The Potential Risk of Electronic Waste Disposal into Aquatic Media: The Case of Personal Computer Motherboards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. PC Motherboards, Chemical and Reagents
2.3. PCMBs Handling and Experimental Procedure
2.4. Characterization of Leachates
2.5. Algal Bioassays
2.6. Mussel Collection and Handling
2.6.1. Mussel Exposure
2.6.2. Estimation of Lysosomal Membrane Stability and MN Frequency in Mussel Hemocytes (NRRT and MN Assays)
2.6.3. Determination of Superoxide Anions (•O2−) in Mussel Hemocytes
2.6.4. Determination of NO in Mussel Hemocytes
2.6.5. Evaluation of MDA Content in Mussel Hemolymph
2.7. Cytokinesis Block Micronucleus (CBMN) Assay in Human Lymphocytes
2.8. Statistical Analysis
3. Results
3.1. Characterization of Leachates
3.2. Effects of CPBM Leaching on Freshwater and Saltwater Algal Species
3.3. CPBM Leaching Mediated Effects on Mussels
3.4. CPBM Leaching Mediated Effects on Human Lymphocytes (CBMN Assay)
4. Discussion
4.1. PCMB Chemical Substances in Leaching Media
4.2. Biological Effects of PCMB Leachates
4.2.1. Effects on Algal Species Growth and Survival
4.2.2. Cellular and Oxidative Effects on Hemolymph/Hemocytes of Mussel Mytilus Galloprovincialis
4.2.3. Cytogenotoxic Effects on Mussel Hemocytes and Human Lymphocytes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. The Sustainable Development Goals 2018 Report; United Nations: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.R.; Adeyi, O.; Arnold, R.; Basu, N.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; et al. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [Green Version]
- UNEP. E-Waste. Volume I: Inventory Assessment Manual; Division of Technology, Industry, and Economics, International Environmental Technology Center, Osaka/Shiga, United Nations Environment Program. 2007. Available online: https://wedocs.unep.org/handle/20.500.11822/7857 (accessed on 11 September 2016).
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. The Global E-Waste Monitor—2017; United Nations University (UNU): Bonn, Germany; International Telecommunication Union (ITU): Geneva, Switzerland; International Solid Waste Association (ISWA): Vienna, Austria, 2017; pp. 978–992, ISBN Electronic Version. [Google Scholar]
- UNEP. Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal; United Nations Environment Programme: Nairobi, Kenya, 1992; Available online: http://www.basel.int/Portals/4/Basel%20Convention/docs/text/BaselConventionText-e.pdf (accessed on 14 October 2014).
- Step Initiative. Solving the E-Waste Problem (Step) White Paper, One Global Definition of E-Waste; Step Initiative: Bonn, Germany, 2014; Available online: http://www.step-initiative.org/files/step/_documents/StEP_WP_One GlobalDefinitionofE-waste_20140603_amended.pdf (accessed on 9 May 2017).
- Ladou, J.; Lovegrove, S. Export of electronics equipment waste. Int. J. Occup. Environ. Health 2008, 14, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Achal, V. Environmental and health impacts due to e-waste disposal in China—A review. Sci. Total Environ. 2020, 139745. [Google Scholar] [CrossRef] [PubMed]
- Needhidasan, S.; Agarwal, S.G. A review on properties evaluation of bituminous addition with E-waste plastic powder. Mater. Today Proc. 2020, 22, 1218–1222. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency, Office of Resource Conservation and Recovery. Electronic Waste in the United States through 2009; EPA 530-R-11-002; EPA: Washington, DC, USA, 2011. [Google Scholar]
- Freitas, R.; Cardoso, C.E.; Costa, S.; Morais, T.; Moleiro, P.; Lima, A.F.; Soares, M.; Figueiredo, S.; Agueda, T.L.; Rocha, P.; et al. New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium. Environ. Pollut. 2020, 260, 113859. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H.; Wu, S.C.; Deng, W.J.; Yu, X.Z.; Luo, Q.; Leung, A.O.W.; Wong, A.S. Export of toxic chemicals–a review of the case of uncontrolled electronic-waste recycling. Environ. Pollut. 2007, 149, 131–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pradhan, J.K.; Kumar, S. Informal e-waste recycling: Environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India. Environ. Sci. Pollut. Res. 2014, 21, 7913–7928. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, A.K.; Zeng, X.; Li, J. Environmental pollution of electronic waste recycling in India: A critical review. Environ. Pollut. 2014, 211, 259–270. [Google Scholar] [CrossRef]
- Leung, A.; Cai, Z.W.; Wong, M.H. Environmental contamination from electronic waste recycling at Guiyu, southeast China. J. Mater. Cycl. Waste 2006, 8, 21–33. [Google Scholar] [CrossRef]
- Leung, A.O.W.; Luksemburg, W.; Wong, A.; Wong, M. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in Southeast China. Environ. Sci. Technol. 2007, 41, 2730–2737. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.O.W.; Duzgoren-Aydin, N.S.; Cheung, K.C.; Wong, M.H. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ. Sci. Technol. 2008, 42, 2674–2680. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Luo, X.-J.; Huang, L.-Q.; Tao, L.; Zeng, Y.-H.; Mai, B.-X. Halogenated organic pollutants in aquatic, amphibious, and terrestrial organisms from an e-waste site: Habitat-dependent accumulation and maternal transfer in watersnake. Environ. Pollut. 2018, 241, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Robinson, B.H. E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 2009, 408, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Kida, A. Elemental analysis methods including rare metals in used products. JSMCWM 2010. Available online: http://jsmcwm.or.jp/recycle/4KidaNIES.pdf (accessed on 9 July 2010). (In Japanese).
- Almeida, C.; Grosselli, M.; González, P.; Martínez, D.; Gil, R. Batch leaching tests of motherboards to assess environmental contamination by bromine, platinum group elements and other selected heavy metals. Chemosphere 2016, 144, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Kohl, C.A.; Gomes, L.P. Physical and chemical characterization and recycling potential of desktop computer waste, without screen. J. Clean Prod. 2018, 184, 1041–1051. [Google Scholar] [CrossRef]
- Habib Al Razi, K.M. Resourceful recycling process of waste desktop computers: A review study. Resour. Conserv. Recycl. 2016, 110, 30–47. [Google Scholar] [CrossRef]
- Bao, S.; Pan, B.; Wang, L.; Cheng, Z.; Liu, X.; Zhou, Z.; Nie, X. Adverse effects in Daphnia magna exposed to e-waste leachate: Assessment based on life trait changes and responses of detoxification-related genes. Environ. Res. 2020, 188, 109821. [Google Scholar] [CrossRef] [PubMed]
- Lincoln, J.D.; Ogunseitan, O.A.; Shapiro, A.A.; Saphores, J.-D.M. Leaching assessments of hazardous materials in cellular telephones. Environ. Sci. Technol. 2007, 41, 2572–2578. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Method 1311: Toxicity Characteristic Leaching Procedure (TCLP). Available online: http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/1311.pdf (accessed on 11 April 2011).
- United States Environmental Protection Agency (USEPA). Method 1311: Toxicity Characteristic Leaching Procedure, SW-846 Test Methods for Evaluating Solid Wastes. 1992. Available online: http://www.epa.gov/epawaste/hazard/testmethods/sw846/online/index.htm (accessed on 9 July 1992).
- United States Environmental Protection Agency (USEPA). Identification and Listing of Hazardous Waste; The Code of Federal Regulations; Office of Federal Register, National Archives and Records Administration: Washington, DC, USA, 1999; Title 40, Chapter 1, Part 261. [Google Scholar]
- United States Environmental Protection Agency (USEPA). Method 1312: Synthetic Precipitation Leaching Procedure, SW-846 Test Methods for Evaluating Solid Wastes. 1994. Available online: http://www.epa.gov/epawaste/hazard/testmethods/sw846/online/index.htm (accessed on 1 September 1994).
- Puckett, J.; Smith, T.C. Exporting Harm: The High-Tech Trashing of Asia; Basel Action Network: Seattle, WA, USA, 2002; Available online: http://www.ban.org/E-waste/technotrashfinalcomp.pdf (accessed on 1 March 2006).
- Lithner, D.; Halling, M.; Dave, G. Toxicity of electronic waste leachates to Daphnia magna: Screening and toxicity identification evaluation of different products, components, and materials. Arch. Environ. Contam. Toxicol. 2012, 62, 579–588. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO) 17294-1: 2004. Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 1: General Guidelines. Available online: https://www.iso.org/standard/32957.html (accessed on 1 September 2004).
- International Organization for Standardization (ISO) 17294-1: 2016. Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes. Available online: https://www.iso.org/standard/62962.html (accessed on 1 September 2016).
- Smith, F.; Doeschot, P. Use of the SPR-IDA Reagent for the Determination of Trace Metals in a Coastal Seawater Reference Material; APPLICATION NOTE: SPR-IDA-001; Teledyne Technologies, Inc.: Omaha, NE, USA, 2014; Available online: https://www.teledynecetac.com/products/nebulizers/spr-ida (accessed on 9 July 2021).
- Tsarpali, V.; Harbi, K.; Dailianis, S. Physiological response of the green microalgae Dunaliella tertiolecta against imidazolium ionic liquids [bmim][BF4] and/or [omim][BF4]: The role of salinity on the observed effects. J. Appl. Phycol. 2016, 28, 979–990. [Google Scholar] [CrossRef]
- Kloukinioti, M.; Politi, A.; Kalamaras, G.; Dailianis, S. Feeding regimes modulate biomarkers responsiveness in mussels treated with diclofenac. Mar. Environ. Res. 2020, 156, 104919. [Google Scholar] [CrossRef]
- Organization for the Economic Cooperation and Development. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test; OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, France, 2011. [Google Scholar] [CrossRef] [Green Version]
- Tsarpali, V.; Belavgeni, A.; Dailianis, S. Investigation of toxic effects of imidazolium ionic liquids, [bmim][BF4] and [omim][BF4], on marine mussel Mytilus galloprovincialis with or without the presence of conventional solvents, such as acetone. Aquat. Toxicol. 2015, 164, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Toufexi, E.; Tsarpali, V.; Efthimiou, I.; Vidali, M.S.; Vlastos, D.; Dailianis, S. Environmental and human risk assessment of landfill leachate: An integrated approach with the use of cytotoxic and genotoxic stress indices in mussel and human cells. J. Hazard. Mater. 2013, 260, 593–601. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, C.; Lacroix, C.; Paul-Pont, I.; Le Grand, F.; Albentosa, M.; Bellas, J.; Viñas, L.; Campillo, J.A.; Hegaret, H.; Soudant, P. Effect of diet quality on mussel biomarker responses to pollutants. Aquat. Toxicol. 2016, 177, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Politakis, N.; Belavgeni, A.; Efthimiou, I.; Charalampous, N.; Kourkouta, C.; Dailianis, S. The impact of expired commercial drugs on non-target marine species: A case study with the use of a battery of biomarkers in hemocytes of mussels. Ecotoxicol. Environ. Saf. 2018, 148, 160–168. [Google Scholar] [CrossRef] [PubMed]
- UNEP/Ramoge. Manual on the Biomarkers Recommended for the MED POL Biomonitoring Programme; UNEP: Athens, Greece, 1999. [Google Scholar]
- Pipe, R.K.; Coles, J.A.; Carissan, F.M.M.; Ramanathan, K. Copper induced immunomodulation in the marine mussel, Mytilus edulis. Aquat. Toxicol. 1999, 46, 43–54. [Google Scholar] [CrossRef]
- Grintzalis, K.; Georgiou, C.D.; Schneider, Y.J. An accurate and sensitive Coomassie brilliant blue G-250-based assay for protein determination. Anal. Biochem. 2015, 480, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S. Analysis of nitrate, nitrite, and (15N) nitrate in biological fluids. Anal. Biochem. 1982, 126, 131–138. [Google Scholar] [CrossRef]
- Tavazzi, B.; Di Pierro, D.; Amorini, A.M.; Fazzina, G.; Tuttobene, M.; Giardina, B.; Lazzarino, G. Energy metabolism and lipid peroxidation of human erythrocytes as a function of increased oxidative stress. Eur. J. Biochem. 2000, 267, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Vlahogianni, T.H.; Valavanidis, A. Heavy-metal effects on lipid peroxidation and antioxidant defence enzymes in mussels Mytilus galloprovincialis. Chem. Ecol. 2007, 23, 361–371. [Google Scholar]
- Wills, E.D. Lipid peroxide formation in microsomes. Biochem J. 1969, 113, 315–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zegura, B.; Heath, E.; Cernoša, A.; Filipic, M. Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 2009, 75, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xiang, L.; Luan, H.; Wei, Y.; Ren, H.; Chen, P. The health concern of polychlorinated biphenyls (PCBs) in a notorious e-waste recycling site. Ecotoxicol. Environ. Saf. 2019, 186, 109817. [Google Scholar] [CrossRef] [PubMed]
- Charalampous, N.; Kindou, A.; Vlastos, D.; Tsarpali, V.; Antonopoulou, M.; Konstantinou, I.; Dailianis, S. A multidisciplinary assessment of river surface water quality in areas heavily influenced by human activities. Arch. Environ. Contam. Toxicol. 2015, 69, 208–222. [Google Scholar] [CrossRef]
- DeFu, H.; RuiRui, C.; EnHui, Z.; Na, C.; Bo, Y.; HuaHong, S.; MinSheng, H. Toxicity bioassays for water from black-odor rivers in Wenzhou, China. Environ. Sci. Pollut. Res. 2015, 22, 1731–1741. [Google Scholar] [CrossRef]
- Vlastos, D.; Dailianis, S.; Kindou, A.; Antonopoulou, M.; Gianni, A.; Zacharias, I. Assessing the environmental/human risk of potential genotoxicants in water samples from lacustrine ecosystems: The case of lakes in Western Greece. Sci. Total Environ. 2017, 574, 246–252. [Google Scholar] [CrossRef]
- Organization for the Economic Cooperation and Development (OECD). Test No. 487: In Vitro Mammalian Cell Micronucleus Test; OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Vlastos, D.; Antonopoulou, M.; Lavranou, A.; Efthimiou, I.; Dailianis, S.; Hela, D.; Lambropoulou, D.; Paschalidou, A.K.; Kassomenos, P. Assessment of the toxic potential of rainwater precipitation: First evidence from a case study in three Greek cities. Sci. Total Environ. 2019, 648, 1323–1332. [Google Scholar] [CrossRef]
- Choi, K.-I.; Lee, S.-H.; Osako, M. Leaching of brominated flame retardants from TV housing plastics in the presence of dissolved humic matter. Chemosphere 2009, 74, 460–466. [Google Scholar] [CrossRef]
- Dillon, P.J.; Molot, L.A. Effect of landscape form on export of dissolved organic carbon, iron, and phosphorus from forested stream catchments. Water Resour. Res. 1997, 33, 2591–2600. [Google Scholar] [CrossRef]
- Health Canada. Guidelines for Drinking Water Quality; Minister of Public Works and Government Services Canada: Ottawa, ON, Canada, 1996. [Google Scholar]
- Keith, A.; Keesling, K.; Fitzwater, K.K.; Pitchel, J.; Houy, D. Assessment of Pb, Cd, Cr and Ag leaching from electronics waste using four extraction methods. J. Environ. Sci. Health A 2008, 43, 1717–1724. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Richardson, J.B.; Niu, X.; Jackson, O.J.; Laster, J.D.; Walker, A.K. Dynamic leaching test of personal computer components. J. Hazard. Mater. 2009, 171, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.C.; Townsend, T.G. Leaching of lead from computer printed wire boards and cathode ray tubes by municipal solid waste landfill leachates. Environ. Sci. Technol. 2003, 37, 4778–4784. [Google Scholar] [CrossRef] [PubMed]
- Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Richardson, J.; Walker, A.; Yuan, P. TCLP heavy metal leaching of personal computer components. J. Environ. Eng. 2006, 132, 497–504. [Google Scholar] [CrossRef]
- Musson, S.; Jang, Y.; Townsend, T.; Chung, I. Characterization of lead leachability from cathode ray tubes using the toxicity characteristic leaching procedure. Environ. Sci. Technol. 2000, 34, 4376–4381. [Google Scholar] [CrossRef]
- Dagan, R.; Dubey, B.; Bitton, G.; Townsend, T. Aquatic toxicity of leachates generated from electronic devices. Arch. Environ. Contam. Toxicol. 2007, 53, 168–173. [Google Scholar] [CrossRef]
- Dailianis, S. Environmental impact of anthropogenic activities: The use of mussels as a reliable tool for monitoring marine pollution. In Mussels: Anatomy, Habitat and Environmental Impact; McGevin, L.E., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 43–72. [Google Scholar]
- American Society for Testing and Materials. Standard Guide for Conducting Static 96-h Toxicity Tests with Microalgae; ASTM: West Conshohocken, PA, USA, 1996; Volume 11.05. [Google Scholar]
- Tsiaka, P.; Tsarpali, V.; Ntaikou, I.; Kostopoulou, M.N.; Lyberatos, G.; Dailianis, S. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 2013, 22, 1208–1220. [Google Scholar] [CrossRef] [PubMed]
- Harbi, K.; Makridis, P.; Koukoumis, C.; Papadionysiou, M.; Vgenis, T.; Kornaros, M.; Ntaikou, I.; Giokas, S.; Dailianis, S. Evaluation of a battery of marine speciesbased bioassays against raw and treated municipal wastewaters. J. Hazard. Mater. 2017, 321, 537–546. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; He, Y.; Li, H. Aquatic toxicity of heavy metal-containing wastewater effluent treated using vertical flow constructed wetlands. Sci. Total Environ. 2020, 727, 138616. [Google Scholar] [CrossRef]
- Cáceres, T.; Megharaj, M.; Naidu, R. Toxicity of fenamiphos and its metabolites to the Cladoceran Daphnia carinata: The influence of microbial degradation in natural waters. Chemosphere 2007, 66, 1264–1269. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, X.K.; Wei, J. Toxicity of the xenoestrogen nonylphenol and its biodegradation by the alga Cyclotella caspia. J. Environ. Sci. 2013, 25, 1662–1671. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, J.; Yao, T.; Zhang, Y.; Zhou, W.; Chu, H. The influence of four pharmaceuticals on Chlorella pyrenoidosa culture. Sci. Rep. 2019, 9, 1624. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.Y.; Li, Y.B.; Wang, X.L.; Liang, S.K.; Zhu, C.J.; Han, X.R. The influence of biosurfactant on the growth of Prorocentrum donghaiense. China Environ. Sci. 2004, 6, 692–696. [Google Scholar]
- Charalampous, N.; Grammatikopoulos, G.; Kourmentza, C.; Kornaros, M.; Dailianis, S. Effects of Burkholderia thailandensis rhamnolipids on the unicellular algae Dunaliella tertiolecta. Ecotoxicol. Environ. Saf. 2019, 182, 109413. [Google Scholar] [CrossRef]
- Tsarpali, V.; Dailianis, S. Investigation of landfill leachate toxic potency: An integrated approach with the use of stress indices in tissues of mussels. Aquat. Toxicol. 2012, 124–125, 58–65. [Google Scholar] [CrossRef]
- Danellakis, D.; Ntaikou, I.; Kornaros, M.; Dailianis, S. Olive oil mill wastewater toxicity in the marine environment: Alterations of stress-indices in tissues of mussel Mytilus galloprovincialis. Aquat. Toxicol. 2011, 101, 358–366. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.C. Bivalves. In Invertebrates Blood Cells; Ratcliffe, N.A., Rowley, A.F., Eds.; Academic Press: London, UK, 2001; pp. 233–300. [Google Scholar]
- Dailianis, S.; Domouhtsidou, G.P.; Raftopoulou, E.; Kaloyianni, M.; Dimitriadis, V.K. Evaluation of neutral red retention assay, micronucleus test, acetylcholinesterase activity and a signal transduction molecule (cAMP) in tissues of Mytilus galloprovincialis (L.) in pollution monitoring. Mar. Environ. Res. 2003, 56, 443–470. [Google Scholar] [CrossRef]
- Alvarez, M.R.; Friedl, F.E. Effects of fungicide on in vitro hemocytes viability, phagocytosis and attachment in the American oyster, Crassostrea virginica. Aquaculture 1992, 107, 135–140. [Google Scholar] [CrossRef]
- Frazzoli, C.; Orisakwe, O.E.; Dragone, R.; Mantovani, A. Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios. Environ. Impact Assess. Rev. 2010, 30, 388–399. [Google Scholar] [CrossRef]
- Liu, Q.; Cao, J.; Li, K.Q.; Miao, X.H.; Li, G.; Fan, F.Y.; Zhao, Y.C. Chromosomal aberrations and DNA damage in human populations exposed to the processing of electronics waste. Environ. Sci. Pollut. Res. 2009, 16, 329–338. [Google Scholar] [CrossRef]
- Dailianis, S. Production of superoxides and nitric oxide generation in haemocytes of mussel Mytilus galloprovincialis (Lmk.) after exposure to cadmium: A possible involvement of Na+/H+ exchanger in the induction of cadmium toxic effects. Fish. Shellfish Immunol. 2009, 27, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kaur, B.; Kalina, I.; Popov, T.A.; Georgieva, T.; Garte, S.; Binkova, B.; Sram, R.J.; Taioli, E.; Farmer, P.B. Effects of environmental air pollution on endogenous oxidative DNA damage in humans. Mutat. Res. 2007, 620, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Grant, K.; Goldizen, F.C.; Sly, P.D.; Brune, M.N.; Neira, M.; van den Berg, M. Health consequences of exposure to e-waste: A systematic review. Lancet Glob. Health 2013, 1, E350–E361. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.; Yang, F.X.; Gong, Y.; Zhang, X.L.; Hui, Y.; Li, J.G.; Liu, A.L.; Wu, Y.N.; Lu, W.Q.; Xu, Y. Elevated levels of urinary 8-hydroxy-20-deoxyguanosine in male electrical and electronic equipment dismantling workers exposed to high concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans, poly- brominated diphenyl ethers, and polychlorinated biphenyls. Environ. Sci. Technol. 2008, 42, 4202–4207. [Google Scholar] [PubMed]
- Perkins, D.N.; Drisse, M.B.; Nxele, T.; Sly, P.D. E-waste: A global hazard. Ann. Glob. Health 2014, 80, 286–295. [Google Scholar] [CrossRef]
- Uba, B.O.; Okoye, E.L.; Nweke, B.G.; Ibeneme, C.P. Evaluation of the Ecotoxicity Potentials of E-Waste Using Selenastrum capricornutum (Microalga), Eisenia fetida (Earth Worm) and Allium cepa (Onion Bulb) as Bioindicators. Asian J. Biotechnol. Genet. Eng. 2020, 3, 20–31. [Google Scholar]
- Reckhow, D.A.; Singer, P.C. Chlorination by-products in drinking waters: From formation potentials to finished water concentrations. J. Am. Water Work Assoc. 1990, 82, 173–180. [Google Scholar] [CrossRef]
Ions | DW | PCMB-DW | ASW | PCMB-ASW |
---|---|---|---|---|
Cl− | 0.119 ± 0.02 a | 19.57 ± 0.62 a | 33392 ± 758.1 | 33405 ± 568.2 |
Br− | N.D. b | 1.29 ± 0.08 b | N.D. c | 1.97 ± 0.27 c |
TOC | 0.74 ± 0.05 d | 17.86 ± 0.81 d | 1.13 ± 0.14 e | 10.54 ± 0.52 e |
Elements | ||||
Al | <LOQ | <LOQ | <LOQ | 525 ± 109.2 |
P | <LOQ | 8.00 ± 2 | <LOQ | <LOQ |
Cr | <LOQ | <LOQ | <LOQ | 0.23 ± 0.01 |
Ni | <LOQ | 11.9 ± 0.2 | <LOQ | 10.91 ± 0.56 |
Cu | <LOQ | 1.7 ± 0.1 | <LOQ | <LOQ |
Zn | <LOQ | 668.6 ± 6.1 | <LOQ | <LOQ |
Sn | <LOQ | 7.82 ± 0.13 | <LOQ | 3.05 ± 0.41 |
Duration Period (h) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
24 | 48 | 72 | 96 | 168 | 240 | |||||||
Control | CPBM | Control | CPBM | Control | CPBM | Control | CPBM | Control | CPBM | Control | CPBM | |
Chlorococcum sp. | ||||||||||||
μ | 1.25 ± 0.07 | 1.14 ± 0.06 | 1.22 ± 0.03 a | 1.11 ± 0.02 a | 1.11 ± 0.06 | 1.02 ± 0.07 | 0.97 ± 0.04 | 0.94 ± 0.01 | 0.54 ± 0.01 | 0.55 ± 0.07 | 0.44 ± 0.01 | 0.44 ± 0.01 |
% I | 9.03 ± 4.52 | 8.89 ± 1.57 | 8.57± 0.59 | 3.3 ± 1.09 | −2.37± 1.28 | −0.34± 0.1 | ||||||
Scenedesmus rubescens | ||||||||||||
μ | 1.32 ± 0.1 a | 1.04 ± 0.08 a | 1.60 ± 0.01 b | 1.56 ± 0.01 b | 1.26 ± 0.01 | 1.27 ± 0.01 | 1.15 ± 0.03 | 1.15 ± 0.04 | 0.66 ± 0.04 c | 0.52 ± 0.03 c | 0.57 ± 0.01 d | 0.41 ± 0.05 d |
% I | 21.2 ± 6.31 | 2.31 ± 0.49 | −1.02 ± 1.02 | 0 ± 0.31 | 20.8 ± 0.47 | 27.43 ± 0.84 | ||||||
Dunaliella tertiolecta | ||||||||||||
μ | 1.81 ± 0.43 a | 1.23 ± 0.03 a | 1.54 ± 0.01 b | 1.16 ± 0.06 b | 1.3 ±0.02 c | 1.16 ± 0.01 c | 1.06 ± 0.01 d | 0.9 ±0.08 d | 0.56 ± 0.01 e | 0.49 ± 0.02 e | 0.49 ± 0.04 | 0.46 ± 0.06 |
% I | 32 ± 1.91 | 24.9 ± 3.98 | 10.95 ± 0.56 | 10.88 ± 7.91 | 13.34 ± 2.28 | 6.13 ± 1.19 | ||||||
Tisochrysis lutea | ||||||||||||
μ | 2.08 ± 0.01 | 2.19 ± 0.21 | 1.41 ± 0.06 | 1.42 ± 0.14 | 1.28 ± 0.01 a | 1.21 ± 0.01 a | 1.13 ± 0.01 b | 0.69 ± 0.02 b | 0.74 ± 0.03 c | 0.69 ± 0.01 c | 0.64 ± 0.06 | 0.59 ± 0.08 |
% I | −5.1 ± 10.15 | −0.44 ± 10.13 | 5.53 ± 0.12 | 7.50 ± 2.26 | 7.50 ± 2.26 | 7.85 ± 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalamaras, G.; Kloukinioti, M.; Antonopoulou, M.; Ntaikou, I.; Vlastos, D.; Eleftherianos, A.; Dailianis, S. The Potential Risk of Electronic Waste Disposal into Aquatic Media: The Case of Personal Computer Motherboards. Toxics 2021, 9, 166. https://doi.org/10.3390/toxics9070166
Kalamaras G, Kloukinioti M, Antonopoulou M, Ntaikou I, Vlastos D, Eleftherianos A, Dailianis S. The Potential Risk of Electronic Waste Disposal into Aquatic Media: The Case of Personal Computer Motherboards. Toxics. 2021; 9(7):166. https://doi.org/10.3390/toxics9070166
Chicago/Turabian StyleKalamaras, Georgios, Maria Kloukinioti, Maria Antonopoulou, Ioanna Ntaikou, Dimitris Vlastos, Antonios Eleftherianos, and Stefanos Dailianis. 2021. "The Potential Risk of Electronic Waste Disposal into Aquatic Media: The Case of Personal Computer Motherboards" Toxics 9, no. 7: 166. https://doi.org/10.3390/toxics9070166