vionnet, V.; Brun, E.; Morin, S.; Boone, A.; Faroux, S.; Le Moigne, P.; Martin, E.; Willemet, J. The detailed snowpack scheme Crocus and its implementation in SURFEX v7. 2. Geosci. Model Dev. 2012, 5, 773–791. [Google Scholar] [CrossRef]
- Marks, D.; Dozier, J.; Davis, R. Climate and energy exchange at the snow surface in the alpine region of the Sierra Nevada: 1. Meteorological measurements and monitoring. Water Resour. Res. 1992, 28, 3029–3042. [Google Scholar] [CrossRef]
- Tarboton, D.; Luce, C. Utah Energy Balance Snow Accumulation and Melt Model (UEB) (63); Utah Water Research Laboratory: Logan, UT, USA, 1996. [Google Scholar]
- Bicknell, B.; Imhoff, J.; Kittle, J., Jr.; Donigian, A., Jr.; Johanson, R. Hydrological Simulation Program-FORTRAN.; User’s manual for release, 11; US EPA: Athens, GA, USA, 1997. [Google Scholar]
- Loukas, A.; Mylopoulos, N.; Vasiliades, L. A modeling system for the evaluation of water resources management strategies in Thessaly, Greece. Water Resour. Manag. 2007, 21, 1673–1702. [Google Scholar] [CrossRef]
- Vasiliades, L.; Mastraftsis, I. A monthly water balance model for assessing streamflow uncertainty in hydrologic studies. Environ. Sci. Proc. 2023, 25, 39. [Google Scholar] [CrossRef]
- Martinec, J. Snowmelt-runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Engman, E.; Martinec, J.; Rango, A. EXSRM, an Expert System for Snowmelt Runoff Model (SRM); IAHS Publication: Wellingford, UK, 1989. [Google Scholar]
- Jordan, R.E. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM89: Cold Regions Research and Engineering Laboratory (U.S.), and Engineer Research and Development Center (U.S.) 1991. Available online: https://erdc-library.erdc.dren.mil/items/81b728f7-84b5-4ef8-e053-411ac80adeb3 (accessed on 17 June 2025).
- Ramage, J.; Semmens, K. Reconstructing snowmelt runoff in the Yukon River basin using the SWEHydro model and AMSR-E observations. Hydrol. Process. 2012, 26, 2563–2572. [Google Scholar] [CrossRef]
- Panday, P.; Williams, C.; Frey, K.; Brown, M. Application and evaluation of a snowmelt runoff model in the Tamor River basin, Eastern Himalaya using a Markov Chain Monte Carlo (MCMC) data assimilation approach. Hydrol. Process. 2014, 28, 5337–5353. [Google Scholar] [CrossRef]
- Rauscher, S.; Pal, J.; Diffenbaugh, N.; Benedetti, M. Future changes in snowmelt-driven runoff timing over the western US. Geophys. Res. Lett. 2008, 35, L16703. [Google Scholar] [CrossRef]
- Stigter, E.; Wanders, N.; Saloranta, T.; Shea, J.; Bierkens, M.; Immerzeel, W. Assimilation of snow cover and snow depth into a snow model to estimate snow water equivalent and snowmelt runoff in a Himalayan catchment. Cryosphere 2017, 11, 1647–1664. [Google Scholar] [CrossRef]
- Vafakhah, M.; Sedighi, F.; Javadi, M. Modeling the rainfall-runoff data in snow-affected watershed. Int. J. Comput. Electr. Eng. 2014, 6, 40. [Google Scholar] [CrossRef]
- Birbal, P.; Azamathulla, H.; Leon, L.; Kumar, V.; Hosein, J. Predictive modelling of the stage–discharge relationship using Gene-Expression Programming. Water Supply 2021, 21, 3503–3514. [Google Scholar] [CrossRef]
- Thapa, S.; Zhao, Z.; Li, B.; Lu, L.; Fu, D.; Shi, X.; Tang, B.; Qi, H. Snowmelt-driven streamflow prediction using machine learning techniques (LSTM, NARX, GPR, and SVR). Water 2020, 12, 1734. [Google Scholar] [CrossRef]
- Seidel, K.; Martinec, J. Remote Sensing in Snow Hydrology: Runoff Modelling, Effect of Climate Change; Springer Science & Business Media: New York, NY, USA, 2004. [Google Scholar]
- Kustas, W.; Rango, A.; Uijlenhoet, R. A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res. 1994, 30, 1515–1527. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Major, E. The Snowmelt-Runoff Model (SRM) User’s Manual (No. REPT-83B0251); New Mexico State University: Las Cruces, NM, USA, 1983. [Google Scholar]
- Martinec, J.; Rango, A.; Roberts, R. Snowmelt Runoff Model (SRM) User’s Manual; New Mexico State University Press: Las Cruces, NM, USA, 2008. [Google Scholar]
- Rango, A. Worldwide testing of the snowmelt runoff model with applications for predicting the effects of climate change. Hydrol. Res. 1992, 23, 155–172. [Google Scholar] [CrossRef]
- Tekeli, A.; Akyurek, Z.; Sorman, A.; Sensoy, A.; Sorman, A. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Alam, A.; Romshoo, S.; Bhat, M. Estimation of snowmelt runoff using snowmelt runoff model (SRM) in a Himalayan watershed. World J. Sci. Technol. 2011, 1, 37–42. [Google Scholar]
- Tenzin, J.; Ongsomwang, S. Snowmelt runoff analysis and impact assessment of temperature change in the upper Punatsang Chu basin, Bhutan. Suranaree J. Sci. Technol. 2015, 22, 511–528. [Google Scholar]
- Brubaker, K.; Rango, A.; Kustas, W. Incorporating radiation inputs into the snowmelt runoff model. Hydrol. Process. 1996, 10, 1329–1343. [Google Scholar] [CrossRef]
- Hashmi, M.; Masood, A.; Mushtaq, H.; Bukhari, S.; Ahmad, B.; Tahir, A. Exploring climate change impacts during first half of the 21st century on flow regime of the transboundary kabul river in the hindukush region. J. Water Clim. Change 2020, 11, 1521–1538. [Google Scholar] [CrossRef]
- Pokhrel, B.; Chevallier, P.; Andréassian, V.; Tahir, A.; Arnaud, Y.; Neppel, L.; Bajracharya, O.; Budhathoki, K. Comparison of two snowmelt modelling approaches in the DudhKoshi basin (eastern Himalayas, Nepal). Hydrol. Sci. J. 2014, 59, 1507–1518. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Dar, S.; Sarif, M. Status on snow cover area, mass balance, glacial area loss, surface velocities and applications of snowmelt runoff model over Kashmir Himalayas and Upper Indus Basin: A review. Polar Sci. 2024, 42, 101075. [Google Scholar] [CrossRef]
- Baumgartner, M.; Apfl, G. Remote sensing, geographic information systems and snowmelt runoff models—An integrated approach; IAHS: Wellingford, UK,, 1997; pp. 73–82. [Google Scholar]
- Rango, A.; Martinec, J. Areal extent of seasonal snow cover in a changed climate. Hydrol. Res. 1994, 25, 233–246. [Google Scholar] [CrossRef]
- Ma, H.; Cheng, G. A test of Snowmelt Runoff Model (SRM) for the Gongnaisi River basin in the western Tianshan Mountains, China. Chin. Sci. Bull. 2003, 48, 2253–2259. [Google Scholar] [CrossRef]
- Prasad, V.; Roy, P. Estimation of snowmelt runoff in Beas Basin, India. Geocarto Int. 2005, 20, 41–47. [Google Scholar] [CrossRef]
- Jin, H.; Ju, Q.; Yu, Z.; Hao, J.; Gu, H.; Gu, H.; Li, W. Simulation of snowmelt runoff and sensitivity analysis in the Nyang River Basin, southeastern Qinghai-Tibetan Plateau, China. Nat. Hazards 2019, 99, 931–950. [Google Scholar] [CrossRef]
- Goodarzi, M.; Sabaghzadeh, M.; Niazkar, M. Evaluation of Snowmelt Impacts on Flood Flows Based on Remote Sensing Using SRM Model. Water 2023, 15, 1650. [Google Scholar] [CrossRef]
- Firouzi, S.; Sadeghian, M. Application of Snow Melt Runoff Model in a Mountainous Basin of Iran. J. Geosci. Environ. Prot. 2016, 4, 74–81. [Google Scholar] [CrossRef]
- Adnan, M.; Nabi, G.; Poomee, M.; Ashraf, A. Snowmelt runoff prediction under changing climate in the Himalayan cryosphere: A case of Gilgit River Basin. Geosci. Front. 2017, 8, 941–949. [Google Scholar] [CrossRef]
- Gaddam, V.; Kulkarni, A.; Gupta, A. Assessment of snow-glacier melt and rainfall contribution to stream runoff in Baspa Basin, Indian Himalaya. Environ. Monit. Assess. 2018, 190, 154. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Manzoor, S.; Vishwakarma, D.; Al-Ansari, N.; Kushwaha, N.; Elbeltagi, A.; Sushanth, K.; Prasad, V.; Kuriqi, A. Assessment of climate change impact on snowmelt runoff in himalayan region. Sustainability 2022, 14, 1150. [Google Scholar] [CrossRef]
- Bilal, H.; Siwar, C.; Mokhtar, M.; Lahlou, F.; Kanniah, K.; Al-Ansari, T. Snow runoff modelling in the upper Indus River Basin and its implication to energy water food nexus. Ecol. Model. 2024, 498, 110871. [Google Scholar] [CrossRef]
- Hussain, S.; Zhang, Y.; Majeed, U.; Rashid, I. Runoff modelling and quantification of supraglacial debris impact on seasonal streamflow in the highly glacierized catchments of the western Karakoram in Upper Indus Basin, Pakistan. Environ. Earth Sci. 2024, 83, 77–96. [Google Scholar] [CrossRef]
- Martinec, J. Evaluation of air photos for snowmelt-runoff forecasts. In Proceedings of the International Symposia on the Role of Snow and Ice in Hydrology, Banff, AB, Canada, 6–20 September 1972; IAHS Press: Wallingford, UK; Volume 2, pp. 915–926. [Google Scholar]
- Seidel, K.; Martinec, J. Hydrological applications of Satellite Snow Cover mapping in the swiss Alps. In Proceedings of the EARSeL-LISSIG-Workshop Observing Our Cryosphere from Space, Bern, Switzerland, 11–13 March 2002; Volume 80. [Google Scholar]
- Lee, S.; Klein, A.; Over, T. A comparison of MODIS and NOHRSC snow-cover products for simulating streamflow using the Snowmelt Runoff Model. Hydrol. Process. Int. J. 2005, 19, 2951–2972. [Google Scholar] [CrossRef]
- Khajuria, V.; Kumar, M.; Gunasekaran, A.; Rautela, K. Snowmelt runoff estimation using combined terra-aqua MODIS improved snow product in Western Himalayan River Basin via degree day modelling approach. Environ. Chall. 2022, 8, 100585. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, B.; Gao, X.; Liu, W.; Li, Y.; Li, R. Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 5642. [Google Scholar] [CrossRef]
- Hussainzada, W.; Lee, H.; Bhanage, V.; Khpalwak, G. Sensitivity of snowmelt runoff modelling to the level of cloud coverage for snow cover extent from daily MODIS product collection 6. J. Hydrol. Reg. Stud. 2021, 36, 100835. [Google Scholar] [CrossRef]
- Meng, X.; Liu, Y.; Qin, Y.; Wang, W.; Zhang, M.; Zhang, K. Adaptability of MODIS Daily Cloud-Free Snow Cover 500 m Dataset over China in Hutubi River Basin Based on Snowmelt Runoff Model. Sustainability 2022, 14, 4067. [Google Scholar] [CrossRef]
- Naghdi, M.; Vafakhah, M.; Moosavi, V. Improving Snowmelt Runoff Model (SRM) Performance Incorporating Remotely Sensed Data. J. Indian Soc. Remote Sens. 2024, 52, 1841–1853. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D.; Salomonson, V. MODIS snow products user guide. NASA Goddard Space Flight Cent. Rep 2006, 80, 1–45. [Google Scholar]
- Riggs, G.; Hall, D.; Salomonson, V. A snow index for the Landsat thematic mapper and moderate resolution imaging spectroradiometer. In Proceedings of the IGARSS’94-1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 1942–1944. [Google Scholar]
- Wan, Z. MODIS Land Surface Temperature Products Users’ Guide; Institute for Computational Earth System Science, University of California: Santa Barbara, CA, USA, 2006. [Google Scholar]
- Avdan, U.; Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sens. 2016, 2016, 1480307. [Google Scholar] [CrossRef]
- Wang, L.; Sun, L.; Shrestha, M.; Li, X.; Liu, W.; Zhou, J.; Yang, K.; Lu, H.; Chen, D. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate. J. Geophys. Res. Atmos. 2016, 121, 12,005–12,030. [Google Scholar] [CrossRef]
- Zhao, K.; Peng, D.; Gu, Y.; Luo, X.; Pang, B.; Zhu, Z. Temperature lapse rate estimation and snowmelt runoff simulation in a high-altitude basin. Sci. Rep. 2022, 12, 13638. [Google Scholar] [CrossRef]
- Hawkins, T. Parameterization of the snowmelt runoff model for the Salt-Verde System, Arizona during drought conditions. J. Ariz.-Nev. Acad. Sci. 2006, 38, 66–73. [Google Scholar] [CrossRef]
- Vinze, P.; Azam, M. On the transferability of snowmelt runoff model parameters: Discharge modeling in the Chandra-Bhaga Basin, western Himalaya. Front. Water 2023, 4, 1086557. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A. Parameter values for snowmelt runoff modelling. J. Hydrol. 1986, 84, 197–219. [Google Scholar] [CrossRef]
- Semádeni-Davies, A. Monthly snowmelt modelling for large-scale climate change studies using the degree day approach. Ecol. Ecol. Model. 1997, 101, 303–323. [Google Scholar] [CrossRef]
- Knight, C.; Chang, H.; Staneva, M.; Kostov, D. A simplified basin model for simulating runoff: The Struma River GIS. Prof. Geogr. 2001, 53, 533–545. [Google Scholar] [CrossRef]
- Martinec, J. The degree-day factor for snowmelt runoff forecasting. IUGG General Assembly of Helsinki. IAHS Comm. Surf. Waters 1960, 51, 468–477. [Google Scholar]
- Ouyang, R.; Ren, L.; Cheng, W.; Yu, Z. Application of hydrological models in a snowmelt region of Aksu River Basin. Water Sci. Eng. 2008, 1, 1–13. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Yao, T.; Li, H.; Duan, S. Quantitative water resources assessment of Qinghai Lake basin using Snowmelt Runoff Model (SRM). J. Hydrol. 2014, 519, 976–987. [Google Scholar] [CrossRef]
- Soni, A.; Sarkar, A.; Sharma, N. Snowmelt Runoff Modeling in an Indian Himalayan River Basin using WinSRM, RS & GIS. Water Energy Int. 2015, 58, 65–72. [Google Scholar]
- Pangali Sharma, T.; Zhang, J.; Khanal, N.; Prodhan, F.; Paudel, B.; Shi, L.; Nepal, N. Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal. Remote Sens. 2020, 12, 1951. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, L.; Chen, J.; Xu, C.; Xia, J.; Chen, H.; Liu, J. Parameter uncertainty of a snowmelt runoff model and its impact on future projections of snowmelt runoff in a data-scarce deglaciating river basin. Water 2019, 11, 2417. [Google Scholar] [CrossRef]
- Xie, S.; Du, J.; Zhou, X.; Zhang, X.; Feng, X.; Zheng, W.; Li, Z.; Xu, C. A progressive segmented optimization algorithm for calibrating time-variant parameters of the snowmelt runoff model (SRM). J. Hydrol. 2018, 566, 470–483. [Google Scholar] [CrossRef]
- Li, X.; Williams, M. Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China. Hydrol. Process. 2008, 22, 3931–3940. [Google Scholar] [CrossRef]
- Yu, M.; Chen, X.; Li, L.; Bao, A.; de la Paix, M. Incorporating accumulated temperature and algorithm of snow cover calculation into the snowmelt runoff model. Hydrol. Process. 2013, 27, 3589–3595. [Google Scholar] [CrossRef]
- Vafakhah, M.; Nouri, A.; Alavipanah, S. Snowmelt-runoff estimation using radiation SRM model in Taleghan watershed. Environ. Earth Sci. 2015, 73, 993–1003. [Google Scholar] [CrossRef]
- Abudu, S.; Sheng, Z.; Cui, C.; Saydi, M.; Sabzi, H.; King, J. Integration of aspect and slope in snowmelt runoff modeling in a mountain watershed. Water Sci. Eng. 2016, 9, 265–273. [Google Scholar] [CrossRef]
- Bhagwat, N.; Zhou, X.; Jiang, L.; Nagisetty, R.; Shaw, G.; Apple, M.; Clotfelter, J. Snowmelt Runoff Model (SRM) for Regulated Watersheds with Regulation Correction. J. Appl. Water Sci. 2025; Under review. [Google Scholar]
- Bhagwat, N. Snowmelt Runoff Driven Hydropower Modelling Based on Spaceborne Remotely Sensed and Ground Weather Network Data. Doctoral Dissertation, Montana Technological University, Butte, MT, USA, 2025. Available online: https://www.proquest.com/openview/e2d7c1aacb9d1926efdbec5c54573d83/1?pq-origsite=gscholar&cbl=18750&diss=y (accessed on 17 June 2025).
- Rajkumari, S.; Chiphang, N.; Kiba, L.; Bandyopadhyay, A.; Bhadra, A. Development and application of a spatially distributed snowmelt runoff model for limited data condition. Arab. J. Geosci. 2019, 12, 488. [Google Scholar] [CrossRef]
- Vese, M.; Nunchhani, V.; Samjetsabam, G.; Bandyopadhyay, A.; Bhadra, A. Analyzing Snow Parameters Dynamics in Arunachal Pradesh’s Glaciated River Basins Through Spatially Distributed Snowmelt Runoff Model (SDSRM): Dibang, Mago and Subansiri. J. Indian Soc. Remote Sens. 2024, 52, 1589–1609. [Google Scholar] [CrossRef]
- Nunchhani, V.; Chiphang, N.; Bandyopadhyay, A.; Bhadra, A. Development of a Spatially Distributed Snow and Glacier Melt Runoff Model (SDSGRM) for data scarce high-altitude river basins. Environ. Model. Softw. 2024, 175, 106004. [Google Scholar] [CrossRef]
Study Area | Timeline | Data Sources | Description | Literature |
---|---|---|---|---|
Beas River Basin, India | 1986–1987 | Landsat Multi-spectral Scanner (MSS) |
| [7] |
Swiss Alps, Switzerland | 1983–1984, 1992–1993 | National Oceanic and Atmospheric Administration’s Advanced Very High-Resolution Radiometer (NOAA-AVHRR) |
| [54] |
Rio Grande, Colorado, and Illecillewaet, British Columbia | 1979—Rio Grande 1981—Illecillewaet | - |
| [55] |
Gongnaisi River Basin, China | 1992 | NOAA—AVHRR |
| [56] |
Beas Basin, India | May 1998–November 1999 | Indian Remote Sensing IRS-1C/IRS-1D |
| [57] |
Qinghai, Tibet | 2000–2008 | United States Geological Survey’s Digital Elevation Model (USGS DEM), Moderate Resolution Imaging Spectroradiometer (MODIS) Terra-derived 8-day Land Surface Temperature (LST) images (MOD10A2) |
| [58] |
Ajichai River Basin, Iran | 2013–2018 | MODIS Terra-derived dayly LST images (MOD10A1) |
| [59] |
Punatsang Chu Basin, Bhutan | 2005–2009 | MOD10A2 |
| [48] |
Samalghan Basin, Iran | 2010–2011 | MOD10A2 |
| [60] |
Gilgit River Basin, Pakistan | 2007–2010, climate predictions for 2030, 2050, and 2099 | MOD10A1 |
| [61] |
Bapsa River, India | 2000–2014 | MOD10A2 |
| [62] |
Lidder watershed, India | 2013–2015 | MODIS snow cover |
| [14] |
Lidder watershed, India | 2009–2010—calibration, 2011–2014—validation | MOD10A2 |
| [63] |
Upper Indus Basin | 2000–2010 | MOD10A1 |
| [64] |
Upper Indus Basin | 2001–2017 | MOD10A2, Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Mapper Plus (ETM+) |
| [65] |
S. No. | Data | Sensor and Satellite | Dataset | Temporal Resolution | Spatial Resolution | Download Source | Remarks |
---|---|---|---|---|---|---|---|
1 | Fractional Snow Cover | MODIS on Terra and Aqua Satellites | Normalized Difference Snow Index (NDSI)—direct download | Daily (MOD10A1/MYD10A1), 8-day (MOD10A2/MYD10A2) | 500 m | https://search.earthdata.nasa.gov/search (accessed on 17 June 2025) | Can be downloaded as a preprocessed product. See [74] for more information. |
2 | Fractional Snow Cover | Landsat | Visible bands (Green and SWIR bands, band numbers differ with different Landsat satellites) | 16 days | 30 m | https://earthexplorer.usgs.gov/ (accessed on 17 June 2025) | Raw data needs to be processed to generate NDSI dataset. See [75] for more information. |
3 | Land Surface Temperature | MODIS on Terra and Aqua Satellites | Land Surface Temperature (LST) | Daily (MOD11A1/MYD11A1), 8-day (MOD11A2/MYD11A2) | 1 km | https://search.earthdata.nasa.gov/search (accessed on 17 Juine 2025) | Raw Digital Number (DN) values need to be converted into the LST. See [76] for more information. |
4 | Land Surface Temperature | Landsat | Spectral radiance (thermal infrared bands) | 16 days | 100 m, resampled to 30 m | https://earthexplorer.usgs.gov/ (accessed on 17 June 2025) | Spectral radiance needs to be converted into land surface temperature. See [77] for more information. |
5 | Precipitation | Tropical Rainfall Measurement Mission (TRMM) | Precipitation | Daily | 25 km | https://search.earthdata.nasa.gov/search?q=TRMM (accessed on 17 June 2025) | Ended in April 2015 |
6 | Precipitation | Advanced Microwave Remote Sensing Radiometer (AMSR-E) | Precipitation | Daily, weekly, monthly | 10 km along track, 5 km along scan | https://search.earthdata.nasa.gov/search (accessed on 17 June 2025) | See (https://nsidc.org/data/amsre, accessed on 17 June 2025) for more information. |
7 | Precipitation | Special Sensor Microwave Imager (SSM/I) | Precipitation | Daily | 25 km | https://www.ncei.noaa.gov/data/ssmi-ssmis-hydrological-products/ (accessed on 17 June 2025) | See (https://ghrc.nsstc.nasa.gov/uso/ds_docs/ssmi_netcdf/ssmi_ssmis_dataset.html, accessed on 17 June 2025) for more information. |
Lapse Rate (°C/100m) | CR | CS | Tcrit (°C) | Time Lag (h) | X | Y | Literature | |
---|---|---|---|---|---|---|---|---|
0.4–0.65 | 0.6 | 0.7–0.91 | 0.8–0.9 | 0.75–3 | 18 | – | – | [7] |
0.15–0.45 | 4.5–9 | 0.06 | 0.45–0.70 | 2 | 18–36 | 0.998 | 0.065 | [86] |
0.25–0.35 | – | 0.68–0.78 | 0.63–0.68 | 2 | – | 1.02–1.04 | 0.04–0.1 | [38] |
0.30 | 0.65 | 0.05–0.1 | 0.05–0.17 | 0 | 18 | 1.01 | 0.03 | [87] |
0.35–0.80 | 0.55 | 0.30–0.75 | 0.35–0.80 | 0–2 | 6–18 | 1.16 | 0.031–0.037 | [88] |
2–6 | 0.65 | 0.1–0.90 | 0.1–0.90 | 1.2 | 11–13 | 0.899–1.051 | 0.008–0.047 | [48] |
0.30–0.90 | 0.40–0.75 | 0.25–0.90 | 0.25–0.95 | 0–2 | 4–24 | 0.85–1.25 | 0.01–0.25 | [89] |
0.3 | 0.65 | – | – | 0–3 | 18 | 0.9895 | 0.26 | [90] |
0.01–2 | 4.5 | 0.4–0.9 | 0.4–0.9 | –1–4 | – | 0.9–1.3 | 0.01–0.1 | [3] |
0.08–0.5 | 0.23–0.67 | 0.1–0.7 | 0.1–0.8 | 0.5–2 | 12 | 1.02 | 0.1 | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagwat, N.; Kumar, R.; Qureshi, M.; Nagisetty, R.M.; Zhou, X. The Status, Applications, and Modifications of the Snowmelt Runoff Model (SRM): A Comprehensive Review. Hydrology 2025, 12, 156. https://doi.org/10.3390/hydrology12060156
Bhagwat N, Kumar R, Qureshi M, Nagisetty RM, Zhou X. The Status, Applications, and Modifications of the Snowmelt Runoff Model (SRM): A Comprehensive Review. Hydrology. 2025; 12(6):156. https://doi.org/10.3390/hydrology12060156
Chicago/Turabian StyleBhagwat, Ninad, Rohitashw Kumar, Mahrukh Qureshi, Raja M. Nagisetty, and Xiaobing Zhou. 2025. "The Status, Applications, and Modifications of the Snowmelt Runoff Model (SRM): A Comprehensive Review" Hydrology 12, no. 6: 156. https://doi.org/10.3390/hydrology12060156
APA StyleBhagwat, N., Kumar, R., Qureshi, M., Nagisetty, R. M., & Zhou, X. (2025). The Status, Applications, and Modifications of the Snowmelt Runoff Model (SRM): A Comprehensive Review. Hydrology, 12(6), 156. https://doi.org/10.3390/hydrology12060156