Advances in Photocatalytic Degradation of Crystal Violet Using ZnO-Based Nanomaterials and Optimization Possibilities: A Review
Abstract
1. Introduction
2. General Principles of Heterogeneous Photocatalysis
- Semiconductor heterojunctions—Combining ZnO with other semiconductors (e.g., TiO2) creates charge-separation interfaces that reduce electron-hole recombination.
- Z-Scheme photocatalytic systems—These systems synergistically pair two semiconductors to preserve high redox potentials while minimizing recombination.
- Noble metal nanoparticle incorporation—Adding silver or gold nanoparticles forms electron traps (Schottky barriers), delaying charge recombination.
- Non-metal and transition metal doping—Nitrogen or transition metal doping modifies bandgap structures to enhance visible-light absorption.
- Graphene-based hybridization—Graphene derivatives improve charge mobility and prevent recombination through efficient electron transfer.
- Dye sensitization—Organic dyes expand light absorption range, though stability remains a challenge under operational conditions.
2.1. Modifications for Enhancing the Activity of ZnO-Based Catalysts
- 1.
- Type I (“Straddling band alignment”)
- 2.
- Type II
- 3.
- Type III (Z-scheme system)
2.2. Wide-Scale and Real-Effluent Testing Challenges
3. Crystal Violet—Kinetics and Degradation Mechanism
3.1. Overview of CV Degradation Mechanism
3.2. ZnO-Based Nanomaterials—Degradation Experiments and Kinetics
3.3. Non-ZnO-Based Nanomaterials—Degradation Experiments and Kinetics
- Development of a standardized multi-variable testing template: A pivotal initial step involves creating a robust laboratory-based testing protocol designed to evaluate photocatalysts under a wide array of variable conditions simultaneously. This template would systematically combine factors like pH, initial pollutant concentration, catalyst loading, light intensity, and the presence of common inorganic ions and organic scavengers. By testing catalysts against this comprehensive matrix of conditions, researchers can generate a rich, comparable dataset. This “catalyst fingerprint” would then serve as a powerful benchmark, allowing for direct and meaningful comparison of new materials or new environmental conditions against established baselines, significantly accelerating the screening and development process.
- Holistic performance optimization under real conditions: Moving beyond isolated parameter studies, future work must adopt a systems approach to understand the dynamic interactions between key variables (e.g., pH, catalyst loading, fluctuating light intensity) within complex environments. This is essential for developing robust models that can predict performance in real-world settings, not just idealized laboratory systems.
- Validation under natural solar irradiation: A critical step is to transition from artificial light sources to validation under natural sunlight. Research must compare degradation kinetics and photonic efficiency with Light Emitting Diode (LED)-based systems while quantitatively measuring the impact of solar spectral shifts and intensity fluctuations (as well as UV index) on catalytic performance and energy balance.
- Advanced water matrix interaction studies: To address the complexity of real effluents, a systematic investigation using both authentic wastewater samples and designed synthetic matrices is crucial. This will isolate the effects of individual inorganic and organic constituents, moving beyond Cl− and HCO3− to understand how a diverse mix of compounds synergistically or antagonistically impacts photocatalytic efficiency and catalyst stability.
- Catalyst longevity and reusability assessment: Practical application demands catalysts that are not only effective but also durable. Rigorous testing over 3–5 consecutive reaction cycles must be conducted, coupled with thorough post-cycle surface analysis (X-ray photoelectron spectroscopy—XPS, Brunauer-Emmett-Teller—BET, SEM) to quantify activity loss, identify deactivation mechanisms (e.g., fouling, poisoning, structural change), and develop effective regeneration protocols.
- Comprehensive by-product profiling and toxicity evaluation: Ensuring environmental safety requires moving beyond parent pollutant removal. Advanced non-targeted liquid chromatography-mass spectrometry—LC-MS/MS analysis is needed to identify transformation products, complemented by a battery of bioassays to track the evolution of toxicity throughout the treatment process and perform a complete ecological risk assessment.
- Techno-economic and scaling analysis: A definitive feasibility study is paramount. This requires a full economic and energy analysis comparing LED systems to conventional UV lamps, calculating metrics like electrical energy per order. Furthermore, process modeling must be employed to assess scalability, operational costs, and capital expenditures for potential pilot-scale and full-scale implementation.
- Mechanistic elucidation via in situ spectroscopy: To fundamentally understand the interactions within complex matrices, in situ spectroscopic techniques (electron paramagnetic resonance—EPR, Fourier transform infrared—FTIR, Raman) must be applied. These methods will allow for the direct observation of reactive species generation, surface reaction pathways, and the real-time impact of water matrix components on catalytic mechanisms, informing more effective catalyst and process design.
- Benchmarking: Studies should include a well-established reference catalyst under identical conditions to serve as an internal benchmark for relative performance assessment.
- Light source characterization: The light source must be precisely characterized. Reports should include the type (e.g., UV-A LED, solar), peak wavelength(s), irradiance (W/m2) measured with a calibrated radiometer, and the distance to the reactor.
- Standardized reaction Conditions: While specific research questions may require deviation, we suggest an initial set of standard conditions for screening purposes: Catalyst loading: 0.5–1.0 g/L; initial CV concentration: 10 or 20 mg/L; pH: Report performance at the solution’s natural pH and at a controlled pH. Also, a mandatory dark adsorption period to establish adsorption–desorption equilibrium before illumination should be implemented, and the adsorption efficiency should be reported separately.
- Performance metrics: Beyond percentage degradation, studies should report kinetic metrics and the initial reaction rate to allow for more robust quantitative comparisons.
3.4. Optimization of Photocatalytic Degradation Experiments on ZnO-Based Nanomaterials
4. Conclusions
- Modifications of ZnO (doping and forming heterostructures with Cu2O) to enhance visible-light absorption and reduce charge carrier recombination.
- Exploring the application of synthesized materials under sunlight and in real effluents, where the presence of other organic and inorganic compounds may affect efficiency.
- Optimizing experiments using machine learning techniques to reduce the number of required experiments while evaluating the influence of various operational parameters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| CV | Crystal Violet |
| UV | Ultra Violet |
| ANN | Artificial Neural Network |
| RSM | Response Surface Methodology |
| AOP | Advanced Oxidation Processes |
| EDS | Energy-Dispersive Spectroscopy |
| SEM | Scanning Electron Microscopy |
| XRD | X-ray Diffraction |
References
- Aulakh, M.K.; Dua, J.; Pal, B. Influence of Capping Agents on Morphology and Photocatalytic Response of ZnS Nanostructures towards Crystal Violet Degradation under UV and Sunlight. Sep. Purif. Technol. 2022, 281, 119869. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the Impact of Heavy Metals from Industrial Wastewater Effluent and Removal Technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef] [PubMed]
- Mechati, S.; Triki, Z.; Toumi, S.; Lefnaoui, S.; Mazouz, S.; Zamouche, M.; Amrane, A.; Kebir, M.; Bouledjemer, I.N.E.; Zhang, J.; et al. Modeling and Optimization of Hybrid Fenton and Ultrasound Process for Crystal Violet Degradation Using AI Techniques. Water 2023, 15, 4274. [Google Scholar] [CrossRef]
- Singh, N.; Jatav, N.; Kumar, U.; Sinha, I. Photocatalytic Degradation of Crystal Violet on Cu, Zn Doped BiVO4 Particles. Langmuir 2024, 40, 8450–8462. [Google Scholar] [CrossRef] [PubMed]
- Aroui, L.; Madani, S.; Bousnoubra, I.; Boublia, A.; Lakikza, I.; Aouni, S.I.; Abdelouahed, L.; Ernst, B.; Alam, M.; Benguerba, Y. Enhanced Degradation of Crystal Violet Using PANI-ZnO Nanocomposites: Electro-Oxidation and Photocatalysis Studies. J. Mol. Liq. 2024, 412, 125818. [Google Scholar] [CrossRef]
- Sifat, M.; Kim, T.; Pophali, A.; Jung, H.-J.; Meng, Y.; Schevon, A.; Shin, E.; Halada, G.; Olynik, N.; Sprouster, D.J.; et al. Photocatalytic Degradation of Crystal Violet (CV) Dye over Metal Oxide (MOx) Catalysts. Catalysts 2024, 14, 377. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, F.; Liu, R.; Sun, C.; Fan, H. Crystal Violet Degradation in the Ozone/Persulfate/Ferroferric Oxide System: A Heterogeneous Catalytic Process for Simultaneous Catalysis of Ozone and Persulfate. J. Clean. Prod. 2023, 434, 139937. [Google Scholar] [CrossRef]
- Mancuso, A.; Blangetti, N.; Sannino, D.; Freyria, F.S.; Bonelli, B.; Esposito, S.; Sacco, O.; Vaiano, V. Photocatalytic Degradation of Crystal Violet Dye under Visible Light by Fe-Doped TiO2 Prepared by Reverse-Micelle Sol–Gel Method. Nanomaterials 2023, 13, 270. [Google Scholar] [CrossRef]
- Mohamadpour, F.; Amani, A.M. Photocatalytic systems: Reactions, mechanism, and applications. RSC Adv. 2024, 14, 20609–20645. [Google Scholar] [CrossRef]
- Chakravorty, A.; Roy, S. A Review of—Photocatalysis, basic principles, processes, and materials. Sustain. Chem. Environ. 2024, 8, 100155. [Google Scholar] [CrossRef]
- Gaggero, E.; Calza, P.; Paganini, M.C.; Cerrato, E. Cerium-, Europium- and Erbium-Modified ZnO and ZrO2 for Photocatalytic Water Treatment Applications: A Review. Catalysts 2021, 11, 1520. [Google Scholar] [CrossRef]
- Abdullah, F.H.; Bakar, N.H.H.A.; Bakar, M.A. Current Advancements on the Fabrication, Modification, and Industrial Application of Zinc Oxide as Photocatalyst in the Removal of Organic and Inorganic Contaminants in Aquatic Systems. J. Hazard. Mater. 2021, 424, 127416. [Google Scholar] [CrossRef] [PubMed]
- Alburaih, H.A.; Aadil, M.; Hassan, W.; Amaral, L.S.; Ejaz, S.R.; Aman, S.; Alsafari, I.A. Multifunctional Fe and Gd Co-Doped CeO2-RGO Nanohybrid with Excellent Solar Light Mediated Crystal Violet Degradation and Bactericidal Activity. Synth. Met. 2022, 287, 117093. [Google Scholar] [CrossRef]
- Tagnaouti Moumnani, F.; Barakat, A.; Kherbeche, A.; Solhy, A.; Mertah, O.; Elkhalfaouy, R.; Khallouk, K.; Moussaid, D. Synthesis and Characterization of Zn3V2O8 Nanoparticles: Mechanism and Factors Influencing Crystal Violet Photodegradation. React. Kinet. Mech. Catal. 2024, 137, 1157–1174. [Google Scholar] [CrossRef]
- Yelpale, A.M.; Bhange, D.S.; Dalavi, D.S.; Dhavale, R.P.; Lee, J.; Mane, S.M.; Bhosale, R.R.; Bhosale, S.R.; Vhangutte, P.P.; Kamble, A.J.; et al. Efficient Photocatalytic Degradation of Crystal Violet Dye Using Time-Dependent ZnO Nano Spindle. Mater. Sci. Eng. B 2024, 310, 117687. [Google Scholar] [CrossRef]
- Patil, P.; Sannakki, B.; Mathad, S.; Veena, E.; Gandad, S. A Review on Non-Metal and Metal Doped ZnO: Fundamental Properties and Applications. Acta Period. Technol. 2023, 54, 277–299. [Google Scholar] [CrossRef]
- Luo, Z.; Rong, P.; Yang, Z.; Zhang, J.; Zou, X.; Yu, Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules 2024, 29, 3373. [Google Scholar] [CrossRef]
- Navada, K.M.; Shetty, A.R.; H, G.; Rai, R.; Kumar, S.; Gurumurthy, S.C.; Aroor, G. Sustainable Synthesis, Amplified Efficacy: Doped ZnO Nanostructures Driving Photocatalytic Excellence for Wastewater Remediation—A Comprehensive Review. Chem. Ecol. 2024, 41, 215–251. [Google Scholar] [CrossRef]
- Kumari, P.; Chattopadhyay, S.; Samanta, S.; Misra, K.P. A Brief Review on Transition Metal Ion Doped ZnO Nanoparticles and Its Optoelectronic Applications. Mater. Today Proc. 2021, 43, 3297–3302. [Google Scholar] [CrossRef]
- Fiedler, S.; Cheong, L.; Ton-That, C.; Schleuning, M.; Hoffmann, A.; Phillips, M.R. Correlative Study of Enhanced Excitonic Emission in ZnO Coated with Al Nanoparticles Using Electron and Laser Excitation. Sci. Rep. 2020, 10, 2553. [Google Scholar] [CrossRef]
- Constantino, D.S.M.; Dias, M.M.; Silva, A.M.T.; Faria, J.L.; Silva, C.G. Intensification Strategies for Improving the Performance of Photocatalytic Processes: A Review. J. Clean. Prod. 2022, 340, 130800. [Google Scholar] [CrossRef]
- Cherif, S.; Yazid, H.; Rekhila, G.; Sadaoui, Z.; Trari, M. The Optical and Photo-Electrochemical Characterization of Nano-ZnO Particles and Its Application to Degradation of Reactive Blue 19 under Solar Light. Optik 2021, 238, 166751. [Google Scholar] [CrossRef]
- Abou Zeid, S.; Leprince-Wang, Y. Advancements in ZnO-Based Photocatalysts for Water Treatment: A Comprehensive Review. Crystals 2024, 14, 611. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, W.; Li, Q.; Liu, H.; Wang, X. Preparations and Applications of Zinc Oxide Based Photocatalytic Materials. Adv. Sens. Energy Mater. 2023, 2, 100069. [Google Scholar] [CrossRef]
- Baig, A.; Panchal, S.; Siddique, M. A Review of Visible-Light-Active Zinc Oxide Photocatalysts for Environmental Application. Catalysts 2025, 15, 100. [Google Scholar] [CrossRef]
- Khan, S.; Noor, T.; Yaqoob, L.; Iqbal, N. Photocatalytic Dye Degradation from Textile Wastewater: A Review. ACS Omega 2024, 9, 21751–21767. [Google Scholar] [CrossRef]
- Valadez-Renteria, E.; Oliva, J.; Rodriguez-Gonzalez, V. Photocatalytic Materials Immobilized on Recycled Supports and Their Role in the Degradation of Water Contaminants: A Timely Review. Sci. Total Environ. 2022, 807, 150820. [Google Scholar] [CrossRef]
- El Golli, A.; Losa, D.; Gioia, C.; Fendrich, M.; Bajpai, O.P.; Jousson, O.; Orlandi, M.; Miotello, A. Advancing Solar Wastewater Treatment: A Photocatalytic Process via Green ZnO/g-C3N4 Coatings and Concentrated Sunlight—Comprehensive Insights into Ciprofloxacin Antibiotic Inactivation. J. Environ. Manag. 2024, 371, 123178. [Google Scholar] [CrossRef] [PubMed]
- Erfan, N.A.; Barakat, N.A.M.; Mahmoud, M.S.; Kim, H.Y. Synergistic Doping with Ag, CdO, and ZnO to Overcome Electron-Hole Recombination in TiO2 Photocatalysis for Effective Water Photo Splitting Reaction. Front. Chem. 2023, 11, 1301172. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Tang, J.; Miao, T.J. Charge Carrier Dynamics and Reaction Intermediates in Heterogeneous Photocatalysis by Time-Resolved Spectroscopies. Chem. Soc. Rev. 2022, 51, 5777–5794. [Google Scholar] [CrossRef]
- Aftab, S.; Muhammad, H.; Shah, N.S.; Shabir, T.; Nisar, J.; Shah, A.; Shah, I. Highly Efficient Visible Light Active Doped ZnO Photocatalysts for the Treatment of Wastewater Contaminated with Dyes and Pathogens of Emerging Concern. Nanomaterials 2022, 12, 486. [Google Scholar] [CrossRef]
- Zheng, A.L.T.; Andou, Y.; Abdullah, C.A.C.; Chung, E.L.T. Recent Progress in Visible Light-Doped ZnO Photocatalyst for Pollution Control. Int. J. Environ. Sci. Technol. 2022, 20, 5753–5772. [Google Scholar] [CrossRef]
- Qian, R.; Zong, H.; Schneider, J.; Zhou, G.; Zhao, T.; Li, Y.; Yang, J.; Bahnemann, D.W.; Pan, J.H. Charge Carrier Trapping, Recombination and Transfer during TiO2 Photocatalysis: An Overview. Catal. Today 2019, 335, 78–90. [Google Scholar] [CrossRef]
- Lee, K.M.; Lai, C.W.; Ngai, K.S.; Juan, J.C. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review. Water Res. 2015, 88, 428–448. [Google Scholar] [CrossRef]
- Belkhaoui, C.; Mzabi, N.; Smaoui, H.; Daniel, P. Enhancing the Structural, Optical and Electrical Properties of ZnO Nanopowders through (Al + Mn) Doping. Results Phys. 2019, 12, 1686–1696. [Google Scholar] [CrossRef]
- Naik, E.I.; Prabhakara, M.C.; Viswanath, R.; Gowda, I.K.S.; Naik, H.S.B. Bright Red Luminescence Emission of Macroporous Honeycomb-like Eu3+ Ion-Doped ZnO Nanoparticles Developed by Gel-Combustion Technique. SN Appl. Sci. 2020, 2, 863. [Google Scholar] [CrossRef]
- Alanazi, H.S.; Ahmad, N.; Alharthi, F.A. Synthesis of Gd/N Co-Doped ZnO for Enhanced UV-Vis and Direct Solar-Light-Driven Photocatalytic Degradation. RSC Adv. 2021, 11, 10194–10202. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Ortega, D.; Meléndez, A.M.; Acevedo-Peña, P.; González, I.; Arroyo, R. Semiconducting Properties of ZnO/TiO2 Composites by Electrochemical Measurements and Their Relationship with Photocatalytic Activity. Electrochim. Acta 2014, 140, 541–549. [Google Scholar] [CrossRef]
- Nawaz, R.; Ghanim, A.A.J.; Irfan, M.; Rahman, S.; Abdel Baki, Z.; Ullah, S.; Anjum, M.; Ullah, H.; Kumar Oad, V. Green Synthesis of ZnO and Black TiO2 Materials and Their Application in Photodegradation of Organic Pollutants. ACS Omega 2023, 8, 36076–36087. [Google Scholar] [CrossRef]
- Malhotra, S.P.K. ZnO Nanostructures and Nanocomposites as Promising Photocatalysts for the Remediation of Wastewater Pollution. In Environmental Degradation: Causes and Remediation Strategies; Agro Environ Media: Haridwar, India, 2020; Volume 1, pp. 120–132. [Google Scholar] [CrossRef]
- Bano, N. Enhancing External Quantum Efficiency and Luminescence Quality of ZnO Nanorods Based Schottky LEDs by Mg Doping. Mater. Res. Express 2018, 6, 025050. [Google Scholar] [CrossRef]
- Tomás-Gamasa, M.; Mascareñas, J.L. TiO2-Based Photocatalysis at the Interface with Biology and Biomedicine. ChemBioChem 2019, 21, 294–309. [Google Scholar] [CrossRef]
- Mchaouri, M.; Mallah, S.; Abouhajjoub, D.; Boumya, W.; Elmoubarki, R.; Essadki, A.; Barka, N.; Elhalil, A. Engineering TiO2 Photocatalysts for Enhanced Visible-Light Activity in Wastewater Treatment Applications. Tetrahedron Green Chem. 2025, 6, 100084. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-Light Activation of TiO2 Photocatalysts: Advances in Theory and Experiments. J. Photochem. Photobiol. C 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Arshad, Z.; Wageh, S.; Mateen, F.; Maiyalagan, T.; Arshad, U.; Qadir, M.B.; Ali, M.; Al-Sehemi, A.G.; Noor-Ul-Ain, N.-U.-A. Enhanced Charge Transport Characteristics in Zinc Oxide Nanofibers via Mg2+ Doping for Electron Transport Layer in Perovskite Solar Cells and Antibacterial Textiles. Ceram. Int. 2022, 48, 24363–24371. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Bellet, D.; Masenelli, B.; Muñoz-Rojas, D. Increasing the Electron Mobility of ZnO-Based Transparent Conductive Films Deposited by Open-Air Methods for Enhanced Sensing Performance. ACS Appl. Nano Mater. 2018, 1, 6922–6931. [Google Scholar] [CrossRef]
- Prabakaran, S.; Nisha, K.D.; Harish, S.; Hayakawa, Y.; Navaneethan, M. Boosting the Electrical and Charge Transfer Properties of TiO2 by the Effect of Mo Doped and rGO Nanocomposite. J. Alloys Compd. 2023, 947, 169186. [Google Scholar] [CrossRef]
- Dagareh, M.I.; Hafeez, H.Y.; Mohammed, J.; Kafadi, A.D.G.; Suleiman, A.B.; Ndikilar, C.E. Current Trends and Future Perspectives on ZnO-Based Materials for Robust and Stable Solar Fuel (H2) Generation. Chem. Phys. Impact 2024, 9, 100774. [Google Scholar] [CrossRef]
- Irshad, M.A.; Nawaz, R.; Rehman, M.Z.U.; Adrees, M.; Rizwan, M.; Ali, S.; Ahmad, S.; Tasleem, S. Synthesis, Characterization and Advanced Sustainable Applications of Titanium Dioxide Nanoparticles: A Review. Ecotoxicol. Environ. Saf. 2021, 212, 111978. [Google Scholar] [CrossRef]
- Lingaraju, K.; Basavaraj, R.B.; Jayanna, K.; Bhavana, S.; Devaraja, S.; Kumar Swamy, H.M.; Nagaraju, G.; Nagabhushana, H.; Raja Naika, H. Biocompatible Fabrication of TiO2 Nanoparticles: Antimicrobial, Anticoagulant, Antiplatelet, Direct Hemolytic and Cytotoxicity Properties. Inorg. Chem. Commun. 2021, 127, 108505. [Google Scholar] [CrossRef]
- Aina, A.R.N.; Patel, H.; Aich, S.; Roy, B.; Samanta, N.S.; Pal, B. Recent Advances in ZnO Based Photocatalysts for Industrial Dye Degradation. Discov. Appl. Sci. 2025, 7, 977. [Google Scholar] [CrossRef]
- Etafa Tasisa, Y.; Kumar Sarma, T.; Krishnaraj, R.; Sarma, S. Band Gap Engineering of Titanium Dioxide (TiO2) Nanoparticles Prepared via Green Route and Its Visible Light Driven for Environmental Remediation. Results Chem. 2024, 11, 101850. [Google Scholar] [CrossRef]
- Han, Y.-X.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G.; Wang, L.-Z. Enhancing the Visible-Light Absorption of TiO2 with the Use of Key N, Co, and Na Dopant Concentrations. Sol. Energy Mater. Sol. Cells 2014, 132, 94–100. [Google Scholar] [CrossRef]
- Singh, J.; Singh, R.C. Enhancement of Optical, Dielectric and Transport Properties of (Sm, V) Co-Doped ZnO System and Structure-Property Correlations. Ceram. Int. 2020, 47, 10611–10627. [Google Scholar] [CrossRef]
- Perillo, P.M.; Atia, M.N. C-Doped ZnO Nanorods for Photocatalytic Degradation of p-Aminobenzoic Acid under Sunlight. Nano-Struct. Nano-Objects 2017, 10, 125–130. [Google Scholar] [CrossRef]
- Ghrib, T.; Massoudi, I.; Al-Otaibi, A.L.; Al-Malki, A.; Kharma, A.; Al-Hashem, E.; Al-Ghamdi, R.A.; Al-Zuraie, R.A. Effects of Terbium Doping on Structural, Optical and Photocatalytic Properties of ZnO Nanopowder Prepared by Solid-State Reaction. J. Inorg. Organomet. Polym. Mater. 2021, 31, 239–250. [Google Scholar] [CrossRef]
- Ahmed, A.Z.; Islam, M.M.; Islam, M.M.U.; Masum, S.M.; Islam, R.; Molla, M.A.I. Fabrication and Characterization of B/Sn-Doped ZnO Nanoparticles via Mechanochemical Method for Photocatalytic Degradation of Rhodamine B. Inorg. Nano-Met. Chem. 2020, 51, 1369–1378. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Shabna, S.; Dhas, S.D.S.J.; Singh, C.J.C.; Jeyakumar, S.C.; Biju, C.S. An Overview of Prominent Factors Influencing the Photocatalytic Degradation of Cationic Crystal Violet Dye Employing Diverse Nanostructured Materials. J. Chem. Technol. Biotechnol. 2024, 99, 1027–1055. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Recent Progress in g-C3N4, TiO2 and ZnO Based Photocatalysts for Dye Degradation: Strategies to Improve Photocatalytic Activity. Sci. Total Environ. 2021, 767, 144896. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Mahajan, P.; Mahajan, S.; Khosla, A.; Datt, R.; Gupta, V.; Young, S.-J.; Oruganti, S.K. Review—Influence of Processing Parameters to Control Morphology and Optical Properties of Sol-Gel Synthesized ZnO Nanoparticles. ECS J. Solid State Sci. Technol. 2021, 10, 023002. [Google Scholar] [CrossRef]
- Abebe, B.; Murthy, H.C.A.; Amare, E. Enhancing the Photocatalytic Efficiency of ZnO: Defects, Heterojunction, and Optimization. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100336. [Google Scholar] [CrossRef]
- Türkyılmaz, Ş.Ş.; Güy, N.; Özacar, M. Photocatalytic Efficiencies of Ni, Mn, Fe and Ag Doped ZnO Nanostructures Synthesized by Hydrothermal Method: The Synergistic/Antagonistic Effect between ZnO and Metals. J. Photochem. Photobiol. A 2017, 341, 39–50. [Google Scholar] [CrossRef]
- Sood, S.; Raina, I.; Gaur, J.; Kaushal, S.; Singh, G.; Kumar, S.; Kumar, P.; Misra, M. Enhancing Optoelectronic Performance Through Rare-Earth-Doped ZnO: Insights and Applications. Photonics 2025, 12, 454. [Google Scholar] [CrossRef]
- Üzar, N. Effect of 15% Fe Doping on the Structural, Optical, Electrical, and Thermoelectric Properties of ZnO Thin Films. Phys. B 2025, 704, 417045. [Google Scholar] [CrossRef]
- Saleem, S.; Althubeiti, K.; Amami, M.; Rehman, A.; Jameel, M.H.; Sultana, F.; Nazir, N.; Ali, A.; Akhtar, N.; Zaman, A.; et al. Modification in Structural, Optical, Morphological, and Electrical Properties of Zinc Oxide (ZnO) Nanoparticles (NPs) by Metal (Ni, Co) Dopants for Electronic Device Applications. Arab. J. Chem. 2022, 15, 103518. [Google Scholar] [CrossRef]
- Santos, E.; Catto, A.C.; Peterline, A.F.; Avansi, W., Jr. Transition Metal (Nb and W) Doped TiO2 Nanostructures: The Role of Metal Doping in Their Photocatalytic Activity and Ozone Gas-Sensing Performance. Appl. Surf. Sci. 2021, 579, 152146. [Google Scholar] [CrossRef]
- Mokgolo, P.J.; Malevu, T.D. Improving Perovskite Solar Cell Efficiency with Yb-Doped ZnO Nanostructures through Structural, Optical and Electrical Investigations. Sci. Afr. 2025, 29, e02915. [Google Scholar] [CrossRef]
- Mošková, A.; Fröhlich, K.; Gucmann, F.; Dobročka, E.; Štrbík, V.; Mikolášek, M.; Precner, M.; Mičušík, M.; Moško, M.; Šoltýs, J.; et al. Doping Efficiency and Electron Transport in Al-Doped ZnO Films Grown by Atomic Layer Deposition. J. Appl. Phys. 2021, 130, 035106. [Google Scholar] [CrossRef]
- He, Z.; Xia, Y.; Tang, B.; Jiang, X.; Su, J. Fabrication and Photocatalytic Property of ZnO/Cu2O Core-Shell Nanocomposites. Mater. Lett. 2016, 184, 148–151. [Google Scholar] [CrossRef]
- Meredyk, V.A.; Teobaldo, G.B.M.; Unger, C.V.; Agustini, D.; De Oliveira, C.L.P.; Barbano, E.C.; Ribeiro, E.; Yokaichiya, F.; Kellermann, G. Structure and Optical Properties of Cu2O Nanocrystals in a Sodium-Borate Glass. Ceram. Int. 2024, 51, 105–116. [Google Scholar] [CrossRef]
- Akter, N.; Rahman, M.A.; Zaman, M.; Hossain, M.M. ZnO-Cu2O Composites for Photocatalytical Removal of Methylene Blue from Aqueous Solution under Visible Light. Dhaka Univ. J. Sci. 2023, 71, 42–48. [Google Scholar] [CrossRef]
- Ribeiro, L.K.; Calatayud, M.; Gouveia, A.F.; Mascaro, L.H.; Guardiano, M.G. Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries. Appl. Sci. 2025, 15, 8594. [Google Scholar] [CrossRef]
- Ruziwa, D.T.; Oluwalana, A.E.; Mupa, M.; Meili, L.; Selvasembian, R.; Nindi, M.M.; Sillanpaa, M.; Gwenzi, W.; Chaukura, N. Pharmaceuticals in Wastewater and Their Photocatalytic Degradation Using Nano-Enabled Photocatalysts. J. Water Process Eng. 2023, 54, 103880. [Google Scholar] [CrossRef]
- Motamedi, M.; Yerushalmi, L.; Haghighat, F.; Chen, Z. Recent Developments in Photocatalysis of Industrial Effluents: A Review and Example of Phenolic Compounds Degradation. Chemosphere 2022, 296, 133688. [Google Scholar] [CrossRef]
- Pourtalebi, B.; Alizadeh, R.; Abdoli, S.M. Recent Advances in Industrial Photoreactors: A Review from Design to Large-Scale Applications. J. Water Process Eng. 2025, 77, 108619. [Google Scholar] [CrossRef]
- Berkani, M.; Bouhelassa, M.; Kadmi, Y.; Bouchareb, M.K. Photocatalytic Degradation of Industrial Dye in Semi-Pilot Scale Prototype Solar Photoreactor: Optimization and Modeling Using ANN and RSM Based on Box–Wilson Approach. Top. Catal. 2020, 63, 964–975. [Google Scholar] [CrossRef]
- Kubiak, A.; Cegłowski, M. Developing a Novel Continuous-Flow Cascade Photocatalytic System for Effective Sulfamethoxazole Elimination from Hospital Wastewater. Chem. Eng. J. 2024, 495, 153518. [Google Scholar] [CrossRef]
- Hakki, H.K.; Sillanpää, M. Comprehensive Analysis of Photocatalytic and Photoreactor Challenges in Photocatalytic Wastewater Treatment: A Case Study with ZnO Photocatalyst. Mater. Sci. Semicond. Process. 2024, 181, 108592. [Google Scholar] [CrossRef]
- Ngan, A.; Milan, E.; Chen, Z.Q.; Chan, C.C.; Iman, A.; Gu, F. In Situ Formed Se-TiO2 as a Highly Reusable Photocatalyst for Selenium Reduction and Removal from Industrial Wastewater. Chemosphere 2025, 370, 143959. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, N.; Sharma, G.; Kumar, A.; Johan, M.R.B.; Gapsari, F.; Badruddin, I.A.; Lai, C.W.; Mousavi, S.M. Progress in Photocatalytic Degradation of Industrial Organic Dye by Utilising the Silver Doped Titanium Dioxide Nanocomposite. Heliyon 2024, 10, e40998. [Google Scholar] [CrossRef]
- Alizadeh, M.; Qarachal, J.F.; Sheidaee, E. Understanding the Ecological Impacts of Nanoparticles: Risks, Monitoring, and Mitigation Strategies. Nanotechnol. Environ. Eng. 2025, 10, 6. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Mosai, A.K.; López-Maldonado, E.A.; Bopape, M.; Dhibar, S.; Nuapia, Y.; Ajiboye, T.O.; Buledi, J.A.; Solangi, A.R.; Sherazi, S.T.H.; et al. Unseen Threats in Aquatic and Terrestrial Ecosystems: Nanoparticle Persistence, Transport and Toxicity in Natural Environments. Chemosphere 2025, 382, 144470. [Google Scholar] [CrossRef]
- Mrowiec, B. Nanowaste in the Aquatic Environment—Threats and Risk Countermeasures. Desalination Water Treat. 2025, 322, 101112. [Google Scholar] [CrossRef]
- Beegam, A.; Thomas, S.; Trindade, T.; Prasad, P.; Gonçalves, P.P.; Costa, F.G.; Kalarikkal, N.; Oliveira, M.; Soares, A.M.V.M.; Jose, J.; et al. Environmental Fate of Zinc Oxide Nanoparticles: Risks and Benefits. In Nanomaterials: Evolution and Advancement towards Therapeutic Drug Delivery; Institute for New Technologies: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Vysakh, V.G.; Sukumaran, S.; Gopalakrishnan, A. Evaluating the Effects of Zinc Oxide Nanoparticles on a Sentinel Aquatic Invertebrate Species: Transcriptomic Analysis and Potential Implications for Ecosystem Health. Mar. Pollut. Bull. 2025, 212, 117570. [Google Scholar] [CrossRef]
- Sanakousar, M.F.; C.C, V.; Jiménez-Pérez, V.M.; Jayanna, B.K.; Mounesh, M.; Shridhar, A.H.; Prakash, K. Efficient Photocatalytic Degradation of Crystal Violet Dye and Electrochemical Performance of Modified MWCNTs/Cd-ZnO Nanoparticles with Quantum Chemical Calculations. J. Hazard. Mater. Adv. 2021, 2, 100004. [Google Scholar] [CrossRef]
- Habib, M.A.; Islam, M.N.; Mahmood, A.J.; Muslim, M.; Shahadat, M.T.; Ismail, I.M.I.; Islam, T.S.A. Photocatalytic Decolorization of Crystal Violet in Aqueous Nano-ZnO Suspension under Visible Light Irradiation. J. Nanostruct. Chem. 2013, 3, 70. [Google Scholar] [CrossRef]
- Aljawfi, R.N.; Alam, M.J.; Rahman, F.; Ahmad, S.; Shahee, A.; Kumar, S. Impact of Annealing on the Structural and Optical Properties of ZnO Nanoparticles and Tracing the Formation of Clusters via DFT Calculation. Arab. J. Chem. 2018, 13, 2207–2218. [Google Scholar] [CrossRef]
- Pekárek, S.; Mikeš, J.; Krýsa, J. Comparative Study of TiO2 and ZnO Photocatalysts for the Enhancement of Ozone Generation by Surface Dielectric Barrier Discharge in Air. Appl. Catal. A 2015, 502, 122–128. [Google Scholar] [CrossRef]
- Irshad, Z.; Bibi, I.; Ghafoor, A.; Majid, F.; Kamal, S.; Ezzine, S.; Elqahtani, Z.M.; Alwadai, N.; El Messaoudi, N.; Iqbal, M. Ni Doped SrFe12O19 Nanoparticles Synthesized via Micro-Emulsion Route and Photocatalytic Activity Evaluation for the Degradation of Crystal Violet under Visible Light Irradiation. Results Phys. 2022, 42, 106006. [Google Scholar] [CrossRef]
- Abbas, H.A.; Nasr, R.A.; Abu-Zurayk, R.; Al Bawab, A.; Jamil, T.S. Decolourization of Crystal Violet Using Nano-Sized Novel Fluorite Structure Ga2Zr2−xWxO7 Photocatalyst under Visible Light Irradiation. R. Soc. Open Sci. 2020, 7, 191632. [Google Scholar] [CrossRef] [PubMed]
- Zahmatkesh Anbarani, M.; Nourbakhsh, S.; Toolabi, A.; Bonyadi, Z. Biodegradation of Crystal Violet Dye by Saccharomyces cerevisiae in Aqueous Medium. Heliyon 2023, 9, e19460. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Wang, Z.; Zhang, D. Electrochemical Oxidation of Crystal Violet in the Presence of Hydrogen Peroxide. J. Chem. Technol. Biotechnol. 2010, 85, 1436–1444. [Google Scholar] [CrossRef]
- Suhail, F.S.; Mashkour, M.S.; Saeb, D. The study on photo degradation of crystal violet by polarographic technique. Int. J. Basic Appl. Sci. 2015, 15, 12–21. [Google Scholar]
- Montes De Oca, M.N.; Milla, L.; Ortiz, C.S.; Vara, J.; Rivarola, V. Physicochemical Properties and Photodynamic Activity of Novel Derivatives of Triarylmethane and Thiazine. Arch. Pharm. 2013, 346, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Guzman-Duque, F.; Pétrier, C.; Pulgarin, C.; Peñuela, G.; Torres-Palma, R.A. Effects of Sonochemical Parameters and Inorganic Ions during the Sonochemical Degradation of Crystal Violet in Water. Ultrason. Sonochem. 2011, 18, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-J.; Huang, S.-T.; Chung, W.-H.; Jan, J.-L.; Lin, W.-Y.; Chen, C.-C. Degradation Pathways of Crystal Violet by Fenton and Fenton-like Systems: Condition Optimization and Intermediate Separation and Identification. J. Hazard. Mater. 2009, 171, 1032–1044. [Google Scholar] [CrossRef]
- De Oliveira, R.; Sant’Ana, A.C. Crystal Violet Degradation by Visible Light-Driven AgNP/TiO2 Hybrid Photocatalyst Tracked by SERRS Spectroscopy. Vib. Spectrosc. 2024, 133, 103694. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J. Decolorization and Degradation of Crystal Violet Dye by Electron Beam Radiation: Performance, Degradation Pathways, and Synergetic Effect with Peroxymonosulfate. Environ. Pollut. 2024, 350, 124037. [Google Scholar] [CrossRef]
- Ramanathan, S.; Rashmitha, R.M.; Chuang, H.-C.; Kasemchainan, J.; Arumugam, M.K.; Lydia, I.S.; Pandiyarajan, S.; Poompradub, S. Synergistic Photocatalytic Degradation of Crystal Violet Dye Using Novel Medical Waste-Derived Carbon/ZnO Composite: A Study on Toxicological Assessment. Process Saf. Environ. Prot. 2024, 187, 145–158. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Nazim, M.; Shin, H.-S. Rapid Photocatalytic Degradation of Crystal Violet Dye over ZnO Flower Nanomaterials. Mater. Lett. 2013, 96, 228–232. [Google Scholar] [CrossRef]
- Liao, Y.-H.B.; Wang, J.X.; Lin, J.-S.; Chung, W.-H.; Lin, W.-Y.; Chen, C.-C. Synthesis, Photocatalytic Activities and Degradation Mechanism of Bi2WO6 toward Crystal Violet Dye. Catal. Today 2011, 174, 148–159. [Google Scholar] [CrossRef]
- Ben Ameur, S.; Belhadjltaief, H.; Duponchel, B.; Leroy, G.; Amlouk, M.; Guermazi, H.; Guermazi, S. Enhanced Photocatalytic Activity against Crystal Violet Dye of Co and In Doped ZnO Thin Films Grown on PEI Flexible Substrate under UV and Sunlight Irradiations. Heliyon 2019, 5, e01912. [Google Scholar] [CrossRef]
- Puneetha, J.; Kottam, N.; Rathna, A. Investigation of Photocatalytic Degradation of Crystal Violet and Its Correlation with Bandgap in ZnO and ZnO/GO Nanohybrid. Inorg. Chem. Commun. 2021, 125, 108460. [Google Scholar] [CrossRef]
- Mittal, M.; Sharma, M.; Pandey, O.P. Photocatalytic Studies of Crystal Violet Dye Using Mn Doped and PVP Capped ZnO Nanoparticles. J. Nanosci. Nanotechnol. 2014, 14, 2725–2733. [Google Scholar] [CrossRef]
- Manimozhi, R.; Mathankumar, M.; Prakash, A.P.G. Synthesis of g-C3N4/ZnO Heterostructure Photocatalyst for Enhanced Visible Degradation of Organic Dye. Optik 2020, 229, 165548. [Google Scholar] [CrossRef]
- Mohamed, S.K.; Hegazy, S.H.; Abdelwahab, N.A.; Ramadan, A.M. Coupled Adsorption-Photocatalytic Degradation of Crystal Violet under Sunlight Using Chemically Synthesized Grafted Sodium Alginate/ZnO/Graphene Oxide Composite. Int. J. Biol. Macromol. 2017, 108, 1185–1198. [Google Scholar] [CrossRef] [PubMed]
- Naik, E.I.; Naik, H.S.B.; Sarvajith, M.S.; Pradeepa, E. Co-Precipitation Synthesis of Cobalt Doped ZnO Nanoparticles: Characterization and Their Applications for Biosensing and Antibacterial Studies. Inorg. Chem. Commun. 2021, 130, 108678. [Google Scholar] [CrossRef]
- Adaikalam, K.; Valanarasu, S.; Ali, A.M.; Sayed, M.A.; Yang, W.; Kim, H.-S. Photosensing Effect of Indium-Doped ZnO Thin Films and Its Heterostructure with Silicon. J. Asian Ceram. Soc. 2022, 10, 108–119. [Google Scholar] [CrossRef]
- Nguyen, V.Q.; Nguyen, V.H.; Baynosa, M.L.; Tuma, D.; Lee, Y.R.; Shim, J.-J. Solvent-Driven Morphology-Controlled Synthesis of Highly Efficient Long-Life ZnO/Graphene Nanocomposite Photocatalysts for the Practical Degradation of Organic Wastewater under Solar Light. Appl. Surf. Sci. 2019, 486, 37–51. [Google Scholar] [CrossRef]
- Saadi, H.; Khemakhem, H.; Mezzane, D.; Sanguino, P.; Hadouch, Y.; Abdelmoula, N.; Benzarti, Z.; Mourad, S. Electrical Conductivity Improvement of (Fe + Al) Co-Doped ZnO Nanoparticles for Optoelectronic Applications. J. Mater. Sci. Mater. Electron. 2022, 33, 8065–8085. [Google Scholar] [CrossRef]
- Senol, S.D.; Guler, A.; Boyraz, C.; Arda, L. Preparation Structure and Magnetic Properties of Mn-Doped ZnO Nanoparticles Prepared by Hydrothermal Method. J. Supercond. Nov. Magn. 2019, 32, 2781–2786. [Google Scholar] [CrossRef]
- Nayak, S.; Kumar, P. Review on Structure, Optical and Magnetic Properties of Cobalt Doped ZnO Nanoparticles. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Jassi, J.; Sreelakshmi, M.; Sara Roy, M. Synthesis and Characterization of Cadmium Doped Zinc Oxide Nanocomposites. Mater. Today Proc. 2023, in press. [CrossRef]
- Kiran, S.; Bentalib, A.; Rashid, Z.; Qadir, M.B.; Khaliq, Z.; Shahzad, M.W.; Javaid, A.; Hussain, M. Fabrication of Zinc Oxide/Sodium Alginate Nanocomposite for Effective Catalytic Degradation of Direct Yellow 44 Dye: A Sustainable Approach. Desalin. Water Treat. 2025, 321, 101028. [Google Scholar] [CrossRef]
- Lin, H.-P.; Chen, J.-Y.; Chen, Y.-Q.; Lai, Y.-Y.; Lee, W.W.; Chen, C.-C.; Fu, J.-Y. Synthesis of a SrFeO3−x/g-C3N4 Heterojunction with Improved Visible-Light Photocatalytic Activities in Chloramphenicol and Crystal Violet Degradation. RSC Adv. 2016, 6, 2323–2336. [Google Scholar] [CrossRef]
- Djellabi, R.; Morandi, S.; Gatto, S.; Cerrato, G.; Oldani, V.; Di Michele, A.; Ghorab, M.F.; Bianchi, C.L. Photoactive TiO2–Montmorillonite Composite for Degradation of Organic Dyes in Water. J. Photochem. Photobiol. A 2014, 295, 57–63. [Google Scholar] [CrossRef]
- Bargozideh, S.; Tasviri, M. Construction of a Novel BiSI/MoS2 Nanocomposite with Enhanced Visible-Light Driven Photocatalytic Performance. New J. Chem. 2018, 42, 18236–18241. [Google Scholar] [CrossRef]
- Dargahi, M.; Feizi, M.; Shahsavarifar, S.; Masteri-Farahani, M. Microemulsion-Mediated Preparation of Ce2(MoO4)3 Nanoparticles for Photocatalytic Degradation of Crystal Violet in Aqueous Solution. Environ. Sci. Pollut. Res. 2020, 27, 12047–12054. [Google Scholar] [CrossRef]
- Vinosel, V.M.; Janifer, M.A.; Praveena, P.; Anand, S.; Pauline, S.; Stephen, A.; Dhanavel, S. Enhanced Photocatalytic Activity of Fe3O4/SnO2 Magnetic Nanocomposite for the Degradation of Organic Dye. J. Mater. Sci. Mater. Electron. 2019, 30, 9663–9677. [Google Scholar] [CrossRef]
- Kossar, S.; Banu, I.B.S.; Aman, N.; Amiruddin, R. Investigation on Photocatalytic Degradation of Crystal Violet Dye Using Bismuth Ferrite Nanoparticles. J. Dispers. Sci. Technol. 2020, 42, 2053–2062. [Google Scholar] [CrossRef]
- Rahmat, M.; Rehman, A.; Rahmat, S.; Bhatti, H.N.; Iqbal, M.; Khan, W.S.; Bajwa, S.Z.; Rahmat, R.; Nazir, A. Highly Efficient Removal of Crystal Violet Dye from Water by MnO2 Based Nanofibrous Mesh/Photocatalytic Process. J. Mater. Res. Technol. 2019, 8, 5149–5159. [Google Scholar] [CrossRef]
- Rathore, R.; Waghmare, A.; Rai, S.; Chandra, V. Enhanced Photocatalytic Performance of g-C3N4@MnFe2O4 Nanocomposite for Crystal Violet Dye Degradation under Solar Light. ChemistrySelect 2023, 8, e202301344. [Google Scholar] [CrossRef]
- Rao Akshatha, S.; Raghu, M.S.; Yogesh Kumar, K.; Sreenivasa, S.; Parashuram, L.; Madhu Chakrapani Rao, T. Visible-Light-Induced Photochemical Hydrogen Evolution and Degradation of Crystal Violet Dye by Interwoven Layered MoS2/Wurtzite ZnS Heterostructure Photocatalyst. ChemistrySelect 2020, 5, 6918–6926. [Google Scholar] [CrossRef]
- Gupta, S.; Ben, S.K.; Chandra, V. Enhanced Degradation of Crystal Violet Dye under Solar Light by Zirconium Phosphate-Decorated Graphitic Carbon Nitride. Res. Chem. Intermed. 2024, 50, 3523–3542. [Google Scholar] [CrossRef]
- Cherrak, R.; Khaldi, K.; Weidler, P.G.; Adjdir, M.; Hadjel, M.; Benderdouche, N.; Sghier, A.; Mokhtar, A. Preparation of Nano-TiO2/Diatomite Composites by Non-Hydrolytic Sol–Gel Process and its Application in Photocatalytic Degradation of Crystal Violet. Silicon 2019, 12, 927–935. [Google Scholar] [CrossRef]
- Rani, M.; Rachna, R.; Shanker, U. Mineralization of Carcinogenic Anthracene and Phenanthrene by Sunlight Active Bimetallic Oxides Nanocomposites. J. Colloid Interface Sci. 2019, 555, 676–688. [Google Scholar] [CrossRef]
- Druzian, D.M.; Oviedo, L.R.; Wouters, R.D.; Loureiro, S.N.; Ruiz, Y.P.M.; Galembeck, A.; Pavoski, G.; Espinosa, D.C.R.; Dos Santos, C.; Dos Santos, J.H.Z.; et al. A Bimetallic Nanocatalyst from Carbonaceous Waste for Crystal Violet Degradation. Mater. Chem. Phys. 2023, 297, 127455. [Google Scholar] [CrossRef]
- Hu, S.; Yuan, J.; Tang, S.; Luo, D.; Shen, Q.; Qin, Y.; Zhou, J.; Tang, Q.; Chen, S.; Luo, X.; et al. Perovskite-Type SrFeO3/g-C3N4 S-Scheme Photocatalyst for Enhanced Degradation of Acid Red B. Opt. Mater. 2022, 132, 112760. [Google Scholar] [CrossRef]
- Mistewicz, K.; Das, T.K.; Nowacki, B.; Smalcerz, A.; Kim, H.J.; Hajra, S.; Godzierz, M.; Masiuchok, O. Bismuth Sulfoiodide (BiSI) Nanorods: Synthesis, Characterization, and Photodetector Application. Sci. Rep. 2023, 13, 8800. [Google Scholar] [CrossRef]
- Sivaranjani, P.R.; Janani, B.; Thomas, A.M.; Raju, L.L.; Khan, S.S. Recent Development in MoS2-Based Nano-Photocatalyst for the Degradation of Pharmaceutically Active Compounds. J. Clean. Prod. 2022, 352, 131506. [Google Scholar] [CrossRef]
- Amiri, Z.; Banna Motejadded Emrooz, H.; Safarzadeh Khosrowshahi, M. Green Synthesis of ZnS/MoS2-Decorated Porous Carbon for Photocatalytic Degradation of Tetracycline under Visible Light. Sci. Rep. 2025, 15, 22086. [Google Scholar] [CrossRef]
- Zhong, J.; Jiang, H.; Wang, Z.; Yu, Z.; Wang, L.; Mueller, J.F.; Guo, J. Efficient Photocatalytic Destruction of Recalcitrant Micropollutants Using Graphitic Carbon Nitride under Simulated Sunlight Irradiation. Environ. Sci. Ecotechnol. 2021, 5, 100079. [Google Scholar] [CrossRef]
- Sujatha, G.; Shanthakumar, S.; Chiampo, F. UV Light-Irradiated Photocatalytic Degradation of Coffee Processing Wastewater Using TiO2 as a Catalyst. Environments 2020, 7, 47. [Google Scholar] [CrossRef]
- Paiu, M.; Lutic, D.; Gavrilescu, M.; Favier, L. Heterogeneous Photocatalysis for Advanced Water Treatment: Materials, Mechanisms, Reactor Configurations, and Emerging Applications. Appl. Sci. 2025, 15, 5681. [Google Scholar] [CrossRef]
- Ashebir, H.; Diale, P.; Worku, A.; Babaee, S.; Nure, J.F.; Msagati, T.A.M. Optimization of Photocatalytic Degradation of Sulfamethoxazole from Wastewater Using Developed N-doped TiO2/Biochar. Results Eng. 2025, 26, 105170. [Google Scholar] [CrossRef]
- Khataee, A.R.; Kasiri, M.B. Artificial Neural Networks Modeling of Contaminated Water Treatment Processes by Homogeneous and Heterogeneous Nanocatalysis. J. Mol. Catal. A Chem. 2010, 331, 86–100. [Google Scholar] [CrossRef]
- Mosavi, A.; Salimi, M.; Faizollahzadeh Ardabili, S.; Rabczuk, T.; Shamshirband, S.; Varkonyi-Koczy, A.R. State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. Energies 2019, 12, 1301. [Google Scholar] [CrossRef]
- Wan, J.; Jin, C.; Liu, B.; She, Z.; Gao, M.; Wang, Z. Electrochemical Oxidation of Sulfamethoxazole Using Ti/SnO2–Sb/Co–PbO2 Electrode through ANN-PSO. J. Serbian Chem. Soc. 2019, 84, 713–727. [Google Scholar] [CrossRef]
- Mosavi, A.; Bahmani, A. Energy Consumption Prediction Using Machine Learning: A Review. Energies 2019, 12. [Google Scholar] [CrossRef]
- Bilbao, I.; Bilbao, J. Regularization in the Process of Developing an Artificial Neural Network. In Proceedings of the 2017 International Conference on Artificial Intelligence, ICAI 2017, Melbourne, Australia, 19–25 August 2017; CSREA Press: Rome, Italy, 2017; pp. 6–10. [Google Scholar] [CrossRef]
- Li, Q.; Yan, M.; Xu, J. Optimizing Convolutional Neural Network Performance by Mitigating Underfitting and Overfitting. In Proceedings of the 2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS), Shanghai, China, 23–25 June 2021; IEEE: New York, NY, USA, 2021; pp. 126–131. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, T.; Zeng, Y.; Xu, B. Towards a Brain-Inspired Developmental Neural Network by Adaptive Synaptic Pruning. In Proceedings of the Neural Information Processing, International Conference on Neural Information Processing 2017, Guangzhou, China, 14–18 November 2017; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2017; Volume 10635, pp. 182–191. [Google Scholar] [CrossRef]
- Fedorenko, Y.S.; Gapanyuk, Y.E.; Minakova, S.V. The Analysis of Regularization in Deep Neural Networks Using Metagraph Approach. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2017; Volume 680, pp. 3–8. [Google Scholar] [CrossRef]
- Wang, Y.; Bian, Z.P.; Hou, J.; Chau, L.P. Convolutional Neural Networks With Dynamic Regularization. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 2299–2304. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Dil, E.A.; Ghaedi, M.; Ghaedi, A.; Asfaram, A.; Jamshidi, M.; Purkait, M.K. Application of Artificial Neural Network and Response Surface Methodology for the Removal of Crystal Violet by Zinc Oxide Nanorods Loaded on Activated Carbon: Kinetics and Equilibrium Study. J. Taiwan Inst. Chem. Eng. 2016, 59, 210–220. [Google Scholar] [CrossRef]
- Karimi, R.; Yousefi, F.; Ghaedi, M.; Rezaee, Z. Comparison the Behavior of ZnO–NP–AC and Na, K Doped ZnO–NP–AC for Simultaneous Removal of Crystal Violet and Quinoline Yellow Dyes: Modeling and Optimization. Polyhedron 2019, 170, 60–69. [Google Scholar] [CrossRef]
- Salehi, K.; Daraei, H.; Teymouri, P.; Shahmoradi, B.; Maleki, A. Cu-Doped ZnO Nanoparticle for Removal of Reactive Black 5: Application of Artificial Neural Networks and Multiple Linear Regression for Modeling and Optimization. Desal. Water Treat. 2015, 57, 22074–22080. [Google Scholar] [CrossRef]
- Lenzi, G.G.; Evangelista, R.F.; Duarte, E.R.; Colpini, L.M.S.; Fornari, A.C.; Menechini Neto, R.; Jorge, L.M.M.; Santos, O.A.A. Photocatalytic Degradation of Textile Reactive Dye Using Artificial Neural Network Modeling Approach. Desalin. Water Treat. 2015, 57, 14132–14144. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Karimi, K.; Shahmoradi, B.; Moradi, M.; Vasseghian, Y.; Niculina Dragoi, E. Photocatalyzed Degradation of Acid Orange 7 Dye under Sunlight and Ultraviolet Irradiation Using Ni-Doped ZnO Nanoparticles. Desal. Water Treat. 2019, 165, 321–332. [Google Scholar] [CrossRef]
- Moradi, M.; Moradkhani, M.A.; Hosseini, S.H.; Olazar, M. Intelligent Modeling of Photocatalytically Reactive Yellow 84 Azo Dye Removal from Aqueous Solutions by ZnO-Light Expanded Clay Aggregate Nanoparticles. Int. J. Environ. Sci. Technol. 2022, 20, 3009–3022. [Google Scholar] [CrossRef]
- Hosseini, S.A.; Akbari, M. ZnO/Mg-al Layered Double Hydroxides as a Photocatalytic Bleaching of Methylene Orange—A Black Box Modeling by Artificial Neural Network. Bull. Chem. React. Eng. Catal. 2016, 11, 299–315. [Google Scholar] [CrossRef]
- Nedelkovski, V.; Radovanović, M.; Medić, D.; Stanković, S.; Hulka, I.; Tanikić, D.; Antonijević, M. Enhancing Wastewater Treatment Through Python ANN-Guided Optimization of Photocatalysis with Boron-Doped ZnO Synthesized via Mechanochemical Route. Processes 2025, 13, 2240. [Google Scholar] [CrossRef]
- Yusuff, A.S.; Ishola, N.B.; Gbadamosi, A.O.; Thompson-Yusuff, K.A. Pumice-Supported ZnO-Photocatalyzed Degradation of Organic Pollutant in Textile Effluent: Optimization by Response Surface Methodology, Artificial Neural Network, and Adaptive Neural-Fuzzy Inference System. Environ. Sci. Pollut. Res. 2021, 29, 25138–25156. [Google Scholar] [CrossRef] [PubMed]
- Kıranşan, M.; Khataee, A.; Karaca, S.; Sheydaei, M. Artificial Neural Network Modeling of Photocatalytic Removal of a Disperse Dye Using Synthesized of ZnO Nanoparticles on Montmorillonite. Spectrochim. Acta Part A 2015, 140, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, M.; Ghaedi, M.; Zinali, A.; Ghaedi, A.M.; Habibi, M.H. Artificial Neural Network (ANN) Method for Modeling of Sunset Yellow Dye Adsorption Using Zinc Oxide Nanorods Loaded on Activated Carbon: Kinetic and Isotherm Study. Spectrochim. Acta Part A 2014, 134, 1–9. [Google Scholar] [CrossRef]
- Tanasa, D.E.; Piuleac, C.G.; Curteanu, S.; Popovici, E. Photodegradation Process of Eosin Y Using ZnO/SnO2 Nanocomposites as Photocatalysts: Experimental Study and Neural Network Modeling. J. Mater. Sci. 2013, 48, 8029–8040. [Google Scholar] [CrossRef]
- Ayodele, B.V.; Vo, D.N.; Alsaffar, M.A.; Mustapa, S.I. Backpropagation Neural Networks Modelling of Photocatalytic Degradation of Organic Pollutants Using TiO2-Based Photocatalysts. J. Chem. Technol. Biotechnol. 2020, 95, 2739–2749. [Google Scholar] [CrossRef]
- Ghanbary, F.; Modirshahla, N.; Khosravi, M.; Behnajady, M.A. Synthesis of TiO2 Nanoparticles in Different Thermal Conditions and Modeling Its Photocatalytic Activity with Artificial Neural Network. J. Environ. Sci. 2012, 24, 750–756. [Google Scholar] [CrossRef]
- Nair, N.G.; Shah, K.J.; Gandhi, V.G.; Modi, S.; Shukla, A. Response Surface Methodology–Artificial Neural Network (RSM-ANN) Approach to Optimise Photocatalytic Degradation of Levofloxacin Using Graphene Oxide-Doped Titanium Dioxide (GO-TiO2). Water 2025, 17, 2362. [Google Scholar] [CrossRef]
- Chandrika, K.C.; Prabhu, T.N.; Krishna, R.H.; Kiran, R.R.S. Applications of Artificial Neural Network and Box-Behnken Design for Modelling Malachite Green Dye Degradation from Textile Effluents Using TiO2 Photocatalyst. Environ. Eng. Res. 2021, 27, 200553. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Eskandarloo, H.; Eskandarloo, F. Artificial Neural Network Modeling of the Influence of Sol–Gel Synthesis Variables on the Photocatalytic Activity of TiO2 Nanoparticles in the Removal of Acid Red 27. Res. Chem. Intermed. 2014, 41, 6463–6476. [Google Scholar] [CrossRef]


| Characteristic | ZnO | TiO2 |
|---|---|---|
| Efficiency and performance |
| |
| Charge mobility and recombination rate |
| |
| Synthesis and feasibility |
|
|
| Biocompatibillity | ||
| Stability | ||
| Light absorption and visible light activation |
|
| Modification Strategy | Key Examples | Primary Effects & Advantages | Key Challenges/Considerations |
|---|---|---|---|
| Cationic doping | Transition metals (Mn, Co, Ni, Fe), Rare earths (Eu, Nb), Cd, Sn |
| - Potential toxicity (e.g., Cd) |
| - Risk of introducing recombination centers at high doping levels | ||
| |||
| Anionic doping | N, C, S, F, B |
| - Can be complex to control the exact incorporation into the lattice |
| |||
| |||
| Co-doping | e(Al + Mn), (N + Gd) |
| - More complex synthesis process |
| - Requires precise control of dopant ratios | ||
| |||
| Heterojunction formation | Binary: ZnO/TiO2, ZnO/g-C3N4, n-ZnO/p-Cu2O |
| - Synthesis complexity increases |
| Ternary: ZnO/Fe2O3/MnO2 |
| - Interface stability can be an issue | |
| |||
| Morphological Control | Nanorods, nanowires, nanoflowers, etc. |
| - Morphology can be sensitive to synthesis conditions |
|
| Physicochemical Properties | Data/Value |
|---|---|
| Formula | C25H30ClN3 |
| Structural formula | ![]() |
| Molar mass | 407.98 g/mol |
| Number of heavy atoms | 29 |
| Number of aromatic heavy atoms | 12 |
| Fraction Csp3 | 0.24 |
| Number of rotatable bonds | 4 |
| Number of H-bond acceptors | 0 |
| Number of H-bond donors | 0 |
| Molar Refractivity | 128.45 |
| Topological Polar Surface Area | 9.49 Å2 |
| Log Po/w (iLOGP) | −3.09 |
| Log S (ESOL) | −2.88 |
| Solubility | - |
| Class | Soluble |
| Log S (Ali) | −0.52 |
| Catalyst | Synthesis Method | Degradation Efficiency (%) | Experiment Parameters | Illumination Time (min) | Reference |
|---|---|---|---|---|---|
| ZnO | Spray pyrolysis on polyetherimide substrate (PEI) at 250 °C | 86 | 12.5 mg/L CV solution, UV exposure | 210 | [104] |
| ZnO | 78 | 12.5 mg/L CV solution, solar exposure | |||
| Co (1%)-ZnO | 91.3 | 12.5 mg/L CV solution, UV exposure | |||
| Co (1%)-ZnO | 85 | 12.5 mg/L CV solution, solar exposure | |||
| In (1%)-ZnO | 85 | 12.5 mg/L CV solution, UV exposure | |||
| In (1%)-ZnO | 88.5 | 12.5 mg/L CV solution, solar exposure | |||
| ZnO | Co-precipitation (ZnSO4 + NaOH, calcination at 600 °C for 4 h) | 82 | 80 mg of catalyst, 100 mL of 5 mg/L CV solution, UV exposure (25 W Hg lamp at λ = 406–580 nm) | 240 | [105] |
| ZnO/Graphene-oxide (GO) | Solid state reaction (mixing ZnO and GO at a ratio of 1000:3, calcination at 300 °C for 2 h) | 99 | 240 | ||
| ZnO | Co-precipitation (30 min) + calcination (300 °C) | 82 | 100 mg of catalyst, 200 mL of 10 mg/L CV solution, UV lamp (450 W) | 150 | [15] |
| Co-precipitation (60 min) + calcination (300 °C) | 81 | 150 | |||
| Co-precipitation (90 min) + calcination (300 °C) | 99 | 150 | |||
| Co-precipitation (120 min) + calcination (300 °C) | 72 | 150 | |||
| Mn (1%) doped + (1%) polyvinylpyrrolidone (PVP) capsulated ZnO | Co-precipitation (Zn-acetate, NaOH, Mn-acetate), calcination at 300 °C | 99.1 | 0.25 g of catalyst, 100 mL of 10 mg/L CV solution, UV-VIS exposure (Hg lamp), 1500 rpm | 180 | [106] |
| Mn (2%) doped + PVP (1%) capsulated ZnO | 97.5 | 180 | |||
| Undoped ZnO + PVP (1%) | 79.5 | 180 | |||
| Mn (1%) ZnO (re-use) | First usage + washing and recalcination at 300 °C | ~100 | 180 | ||
| ZnO | Commercial (size: <5 μm, purity: ≥99%) | 98 | 25 mg of catalyst, 50 mL of 10−5 M CV solution, UV exposure (365 nm), mixing at 200 rpm | 120 | [6] |
| ZnO | Hydrothermal method | ~88 | 25 mg of catalyst, 25 mL of 20 ppm CV solution, solar exposure | 180 | [107] |
| g-C3N4/ZnO | Melamine pyrolysis and hydrothermal synthesis of heterostructure | 97 | 180 | ||
| 0.5 mol% Cd-ZnO | Polyvinyl alcohol (PVA)—assisted precipitation | 100 | 2 mg of catalyst, 10 mg/L CV solution, pH = 10–12, UV lamp (6 W) | 30 | [87] |
| 0.5 mol% Cd-ZnO | 94 | 2 mg of catalyst, 10 mg/L CV solution, pH = 8, UV lamp (6 W) | 60 | ||
| 1.0 mol% Cd-ZnO | 73.94 | 2 mg of catalyst, 10 mg/L CV solution, UV lamp (6 W) | 90 | ||
| 1.5 mol% Cd-ZnO | 71.01 | 2 mg of catalyst, 10 mg/L CV solution, UV lamp (6 W) | 90 | ||
| 2.0 mol% Cd-ZnO | 77.24 | 2 mg of catalyst, 10 mg/L CV solution, UV lamp (6 W) | 90 | ||
| Pure ZnO | 85.17 | 2 mg of catalyst, 10 mg/L CV solution, UV lamp (6 W) | 90 | ||
| SA-g-poly(AA-co-CA)/ZnO/GO nanocomposite (S3) | Copolymerization (Graft) of sodium-alginate (SA) with acrylic acid/cinnamic acid (AA/CA) + incorporation of ZnO nanorods i graphene oxide (GO—made via Hummers method) layers through sonication | 94 (sunlight) | 0.1 g of catalyst,50 mL of 30 mg L−1 CV solution, pH = 5, 40 °C | 300 | [108] |
| SA-g-poly(AA-co-CA)/ZnO nanocomposite (S2) | 87 (sunlight) | 300 |
| Catalyst | Synthesis Method | Degradation Efficiency (%) | Experiment Parameters | Illumination Time (min) | Reference |
|---|---|---|---|---|---|
| Zn3V2O8 | Co-precipitation | 94.52 | 0.1 g/L of catalyst, 200 mL of 10 ppm CV solution, pH = 6, UV exposure | 150 | [14] |
| SrFeO3/g-C3N4 (4 wt%) | Sintering of mixed components at 500 °C for 2 h | 95 | 10 mg of catalyst, 100 mL of 10 ppm CV solution, VIS exposure (150 W Xe lamp at λ ≥ 422 nm, intensity: 31.2 W/m2) | 96 | [117] |
| TiO2/Montmorillonite | Impregnation method (TiCl4) + calcination at 350 °C | 97.1 | 0.08 g of catalyst, 500 mL of 10−4 mol/L CV solution, UV-A lamp (365 nm, 100 W/m2) | 360 | [118] |
| BiSI/MoS2 | Hydrothermal method (30 wt% BiSi on MoS2 nano-flowers) | 90 | 50 mg of catalyst, 100 mL of 5 ppm CV solution, VIS exposure (250 W Hg lamp) | 250 | [119] |
| BiSI | Hydrothermal method (Bi(NO3)3·5H2O + (NH2)2CS + I2 in ethanole, 160 °C/30 h) | ~30 (approx.) | |||
| MoS2 | Hydrothermal method (Na2MoO4·2H2O + NH2CSNH2 + oksalna kiselina, 180 °C/24 h) | ~20 (approx.) | |||
| No catalyst (photolysis only) | / | <5 | 100 mL of 5 ppm CV solution, VIS exposure | ||
| TiO2 | Commercial (purity: ≥ 99%) | 95 | 25 mg of catalyst, 50 mL of 10−5 M CV solution, UV exposure (365 nm), mixing at 200 rpm | 120 | [6] |
| g-C3N4 | Melamine pyrolysis | ~88 | 25 mg of catalyst, 25 mL of 20 ppm CV solution, solar exposure | 180 | [107] |
| SA-g-poly(AA-co-CA) (S1) | Copolymerization (Graft) SA with AA/CA without photocatalyst | 84 (in dark; adsorption, without photocatalysis) | 0.1 g of catalyst,50 mL of 30 mg L−1 CV solution, pH = 5, 40 °C | 300 | [108] |
| Ce2(MoO4)3-CTAB | Microemulsion with cetyltrimethylammonium bromide (cathionic surfactant), n-butanol (co-surfactant), isooctane (oil phase) | 89 | 0.04 g of catalyst, 100 mL of 5 ppm CV solution, pH = 6, room temperature | 300 | [120] |
| Ce2(MoO4)3-TX-100 | Microemulsion with TX-100 (non-ionic surfactant), 2-propanol (co-surfactant), cyclohexane (oil phase) | 89 | |||
| Fe3O4/SnO2 (FS3—1:1) | Hydrothermal method (at 200 °C for 8 h) with FeCl2 and SnCl2·2H2O in ratio of 1:1, calcination at 450 °C | 83 | 500 mg of catalyst/500 mL of 2 × 10−5 mol/L CV solution, pH = 6, 30–33 °C, UV exposure (365 nm) | 180 | [121] |
| Fe3O4/SnO2 (FS1—1:4) | Hydrothermal method—higher SnO2 content (1:4) | 83 | |||
| Fe3O4/SnO2 (FS2—4:1) | Hydrothermal method—higher Fe3O4 content (4:1) | 78 | |||
| Pure Fe3O4 | Hydrothermal method (180 °C, 12 h) iz FeCl2 i NaOH | 76 | |||
| Pure SnO2 | Hydrothermal method—SnCl2·2H2O and NaOH | 81 | |||
| Bismuth ferrite doped with gadolinium- Gd(0):BFO | Auto-combustion | 35.8 | 0.2 g of catalyst, 20 ppm CV solution, Hg lamp (250 W) | 180 | [122] |
| Gd(2):BFO | 84.5 | ||||
| Gd(5):BFO | 72 | ||||
| Gd(10):BFO | 61 | ||||
| 3D MnO2 nanofiber net | Hydrothermal method (180 °C, 24 h) | 97 | 15 mg of catalyst, 15 mL of 40 ppm CV solution; UV exposure (Hg lamp, λ = 254 nm; 160 W) | 90 | [123] |
| 3D MnO2 nanofiber net | 99 | 40 mg of catalyst, 40 mL of 40 ppm CV solution; Sunlight exposure + H2O2 (0.04 mL) | 60 | ||
| 3D MnO2 nanofiber net | 84 | 15 mg of catalyst, 15 mL of 40 ppm CV solution, UV exposure (Hg lamp, λ = 254 nm; 160 W), pH = 3 | 280 | ||
| MnFe2O4 | Co-precipitation (MnCl2·4H2O i FeCl3 at pH 10–11, at 80 °C) | 25.13 | 1 g/L of catalyst, 20 mL of 10 ppm CV solution, pH = 6, sunlight exposure (75 W/cm2) | 120 | [124] |
| g-C3N4 | Thermal decomposition of melamine at 550 °C for 3 sata | 58.11 | |||
| g-C3N4@MnFe2O4 (80:20 wt%) | Thermal decomposition of melamine + co-precipitation (MnFe2O4) | 98.42 | |||
| MoS2/ZnS | Hydrothermal method | 98.5 | 0.5 g/L of catalyst, 10 mg/L CV solution, pH = 7, VIS exposure (Xenon lamp, 300W), 25 °C, mixing at 300 rpm | 40 | [125] |
| MoS2 | 60 | ||||
| ZnS | 49 | ||||
| Ag3PO4/Bi2WO6-0.3 | Hydrothermal method + mixing (Bi2WO6 nanoflakes + Ag3PO4 nanospheres) | ~100 | 200 mg of catalyst, 220 mL of 50 ppm CV solution, 25 °C, Xe lamp (λ > 410 nm, 400 W) | 120 | [30] |
| α-ZrP | Precipitation of ZrOCl2·8H2O using H3PO4 (at 650 rpm, 80 °C, HF controled pH) | 41.3 | 0.4 g/L of catalyst, 50 mL of 10 ppm CV solution, pH: 7, sunlight exposure | 90 | [126] |
| g-C3N4 | Thermal decomposition of melamine at 550 °C for 3 h | 64.7 | |||
| α-ZrP/g-C3N4 (2:1) | Direct precipitation of α-ZrP at g-C3N4 with mixing at 80 °C for 2 h | 97.8 | |||
| TDB (TiO2/raw diatomite) | Solvothermal-hydrolysis sol–gel method (TiCl4 + sirov dijatomit, 70 °C/24h, kalcinisan na 350 °C) | 99.996 | 150 mL of 25 ppm CV solution, pH = 10, room temperature, UV exposure (365 nm) | 210 | [127] |
| TDS (TiO2/acid treated diatomite) | Solvothermal-hydrolysis sol–gel method (TiCl4 + acid treated diatomite, 70 °C/24 h, calcined at 350 °C) | 99.96 | 390 | ||
| TiO2 | Solvothermal-hydrolysis sol–gel method (only TiCl4, 70 °C/24 h, calcined at 350 °C) | 99.17 | 735 |
| Catalyst | Pollutant | Illumination | Degradation Efficiency (%) | Most influential Parameter | ANN Architecture | R2 | Reference |
|---|---|---|---|---|---|---|---|
| ZnO | Crystal violet | Without illumination (adsorption only) | 99.82% | - | 4-4-1 | 0.9998 | [148] |
| ZnO–NP–AC and Na, K-doped ZnO–NP–AC | Crystal violet | Without illumination (adsorption only) | 99.1% | - | 5-15-1 | 0.984 | [149] |
| Cu-doped ZnO | Reactive black 5 | UV | - | Dye concentration | 4-6-1 | 0.94 | [150] |
| ZnO, and TiO2-ZnO—synthesized via the impregnation method with the addition of 1.5% and 2.5% of Fe | Maxilon blue 5G | UV | 100% | Dye concentration | 3-3-1 | 0.99 | [151] |
| Ni-doped ZnO | Acid orange 7 | UV | 93% | - | 4-7-1 | 0.991 | [152] |
| ZnO on light expanded clay aggregate | Reactive Yellow 84 | UV | - | Time (for the first 30 min); UV intensity/lamp power (after 30 min) | 5-9-9-1 | 0.9708 | [153] |
| ZnO/Mg-Al layered double hydroxide | Methyl orange | UV | 91.21% | Calcination temperature | 4-5-1 | 0.968 | [154] |
| B-doped ZnO | Methyl orange | UV | 99.94% | - | 4-14-1 | 0.991 | [155] |
| PUM-ZnO (pumice with zinc oxide); synthesised via the impregnation method with a calcination (900 °C, 4 h) | Organic pollutants in textile effluent | Sunlight | 99.46% | - | 3-10-1 | 0.993 | [156] |
| ZnO/MMT (zinc oxide with montmorillonite); ZnO synthesized on the surface of montmorillonite (MMT) with the aid of a surfactant | Disperse red 54 | UV-C | 99.92% | Catalyst dosage | 3-10-1 | 0.9998 | [157] |
| ZnO/AC; ZnO synthesized on activated carbon (AC) through alkaline precipitation and post-thermal treatment | Sunset yellow | Without illumination (adsorption only) | 98.81% | Catalyst dosage | 3-6-1 | 0.9988 | [158] |
| ZnO and ZnO/SnO2 | Eosin Y | UV | - | Reaction time | 6-12-18-1 | 0.9993 | [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nedelkovski, V.; Radovanović, M.; Antonijević, M. Advances in Photocatalytic Degradation of Crystal Violet Using ZnO-Based Nanomaterials and Optimization Possibilities: A Review. ChemEngineering 2025, 9, 120. https://doi.org/10.3390/chemengineering9060120
Nedelkovski V, Radovanović M, Antonijević M. Advances in Photocatalytic Degradation of Crystal Violet Using ZnO-Based Nanomaterials and Optimization Possibilities: A Review. ChemEngineering. 2025; 9(6):120. https://doi.org/10.3390/chemengineering9060120
Chicago/Turabian StyleNedelkovski, Vladan, Milan Radovanović, and Milan Antonijević. 2025. "Advances in Photocatalytic Degradation of Crystal Violet Using ZnO-Based Nanomaterials and Optimization Possibilities: A Review" ChemEngineering 9, no. 6: 120. https://doi.org/10.3390/chemengineering9060120
APA StyleNedelkovski, V., Radovanović, M., & Antonijević, M. (2025). Advances in Photocatalytic Degradation of Crystal Violet Using ZnO-Based Nanomaterials and Optimization Possibilities: A Review. ChemEngineering, 9(6), 120. https://doi.org/10.3390/chemengineering9060120


