Occurrence, Ecological and Health Risk Assessment of Phthalate Esters in Surface Water of U-Tapao Canal, Southern, Thailand
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Site and Sampling
2.2. Chemicals and Materials
2.3. PAEs Pretreatment in Water
2.4. Instrumental Analysis by GC-MS
2.5. Quality Assurance and Quality Control
2.6. Ecological Risk Assessment
2.7. Health Risk Assessment
- (i)
- Daily ingestion of drinking water from the canal.
- (ii)
- Dermal contact through bathing with water from the canal.
- Risk = potential cancer risk due to oral or dermal contact to PAEs contaminated water;
- LADD = lifetime average daily dose exposure through oral or dermal exposure;
- β = slope factor;
- TR = total risk.
2.8. Data Analysis
3. Results and Discussion
3.1. Environmental Concentrations of PAEs
3.2. Comparison with Other Studies in Other Location
3.3. Ecological Risk of PAEs Congener on Sensitive Aquatic Species
3.4. Uncertainty Analysis of Ecological Risk
3.5. Human Health Risk
3.6. Uncertainty Analysis of Health Risk
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wormuth, M.; Scheringer, M.; Vollenweider, M.; Hungerbühler, K. What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal. 2006, 26, 803–824. [Google Scholar] [CrossRef] [PubMed]
- Wormuth, M.; Demou, E.; Scheringer, M.; Hungerb, K. Assessments of Direct Human Exposure—The Approach of EU Risk Assessments Compared to Scenario-Based. Risk Anal. 2007, 27, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Bo, L.; Li, L.; Wang, D.; Chen, G.; Christie, P.; Tenga, Y. Occurrence of phthalate esters in river sediments in areas with different land use patterns. Sci. Total Environ. 2014, 500, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Hens, A.; Aguilar-Caballos, M.P. Social and economic interest in the control of phthalic acid esters. TrAC Trends Anal. Chem. 2003, 22, 847–857. [Google Scholar] [CrossRef]
- Oehlmann, J.; Oetken, M.; Schulte-Oehlmann, U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. Environ. Res. 2008, 108, 140–149. [Google Scholar] [CrossRef]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef]
- Wang, F.; Xia, X.; Sha, Y. Distribution of Phthalic Acid Esters in Wuhan section of the Yangtze River, China. J. Hazard. Mater. 2008, 154, 317–324. [Google Scholar] [CrossRef]
- Sun, J.; Huang, J.; Zhang, A.; Liu, W.; Cheng, W. Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime. J. Hazard. Mater. 2013, 248, 142–149. [Google Scholar] [CrossRef]
- Gani, K.M.; Kazmi, A.A. Phthalate contamination in aquatic environment: A critical review of the process factors that influence their removal in conventional and advanced wastewater treatment. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1402–1439. [Google Scholar] [CrossRef]
- Kanchanamayoon, W.; Prapatpong, P.; Chumwangwapee, S.; Chaithongrat, S. Analysis of phthalate esters contamination in drinking water samples. Afr. J. Biotechnol. 2012, 11, 16263–16269. [Google Scholar]
- Sirivithayapakorn, S.; Thuyviang, K.; Jansak, P. Distribution and Ecological Risk Assessment of Plasticizers in the Chao Phraya Delta, Gulf of Thailand. ASEAN Eng. J. 2014, 4, 73–80. [Google Scholar]
- Fatoki, O.S.; Bornman, M.; Ravandhalala, L.; Chimuka, L.; Genthe, B.; Adeniyi, A. Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects. Water SA 2010, 36, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Selvaraj, K.K.; Sundaramoorthy, G.; Ravichandran, P.K.; Girijan, G.K.; Sampath, S.; Ramaswamy, B.R. Phthalate esters in water and sediments of the Kaveri River, India: Environmental levels and ecotoxicological evaluations. Environ. Geochem. Health 2015, 37, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Olujimi, O.O.; Aroyeun, O.A.; Akinhanmi, T.F.; Arowolo, T.A. Occurrence, removal and health risk assessment of phthalate esters in the process streams of two different wastewater treatment plants in Lagos and Ogun States, Nigeria. Environ. Monit. Assess. 2017, 189, 345. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Liu, H.; Wan, G.; Zhang, S. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China. Ecotoxicology 2015, 24, 967–984. [Google Scholar] [CrossRef]
- Gyawali, S.; Techato, K.; Yuangyai, C. Effects of Industrial Waste Disposal on the Surface Water Quality of U-tapao River, Thailand. In Proceedings of the International Conference on Environmental Science Engineering IPCBEE, Bangkok, Thailand, 24 March 2012; Volume 3, pp. 109–113. [Google Scholar]
- Chuvanich, S.; Thongnoo, K.; Chevakidagarn, P.; Phongdara, A. Evaluation of artificial neural networks for electrical conductivity-based and flow rate-based prediction of the nitrate nitrogen concentration in the u-tapao canal, Hat Yai, Thailand. Environ. Asia 2017, 10, 15–24. [Google Scholar]
- Sirinawin, W.; Sompongchaiyakul, P. Nondetrital and total metal distribution in core sediments. Mar. Chem. 2005, 94, 5–16. [Google Scholar] [CrossRef]
- Worawit, W.; Chih-hsiang, L.; Panote, T.; Proespichaya, K. Characterization of Organic Substances in Concentrated Latex Discharged Effluent. In Proceedings of the Sixth PSU Engineering Conference, Prince of Songkla Universty, Hat Yai, Thailand, 8–9 May 2008; Volume 5, pp. 1–7. [Google Scholar]
- Li, R.; Liang, J.; Gong, Z.; Zhang, N.; Duan, H. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. Sci. Total Environ. 2017, 580, 388–397. [Google Scholar] [CrossRef]
- European Commission. Technical Guidance Document in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances and Commission Regulation (EC) No. 1488/94 on Risk Assessment for Existing Substance; European Commission: Brussels, Belgium, 2003; Part II. [Google Scholar]
- Ramzi, A.; Gireeshkumar, T.R.; Rahman, K.H.; Balachandran, K.K.; Shameem, K.; Chacko, J.; Chandramohanakumar, N. Phthalic acid esters—A grave ecological hazard in Cochin estuary, India. Mar. Pollut. Bull. 2020, 152, 110899. [Google Scholar] [CrossRef]
- Xu, H.; Shao, X.; Zhang, Z.; Zou, Y.; Chen, Y.; Han, S.; Wang, S.; Wu, X.; Yang, L.; Chen, Z. Effects of Di-n-butyl Phthalate and Diethyl Phthalate on Acetylcholinesterase Activity and Neurotoxicity Related Gene Expression in Embryonic Zebrafish. Bull. Environ. Contam. Toxicol. 2013, 95, 635–639. [Google Scholar] [CrossRef]
- Li, T.; Yin, P.; Zhao, L.; Wang, G.; Yu, Q.J.; Li, H.; Duan, S. Spatial-temporal distribution of phthalate esters from riverine outlets of Pearl River Delta in China. Water Sci. Technol. 2015, 71, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Xu, Y.; Xu, C.; Yun, L.; Liu, W. Status of phthalate esters contamination in agricultural soils across China and associated health risks. Environ. Pollut. 2014, 195, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Li, H.; Wang, H.; Zhu, X.; Sthiannopkao, S.; Kim, K.; Yasin, M.S.M.; Hashim, J.H.; Wong, M.H. Dietary exposure and human risk assessment of phthalate esters based on total diet study in Cambodia. Environ. Res. 2016, 150, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, J.; Bo, T.; Li, H.; Crittenden, J.C. Occurrence and risk assessment of selected phthalates in drinking water from waterworks in China. Environ. Sci. Pollut. Res. 2015, 22, 10690–10698. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, P.; Zhao, L. Phthalate esters in water and surface sediments of the Pearl River Estuary: Distribution, ecological, and human health risks. Environ. Sci. Pollut. Res. 2016, 601, 19341–19349. [Google Scholar] [CrossRef]
- Martínez, M.A.; Rovira, J.; Sharma, R.P.; Nadal, M.; Schuhmacher, M.; Kumar, V. Comparing dietary and non-dietary source contribution of BPA and DEHP to prenatal exposure: A Catalonia (Spain) case study. Environ. Res. 2018, 166, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Chen, J.; Wang, J.; Han, P.; Luan, Y.; Ma, X.; Lu, A. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment. Sci. Total Environ. 2016, 568, 1037–1043. [Google Scholar] [CrossRef]
- Colón, I.; Caro, D.; Bourdony, C.J.; Rosario, O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ. Health Perspect. 2000, 108, 895–900. [Google Scholar]
- Desvergne, B.; Feige, J.N.; Casals-Casas, C. PPAR-mediated activity of phthalates: A link to the obesity epidemic? Mol. Cell. Endocrinol. 2009, 304, 43–48. [Google Scholar] [CrossRef]
- Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Adeniyi, A.A.; Okedeyi, O.O.; Yusuf, K.A. Flame ionization gas chromatographic determination of phthalate esters in water, surface sediments and fish species in the Ogun river catchments, Ketu, Lagos, Nigeria. Environ. Monit. Assess. 2011, 172, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; An, T.; Xiong, J.; Li, G. The evolution of pollution profile and health risk assessment for three groups SVOCs pollutants along with Beijiang River, China. Environ. Geochem. Health 2017, 39, 1487–1499. [Google Scholar] [CrossRef]
- USEPA (United State Environmental Protection Agency). Risk Assessment Guidance for Superfund Volume 1 Human Health Evaluation Manual (Part A); EPA/540/1–89/002; Office of Emergency and Remedial Response; US Environmental Protection Agency: Washington, DC, USA, 1989.
- USEPA (United States Environmental Protection Agency). Regional Screening Level (RSL) Summary Table. In MidAtlantic Risk Assessment; USEPA: Washington, DC, USA, 2013. [Google Scholar]
- Liu, X.; Shi, J.; Bo, T.; Zhang, H.; Wu, W.; Chen, Q. Occurrence of phthalic acid esters in source waters: A nationwide survey in China during the period of 2009 to 2012. Environ. Pollut. 2014, 184, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Cousineau, D.; Montreal, U.; Chartier, S.; Ottawa, U. Outliers detection and treatment: A review. Int. J. Psyco. Res. 2010, 3, 58–67. [Google Scholar] [CrossRef]
- Gustavsson, B.M.; Magnér, J.; Carney Almroth, B.; Eriksson, M.K.; Sturve, J.; Backhaus, T. Chemical monitoring of Swedish coastal waters indicates common exceedances of environmental thresholds, both for individual substances as well as their mixtures. Mar. Pollut. Bull. 2017, 122, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Huang, X.; Gao, D.; Liu, G.; Fang, C.; Shang, Y.; Du, J.; Zhao, Y.; Lv, L.; Song, K. Phthalate esters in surface water of Songhua River watershed associated with land use types, Northeast China. Environ. Sci. Pollut. Res. 2018, 25, 7688–7698. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhang, H.H.; Zou, Y.W.; Yang, G.P. Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea. Environ. Pollut. 2018, 240, 235–247. [Google Scholar] [CrossRef]
- Li, R.; Liang, J.; Duan, H.; Gong, Z. Spatial distribution and seasonal variation of phthalate esters in the Jiulong River estuary, Southeast China. Mar. Pollut. Bull. 2017, 122, 38–46. [Google Scholar] [CrossRef]
- Mackintosh, C.E.; Maldonado, J.A.; Ikonomou, M.G.; Gobas, F.A. Sorption of phthalate esters and PCBs in a marine ecosystem. Environ. Sci. Technol. 2006, 40, 3481–3488. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhang, H.H.; Zhang, J.; Wang, Q.W.; Yang, G.P. Occurrence, distribution, and ecological risks of phthalate esters in the seawater and sediment of Changjiang River Estuary and its adjacent area. Sci. Total Environ. 2018, 619, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, B.; Shanmugam, G.; Velu, G.; Rengarajan, B.; Larsson, D.J. GC–MS analysis and ecotoxicological risk assessment of triclosan, carbamazepine and parabens in Indian rivers. J. Hazard. Mater. 2011, 186, 1586–1593. [Google Scholar]
- Sirivithayapakorn, S.; Thuyviang, K. Dispersion and Ecological Risk Assessment of Di (2-Ethyl hexyl) Phthalate (DEHP) in the Surface Waters of Thailand. Bull. Environ. Contam. Toxicol. 2010, 84, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Staples, C.A.; Adams, W.J.; Parkerton, T.F.; Gorsuch, J.W.; Biddinger, G.R.; Reinert, K.H. Environmental Toxicology Review Aquatic toxicity of eighteen phthalate esters. Environ. Toxicol. Chem. 1997, 16, 875–891. [Google Scholar] [CrossRef]
- Okamoto, Y.; Ueda, K.; Kojima, N. Potential Risks of Phthalate Esters: Acquisition of Endocrine-disrupting Activity during Environmental and Metabolic Processing. J. Health Sci. 2011, 57, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Mathieu-denoncourt, J.; Wallace, S.J.; Solla, S.R.; De Langlois, V.S. General and Comparative Endocrinology Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. Gen. Comp. Endocrinol. 2015, 219, 74–88. [Google Scholar] [CrossRef] [Green Version]
- Oehlmann, J.; Schulte-Oehlmann, U.; Kloas, W.; Jagnytsch, O.; Lutz, I.; Kusk, K.O.; Wollenberger, L.; Santos, E.M.; Paull, G.C.; Van Look, K.J.; et al. A critical analysis of the biological impacts of plasticizers on wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2047–2062. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xu, S.; Tan, T.; Lee, S.T.; Cheng, S.H. Toxicity and Estrogenic Endocrine Disrupting Activity of Phthalates and Their Mixtures. Int. J. Environ. Res. Public Health 2014, 11, 3156–3168. [Google Scholar] [CrossRef]
- Sung, H.; Kao, W.; Su, Y. Effects and toxicity of phthalate esters to hemocytes of giant freshwater prawn, Macrobrachium rosenbergii. Aquat. Toxicol. 2003, 64, 25–37. [Google Scholar] [CrossRef]
- Seyoum, A.; Pradhan, A. Effect of phthalates on development, reproduction, fat metabolism and lifespan in Daphnia magna. Sci. Total Environ. 2019, 654, 969–977. [Google Scholar] [CrossRef]
- Santangeli, S.; Maradonna, F.; Zanardini, M.; Notarstefano, V.; Gioacchini, G.; Forner-piquer, I.; Habibib, H.; Carnevali, O. Effects of diisononyl phthalate on Danio rerio reproduction. Environ. Pollut. 2017, 231, 1051–1062. [Google Scholar] [CrossRef] [PubMed]
- Forner, I.; Constantinos, P.; Ioannis, C.M.; Maria, F.; Fabiana, P.; Di Marzo, V.; Calduch-Giner, J.; Pérez-Sánchez, J.; Carnevali, O. Effects of diisononyl phthalate (DiNP) on the endocannabinoid and reproductive systems of male gilthead sea bream (Sparus aurata) during the spawning season. Arch. Toxicol. 2019, 93, 727–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agus, H.H.; Erkmen, B.; Su¨mer, S.; Sepici-Dincel, A.; Erkoc, F. Impact of DBP on histology and expression of HSP 70 in gill and liver tissue of Cyprinus carpio. Mol. Biol. Rep. 2015, 42, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Khalil, S.R.; Elhakim, Y.A.; EL-Murr, A.E. Sublethal concentrations of di-n-butyl phthalate promote biochemical changes and DNA damage in juvenile Nile tilapia (Oreochromis niloticus). Jpn. J. Vet. Res. 2016, 64, 67–80. [Google Scholar]
- Abdolahnejad, A.; Gheisari, L.; Karimi, M.; Norastehfar, N.; Ebrahimpour, K.; Mohammadi, A.; Ghanbari, R.; Ebrahimi, A.; Jafari, N. Monitoring and health risk assessment of phthalate esters in household’ s drinking water of Isfahan, Iran. Int. J. Environ. Sci. Technol. 2018, 16, 7409–7416. [Google Scholar] [CrossRef]
- Caldwell, J.C. DEHP: Genotoxicity and potential carcinogenic mechanisms—A review. Mutat. Res. 2012, 751, 82–157. [Google Scholar] [CrossRef]
- Rusyn, I.; Corton, C. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat. Res. 2013, 750, 141–158. [Google Scholar] [CrossRef] [Green Version]
- Yong, W.; Jiao, C.; Jianhui, W.; Yan, Z.; Qi, P.; Xiu, W.; Zuyue, S.; Yunhui, Z. Mono-2-ethyhexyl phthalate advancing the progression of prostate cancer through activating the hedgehog pathway in LNCaP cells. Toxicol. In Vitro 2016, 32, 86–91. [Google Scholar] [CrossRef]
- Chen, F.; Chien, M.; Chern, I.Y. Impact of low concentrations of phthalates on the effects of 17 b-estradiol in MCF-7 breast cancer cells. Taiwan J. Obstet. Gynecol. 2016, 55, 826–834. [Google Scholar] [CrossRef]
- Zarean, M.; Keikha, M.; Poursafa, P.; Khalighinejad, P.; Amin, M.; Kelishadi, R. A systematic review on the adverse health effects of di-2-ethylhexyl phthalate. Environ. Sci. Pollut. Res. 2016, 23, 24642–24693. [Google Scholar] [CrossRef]
- López-carrillo, L.; Hernández-ramírez, R.U.; Calafat, A.M.; Torres-sánchez, L. Exposure to Phthalates and Breast Cancer Risk in Northern Mexico. Environ. Health Perspec. 2010, 118, 539–544. [Google Scholar] [CrossRef] [PubMed]
SITES | Latitude | longitude | DBP | DEHP | DiNP | ∑PAEs |
---|---|---|---|---|---|---|
ST 1 | 7.108381 | 100.465011 | 3.00 | 2.80 | 2.08 | 7.88 |
ST 2 | 7.002145 | 100.455991 | 1.84 | 2.88 | 2.28 | 7.00 |
ST 3 | 6.979739 | 100.463408 | 1.04 | 1.68 | 1.44 | 4.16 |
ST 4 | 6.596520 | 100.486966 | 1.34 | 3.28 | 2.40 | 7.02 |
ST 5 | 6.639564 | 100.436129 | ND | 1.68 | 1.60 | 3.28 |
ST 6 | 6.602124 | 100.406920 | ND | 2.72 | 2.00 | 4.72 |
ST 7 | 6.635161 | 100.393411 | 1.28 | 4.32 | ND | 5.60 |
ST 8 | 6.673192 | 100.433361 | 1.36 | 1.28 | ND | 2.64 |
ST 9 | 6.705086 | 100.433163 | ND | 2.16 | 2.00 | 4.16 |
ST 10 | 6.779266 | 100.443868 | 1.72 | 3.14 | 2.44 | 7.30 |
ST 11 | 6.823206 | 100.437958 | ND | 1.60 | ND | 1.60 |
ST 12 | 6.856377 | 100.464485 | ND | 2.64 | 2.16 | 4.80 |
ST 13 | 6.931202 | 100.439884 | 3.36 | 5.28 | 3.44 | 12.08 |
ST 14 | 6.979740 | 100.463409 | ND | 1.68 | 1.46 | 3.14 |
ST 15 | 7.033356 | 100.452362 | ND | 1.44 | ND | 1.44 |
ST 16 | 7.075167 | 100.475782 | ND | 1.92 | ND | 1.92 |
ST 17 | 7.126859 | 100.455496 | ND | 2.24 | ND | 2.24 |
Mean | 1.87 | 2.51 | 2.12 | 4.76 | ||
SD | 0.85 | 1.07 | 0.56 | 2.81 | ||
Minimum | ND | 1.28 | ND | 1.44 | ||
Maximum | 3.36 | 5.28 | 3.44 | 12.08 | ||
Detection Frequency | 47 | 100 | 65 | 100 |
S/N | Location | DBP (µg/L) | DEHP (µg/L) | DiNP(µg/L) | References |
---|---|---|---|---|---|
1 | Bohai and Yellow Sea, China | 0.27–1.24 | 0.062–4.35 | ND–0.054 | [43] |
2 | Jiulong River estuary China | 0.30–1.77 | 0.12–12.40 | ND–0.52 | [44] |
3 | Jiulong River, China | 0.28–2.40 | 0.79–10.90 | ND–524 | [20] |
4 | Songhua River basin, China | 0.19–4.76 | 0.36–2.68 | ND–2.47 | [42] |
5 | Coastal waters, Sweden | <0.19–0.49 | <0.068–0.22 | <0.05–0.13 | [41] |
6 | False Creek Harbor, Canada | 0.050–0.24 | 0.170–0.44 | 0.061–0.14 | [45] |
7 | U-Tapao canal, Thailand | ND–3.36 | 1.28–5.28 | ND–3.44 | This study |
PAEs | Algae | Crustacean | Fish |
---|---|---|---|
DBP | 0.09 | 0.07 | 0.19 |
DEHP | 25.10 | 2.98 | 0.42 |
DiNP | 0.12 | 6.24 | 5.05 |
PAEs | Mean (µg/L) | ADDing (mg/kg/day) | RfD (mg/kg/day) | HQ | ADDdm (mg/kg/day) | RfD (mg/kg/day) | HQ |
---|---|---|---|---|---|---|---|
DBP | 1.87 ± 0.85 | 3.74 × 10−3 | 1.0 × 10−1 | 3.74 × 10−2 | 2.06 × 10−4 | 1.0 × 10−1 | 2.06 × 10−3 |
DEHP | 2.51 ± 1.07 | 5.02 × 10−3 | 2.00 × 10−2 | 2.51 × 10−1 | 6.88 × 10−4 | 2.00 × 10−2 | 3.44 × 10−2 |
DiNP | 2.12 ± 0.56 | 4.24 × 10−3 | 1.15 × 10−1 | 3.69 × 10−2 | 6.72 × 10−4 | 1.15 × 10−1 | 5.84 × 10−3 |
HI | 3.25 × 10−1 | 9.49 × 10−2 |
PAEs | Mean (µg/L) | ADDing (mg/kg/day) | RfD (mg/kg/day) | HQ | ADDdma (mg/kg/day) | RfD (mg/kg/day) | HQ |
---|---|---|---|---|---|---|---|
DEHP | 2.51 ± 1.07 | 2.51 × 10−3 | 2.00 × 10−2 | 1.26 × 10−1 | 7.17 × 10−4 | 2.00 × 10−2 | 3.59 × 10−2 |
DiNP | 2.12 ± 0.56 | 2.21 × 10−3 | 1.15 × 10−1 | 1.84 × 10−2 | 7.00 × 10−4 | 1.15 × 10−1 | 6.09 × 10−3 |
HI | 1.63 × 10−1 | 4.13 × 10−2 |
Age Group | PAE | LADD Ingestion | Slope Factor | Cancer Risk | LADD Dermal | Slope Factor | Cancer Risk | TR |
---|---|---|---|---|---|---|---|---|
Adult | DEHP | 2.15 × 10−3 | 1.40 × 10−2 | 3.01 × 10−5 | 2.95 × 10−4 | 1.40 × 10−2 | 4.13 × 10−6 | 3.42 × 10−5 |
Children | DEHP | 2.15 × 10−4 | 1.40 × 10−2 | 3.01 × 10−6 | 6.14 × 10−5 | 1.40 × 10−2 | 8.59 × 10−7 | 3.87 × 10−6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kingsley, O.; Witthayawirasak, B. Occurrence, Ecological and Health Risk Assessment of Phthalate Esters in Surface Water of U-Tapao Canal, Southern, Thailand. Toxics 2020, 8, 58. https://doi.org/10.3390/toxics8030058
Kingsley O, Witthayawirasak B. Occurrence, Ecological and Health Risk Assessment of Phthalate Esters in Surface Water of U-Tapao Canal, Southern, Thailand. Toxics. 2020; 8(3):58. https://doi.org/10.3390/toxics8030058
Chicago/Turabian StyleKingsley, Okpara, and Banchong Witthayawirasak. 2020. "Occurrence, Ecological and Health Risk Assessment of Phthalate Esters in Surface Water of U-Tapao Canal, Southern, Thailand" Toxics 8, no. 3: 58. https://doi.org/10.3390/toxics8030058
APA StyleKingsley, O., & Witthayawirasak, B. (2020). Occurrence, Ecological and Health Risk Assessment of Phthalate Esters in Surface Water of U-Tapao Canal, Southern, Thailand. Toxics, 8(3), 58. https://doi.org/10.3390/toxics8030058