Derivation of a Freshwater Quality Benchmark and an Ecological Risk Assessment of Ferric Iron in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Toxicity Data and Fe Exposure Data
2.1.1. Toxicity Data
2.1.2. Exposure Data
2.2. Derivation Methods for the Water Quality Criteria
2.2.1. The Assessment Factor (AF) Method
2.2.2. The Toxicity Percentage Ranking (TPR) Method
2.2.3. The Species Sensitivity Distribution Method
2.2.4. The Risk Quotient Method
3. Results and Discussion
3.1. Toxicity Data Collection and Screening
Category | Latin Name | Genus | Endpoint | Toxicity Data of the Species (μg/L) | Toxicity Data of the Genera (μg/L) | Reference |
---|---|---|---|---|---|---|
Acute Toxicity | Asellus aquaticus | Asellus | EC50 | 124,000 | 124,000 | [42] |
Ceriodaphnia dubia | Ceriodaphnia | LC50 | 36,700 | 33,200 | [43] | |
Ceriodaphnia dubia | Ceriodaphnia | LC50 | 30,100 | [43] | ||
Chironomus javanus | Chironomus | LC50 | 1650 | 1650 | [44] | |
Daphnia magna | Daphnia | LC50 | 76,000 | 15,600 | [45] | |
Daphnia magna | Daphnia | EC50 | 9600 | [46] | ||
Daphnia magna | Daphnia | LC50 | 21,000 | [47] | ||
Daphnia pulex | Daphnia | LC50 | 12,900 | [48] | ||
Daphnia pulex | Daphnia | LC50 | 15,800 | [48] | ||
Daphnia pulex | Daphnia | LC50 | 17,400 | [48] | ||
Daphnia pulex | Daphnia | LC50 | 9000 | [49] | ||
Daphnia pulex | Daphnia | LC50 | 2800 | [49] | ||
Duttaphrynus melanostictus | Duttaphrynus | LC50 | 400 | 400 | [50] | |
Gambusia affinis | Gambusia | LC50 | 133,000 | 99,200 | [51] | |
Gambusia affinis | Gambusia | LC50 | 74,000 | [51] | ||
Lepomis macrochirus | Lepomis | LC50 | 20,300 | 20,300 | [48] | |
Melanoides tuberculata | Melanoides | LC50 | 8490 | 8490 | [50] | |
Nais elinguis | Nais | LC50 | 123 | 123 | [50] | |
Orconectes limosus | Orconectes | LC50 | 32,000 | 32,000 | [52] | |
Physa gyrina | Physa | LC50 | 12,100 | 12,100 | [48] | |
Pimephales promelas | Pimephales | LC50 | 21,800 | 21,800 | [48] | |
Ptychocheilus oregonensis | Ptychocheilus | LC50 | 54,800 | 54,800 | [48] | |
Salmo trutta | Salmo | LC50 | 28,000 | 36,300 | [53] | |
Salmo trutta | Salmo | LC50 | 47,000 | [53] | ||
Stenocypris major | Stenocypris | LC50 | 279 | 279 | [50] | |
Tubifex tubifex | Tubifex | EC50 | 102,000 | 94,300 | [54] | |
Tubifex tubifex | Tubifex | EC50 | 86,100 | [55] | ||
Tubifex tubifex | Tubifex | EC50 | 95,400 | [55] | ||
Tubifex tubifex | Tubifex | EC50 | 71,300 | [55] | ||
Tubifex tubifex | Tubifex | EC50 | 125,000 | [55] | ||
Xenopus laevis | Xenopus | EC50 | 1,000,000 | 1,000,000 | [56] | |
Chronic Toxicity | Chlorella vulgaris | Chlorella | LOEC | 6000 | 4240 | [57] |
Chlorella vulgaris | Chlorella | NOEC | 3000 | [57] | ||
Daphnia pulex | Daphnia | LOEC | 1310 | 958 | [48] | |
Daphnia pulex | Daphnia | LOEC | 1310 | [48] | ||
Daphnia pulex | Daphnia | LOEC | 1310 | [48] | ||
Daphnia pulex | Daphnia | MATC | 960 | [48] | ||
Daphnia pulex | Daphnia | MATC | 960 | [48] | ||
Daphnia pulex | Daphnia | MATC | 960 | [48] | ||
Daphnia pulex | Daphnia | NOEC | 700 | [48] | ||
Daphnia pulex | Daphnia | NOEC | 700 | [48] | ||
Daphnia pulex | Daphnia | NOEC | 700 | [48] | ||
Lecane quadridentata | Lecane | LOEC | 100 | 31.6 | [58] | |
Lecane quadridentata | Lecane | NOEC | 10 | [58] | ||
Pimephales promelas | Pimephales | LOEC | 1010 | 569 | [48] | |
Pimephales promelas | Pimephales | MATC | 570 | [48] | ||
Pimephales promelas | Pimephales | NOEC | 320 | [48] |
3.2. WQC Derivation
3.2.1. Criteria of the Assessment Factor (AF) Method
3.2.2. Results of the Toxicity Percentage Ranking Method
3.2.3. Results of the SSD Method
3.2.4. Comparison of the WQCs from Three Methods
3.3. Ecological Risk Assessment (ERA) of Fe3+ in the Regional Surface Water of China
3.4. Obvious Spatial Differences Existed in Fe3+ Content in China
4. Discussion
4.1. Comparison and Contrast of the WQC and International Standard Limits
4.2. Work Limitations and Future Prospects
4.3. Contribution to Science
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Li, W.; Lei, J.; Li, Q.; Liu, L.; Zhou, L. Effect and hazard of common metal elements on human body. Mater. China 2020, 39, 934–944. [Google Scholar]
- Han, Y.X.; Zhang, X.L.; Gao, P.; Li, J.Y.; Sun, Y.S. Development and Prospect of Iron Ore Processing Technologies in China. Met. Mine 2024, 2, 1–24. [Google Scholar]
- Shi, X.L.; Qin, B.Q. Grain-size Characteristics and their environemental significance of Wanghu Lake sediments in the Middle Reaches of Yangtze River. Mar. Geol. Quat. Geol. 2009, 29, 117–122. [Google Scholar]
- Liu, S.Y.; Zheng, C.; Yuan, Q.; Wang, X.-B.; Wang, Z.-Y. Analysis on the variation characteristics of iron and manganese concentration and its genesis in Changtan Reservoir in Taizhou, Zhejiang Province. Environ. Sci. 2014, 35, 3702–3708. [Google Scholar]
- Yan, X.L.; Sun, C.; Hu, Y.; Zhong, J. Effect of reclamation on soil heavy metal content of coastal wetland and ecological risk assessment in Northern Liaodong Bay, China. Acta Ecol. Sin. 2020, 41, 1055–1067. [Google Scholar]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment the People’s Republic of China & Ministry of Ecology and Environment the People’s Republic of China: Beijing, China, 2002.
- GB 5749-2022; Standards for Drinking Water Quality. State Administration for Market Regulation, China and Standardization Administration, China: Beijing, China, 2022.
- Yang, S.Y.; Zhao, J.; Yu, H.-Z.; Peng, L.; Xiao, L.-J. Vertical Distribution Characteristics of Fe and Mn in Subtropical Reservoirs During Summer. Environ. Sci. 2017, 38, 4546–4552. [Google Scholar]
- Hong, Y.J.; Feng, C.; Xv, Z.; Liao, W.; Yan, Z.; Liu, D.; Fu, Z. Advance on ecotoxicity effects of heavy metals to aquatic organisms and the mechanisms. Environ. Eng. 2019, 37, 1–9. [Google Scholar]
- Jiang, W.X.; Jia, X.; Tang, T.; Cai, Q. Response of macroinvertebrate functional feeding groups to acid mine drainage in the Gaolan River. Acta Ecol. Sin. 2016, 36, 5670–5681. [Google Scholar]
- Chen, B.; Lv, L.X.; Wang, Z.Y.; Zhong, Y.H.; Wu, M.G.; Hu, X.S.; Xiao, Y.Z. Assessment of the potential ecological risk of heavy metals in the surface sediments and biological accumulation in Pearl River Estuary. Period. Ocean Univ. China 2021, 51, 73–82. [Google Scholar]
- Wang, G.S.; Chai, M.W.; Luan, S.J. A comparative study of heavy metal accumulation characteristics in typical mangrove wetlands of Shenzhen, China. Ecol. Environ. Sci. 2017, 26, 862–870. [Google Scholar]
- Risk Assessment Forum; US EPA: Washington, DC, USA, 2024. Available online: https://www.epa.gov/scientific-leadership/risk-assessment-current-projects (accessed on 16 February 2025).
- EPA 810-R-11-01; A Primer on Using Biological Assessment to Support Water Quality Management. US EPA: Washington, DC, USA, 2011.
- Zhao, C.H.; Shen, H.; Zhao, Y.; Wang, Z.; Tang, C.; Xie, H. Distribution characteristics and health risk assessment of metal elements in surface water of Fenhe River Basin. Environ. Chem. 2024, 43, 549–560. [Google Scholar]
- Kong, X.Z.; He, W.; Qin, N.; He, Q. Assessing acute ecological risks of heavy metals to freshwater organisms by species sensitivity distributions. China Environ. Sci. 2011, 31, 1555–1562. [Google Scholar]
- Li, H.X.; Zhang, R.; Guo, G.; Feng, C.; Shi, D.; Wang, H. Water quality criteria and ecological risk assessment of manganese in flesh water environment in China. Asian J. Ecotoxicol. 2023, 18, 195–206. [Google Scholar]
- Saili, K.S.; Cardwell, A.S.; Stubblefield, W.A. Stubblefield, Chronic Toxicity of Cobalt to Marine Organisms: Application of a Species Sensitivity Distribution Approach to Develop International Water Quality Standards. Environ. Toxicol. Chem. 2021, 40, 1405–1418. [Google Scholar] [CrossRef]
- Cardwell, A.S.; Adams, W.J.; Gensemer, R.W.; Nordheim, E.; Santore, R.C.; Ryan, A.C.; Stubblefield, W.A. Chronic toxicity of aluminum, at a pH of 6, to freshwater organisms: Empirical data for the development of international regulatory standards/criteria. Environ. Toxicol. Chem. 2018, 37, 36–48. [Google Scholar] [CrossRef]
- Cardwell, A.S.; Rodriguez, P.H.; Stubblefield, W.A.; DeForest, D.K.; Adams, W.J. Chronic Toxicity of Iron to Aquatic Organisms under Variable pH, Hardness, and Dissolved Organic Carbon Conditions. Environ. Toxicol. Chem. 2023, 42, 1371–1385. [Google Scholar] [CrossRef]
- Gensemer, R.W.; Gondek, J.C.; Rodriquez, P.H.; Arbildua, J.J.; Stubblefield, W.A.; Cardwell, A.S.; Santore, R.C.; Ryan, A.C.; Adams, W.J.; Nordheim, E. Evaluating the effects of pH, hardness, and dissolved organic carbon on the toxicity of aluminum to freshwater aquatic organisms under circumneutral conditions. Environ. Toxicol. Chem. 2018, 37, 49–60. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses, 2nd ed.; Wiley: Hoboken, NJ, USA, 2004; ISBN 3527302743. [Google Scholar]
- Lintnerová, O.; Sottník, P.; Soltés, S. Dissolved matter and suspended solids in the Smolnik Creek polluted by acid mine drainage (Slovakia). Geol. Carpathica 2006, 57, 311–324. [Google Scholar]
- Obiakor, M.O.; Tighe, M.; Wang, Z.; Ezeonyejiaku, C.D.; Pereg, L.; Wilson, S.C. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments. Environ. Sci. Pollut. Res. 2017, 24, 25276–25290. [Google Scholar] [CrossRef]
- US EPA. Ecotoxicology Database. Available online: https://cfpub.epa.gov/ecotox/ (accessed on 16 February 2025).
- Yang, H.C.M.C.L.; Li, Y.Y.; Zhou, Y.S.; Wang, Y.L.; Guo, J. Native species sensitivity distribution and water quality criteria for imidacloprid. J. Lake Sci. 2024, 36, 177–186. [Google Scholar]
- HJ 831-2017; Technical Guideline for Deriving Water Quality Criteria for Freshwater Organisms. Ministry of Ecology and Environment, China: Beijing, China, 2017.
- Li, X.Y. Methodology and Case Study for Developing Water Quality Standards for Protection of Aquatic Ecosystems. Master’s Thesis, Tianjin University of Science and Technology, Tianjin, China, 2015. [Google Scholar]
- Lin, Y.; Gao, J.M.; Guo, J.S.; Hou, X.Y.; Zhang, L.; Wu, J.C. Long-term water quality criteria derivation of typical antibiotics based on species sensitivity distribution and its application to ecological risk assessment. Acta Sci. Circumstantiae 2023, 43, 503–515. [Google Scholar]
- Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses; US EPA: Washington, DC, USA, 2024.
- Wang, H.; Sui, F.; Gao, C.; Qin, L.; Zhao, L.; Song, X.; Ru, S.; Wang, J. Seawater quality criteria derivation and ecological risk assessment for atrazinc in Laizhou Bay. Period. Ocean Univ. China 2024, 54, 78–87. [Google Scholar]
- Canadian Council of Ministers of the Environment. Protocol for the Derivation of Water Wuality Guidelines for the Protection of Aquatic Life; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 1999. [Google Scholar]
- Wang, X.L. Study on the Aquatic Organism Criteria for the Key Pesticide in the Yangtze River Delta Region. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2013. [Google Scholar]
- Li, Q.; Qinglin, L.; Mengshuo, L.; Li, W. Literature research on freshwater aquatic life water quality criteria for antibiotic in China. Asian J. Ecotoxicol. 2024, 19, 222–236. [Google Scholar]
- Wu, F.C.; Meng, W.; Cao, Y.; Li, H.; Zhang, R.; Feng, C.; Yan, Z. Derivation of Aquatic Life Water Quality Criteria for Cadmium in Freshwater in China. Res. Environ. Sci. 2011, 24, 172–184. [Google Scholar]
- Si, J.Y.; Hong, Y.; Xia, P.; Bai, Y.; Feng, C. Water Quality Criteria/Standards and Ecological Risk Assessment of Oxytetracycline for Freshwater Organisms in China. Res. Environ. Sci. 2023, 36, 403–413. [Google Scholar]
- Wheeler, J.R.; Grist, E.; Leung, K.; Morritt, D.; Crane, M. Species sensitivity distributions: Data and model choice. Mar. Pollut. Bull. 2002, 45, 192–202. [Google Scholar] [CrossRef]
- Mi, Y.D.; Zhou, L.; Feng, C.; Su, H.; Chen, Y.; Liang, W.; Xu, Z.; Wu, F. Toxicity effect, water quality criteria and standards of fluoride: Progress and prospects. Asian J. Ecotoxicol. 2024, 19, 148–164. [Google Scholar]
- Brain, R.A.; Sanderson, H.; Sibley, P.K.; Solomon, K.R. Probabilistic ecological hazard assessment: Evaluating pharmaceutical effects on aquatic higher plants as an example. Ecotoxicol. Environ. Saf. 2006, 64, 128–135. [Google Scholar] [CrossRef]
- Li, D.W.; Yao, W.; Zhang, S.; Pan, H.; Lin, L.; Wu, X. Ecological risk assessment of microplastics in typical freshwater waters in China based on method of risk quotient. Asian J. Ecotoxicol. 2022, 17, 425–434. [Google Scholar]
- Li, Y.S.; Wu, F.; Cui, X.; Zhang, R.; Guo, G.; Li, H.; Feng, C.; Du, D. Freshwater quality criteria for benzene in China. Chin. J. Ecol. 2012, 31, 908–915. [Google Scholar]
- Martin, T.; Holdich, D. The Acute Lethal Toxicity of Heavy-Metals to Peracarid Crustaceans (with Particular Reference to Fresh-Water Asellids and Gammarids). Water Res. 1986, 20, 1137–1147. [Google Scholar] [CrossRef]
- Fort, D.J.; Stover, E.L. Impact of toxicities and potential interactions of flocculants and coagulant aids on whole effluent toxicity testing. Water Environ. Res. 1995, 67, 921–925. [Google Scholar] [CrossRef]
- Shuhaimi-Othman, M.; Yakub, N.; Ramle, N.-A.; Abas, A. Toxicity of Metals to a Freshwater Ostracod: Stenocypris major. J. Toxicol. 2011, 2011, 136104. [Google Scholar] [CrossRef] [PubMed]
- Biesinger, K.E.; Christensen, G.M. Effects of Various Metals on Survival, Growth, Reproduction, and Metabolism of Daphnia-Magna. J. Fish. Res. Board Can. 1972, 29, 1691–1700. [Google Scholar] [CrossRef]
- Dowden, B.F.; Bennett, H.J. Toxicity of Selected Chemicals to Certain Animals. J. Water Pollut. Control Fed. 1965, 37, 1308–1316. [Google Scholar]
- Li, G.L.; Zhang, Y.; Wang, Y.; Jiang, X.-Y.; Li, H.-B.; Zhang, J.-M.; Chen, X.; Xie, F.-Z. Enrichment characteristics, risk evaluation, and source apportionment of heavy metals in Wabu Lake of Yangtze River Water Diversion Project. Environ. Sci. 2024, 45, 7111–7122. [Google Scholar]
- Birge, W.J.; Black, J.A.; Westerman, A.G.; Short, T.M.; Taylor, S.B.; Bruser, D.M.; Wallingford, E.D. Recommendations on Numerical Values for Regulating Iron and Chloride Concentrations for the Purpose of Protecting Warmwater Species of Aquatic Life in the Commonwealth of Kentucky Source; Kentucky Natural Resources and Environmental Protection Cabinet: Frankfort, KY, USA, 1985.
- Shu, Z.C.; Cheng, C. Distribution characteristics and pollution evaluation of heavy metals in Fuyang Section of Huaihe River. J. Green Sci. Technol. 2023, 25, 157–160. [Google Scholar]
- Shuhaimi-Othman, M.; Nadzifah, Y.; Umirah, N.; Ahmad, A. Toxicity of metals to tadpoles of the common Sunda toad, Duttaphrynus melanostictus. Toxicol. Environ. Chem. 2012, 94, 364–376. [Google Scholar] [CrossRef]
- Wallen, I.E.; Greer, W.C.; Lasater, R. Toxicity to Gambusia-Affinis of Certain Pure Chemicals in Turbid Waters. Sew. Ind. Wastes 1957, 29, 695–711. [Google Scholar]
- Boutet, C.; Chaisemartin, C. Specific toxic properties of metal salts of Austro-potamobius pallipes pallipes and Orconectes limosus. C. R. Seances Soc. Biol. Fil. 1973, 167, 1933–1938. [Google Scholar]
- Dalzell, D.J.B.; Macfarlane, N.A.A. The toxicity of iron to brown trout and effects on the gills: A comparison of two grades of iron sulphate. J. Fish Biol. 1999, 55, 301–315. [Google Scholar] [CrossRef]
- Khangarot, B.S. Toxicity of metals to a freshwater tubificid worm, Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol. 1991, 46, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Rathore, R.S.; Khangarot, B.S. Effects of temperature on the sensitivity of sludge worm Tubifex tubifex Muller to selected heavy metals. Ecotoxicol. Environ. Saf. 2002, 53, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Nations, S.; Wages, M.; Cañas, J.E.; Maul, J.; Theodorakis, C.; Cobb, G.P. Acute effects of Fe2O3, TiO2, ZnO and CuO nanomaterials on Xenopus laevis. Chemosphere 2011, 83, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Dejong, L.E.D. Tolerance of Chlorella Vulgaris for Metallic and Non-Metallic Ions. Antonie Van Leeuwenhoek J. Microbiol. Serol. 1965, 31, 301–313. [Google Scholar]
- Guzmán, F.T.; González, F.J.A.; Martínez, R.R. Implementing Lecane quadridentata acute toxicity tests to assess the toxic effects of selected metals (Al, Fe and Zn). Ecotoxicol. Environ. Saf. 2010, 73, 287–295. [Google Scholar] [CrossRef]
- National Recommended Water Quality Criteria (Section 304(a)); US EPA: Washington, DC, USA, 2009.
- EPA 440-9-76-023; Quality Criteria for Water 1976. US EPA: Washington, DC, USA, 1976.
- EPA 440/5-86-001; Quality Criteria for Water. US EPA: Washington, DC, USA, 1986.
- Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; ISBN 978-92-4-004506-4.
- EUR-Lex, Directive 98/83/EC. Drinking Water Directive; Official Journal of the European Union: Luxembourg, 2020. [Google Scholar]
- Canada, H.C.S. Guidelines for Canadian Drinking Water Quality-Summary Tables; Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, Health Canada: Ottawa, ON, Canada, 2025.
- Drinking Water Ordinance of 20 June 2023; Federal Ministry of Justice and the Federal Office of Justice, Federal Law Gazette, Germany: Bonn, Germany, 2023.
- Drinking Water Standards; Diplomatie, France, French Water Partnership: Paris, France, 2020.
- Peng, H.X.; Li, C. Comparative study of drinking water quality standards among China, the United States and Japan. China Water Wastewater 2018, 34, 24–31. [Google Scholar]
- Ren, L.J.; Zhang, Y.; Zhang, X.; Shan, Z.; Zhang, C. Pollution characteristics and health risk assessment of heavy metals in surface water in Guanzhong Section of the Weihe River Basin. Ecol. Environ. Sci. 2022, 31, 131–141. [Google Scholar]
- Guo, Y.K.; Gao, Y.; Qian, H.; Tang, S.; Wang, H.; Shi, X. Spatial and temporal distribution characteristics and health risk assessment of heavy metals in the Chu River basin. Environ. Eng. 2023, 41, 112–119. [Google Scholar]
- Wu, B.; Zhao, D.Y.; Jia, H.Y.; Zhang, Y.; Zhang, X.X.; Cheng, S.P. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China. Bull. Environ. Contam. Toxicol. 2009, 82, 405–409. [Google Scholar] [CrossRef]
- Chen, Y.F.; Guo, J.; Guo, S.; Chen, J.; Li, T.; Ma, S.; Chen, H. Pollution assessment and source analysis of heavy metals in the Wunan River, Changzhou. Acta Sci. Circumstantiae 2024, 44, 157–166. [Google Scholar]
- Wang, C.X.; Huang, J.; Yang, Z.W. Study on dynamic change feature of heavy metals in Zhenjiang Section of Yangtze River and their effects on health risks of residents. Environ. Prot. Technol. 2022, 28, 22–27. [Google Scholar]
- Si, W.; Xu, J.; Liu, G.; He, M.; Wu, H.; Wang, G.; Li, Y. Distribution characteristics and risk assessment of dissolved metal (loid)s in typical river basin of Hozhou City. Acta Sci. Circumstantiae 2024, 44, 181–192. [Google Scholar]
- Liu, Y.B.; Xu, Y.; Zhang, H.; Yang, H. Assessment of heavy metal pollution and health risks in a main river in Huayuan County, Xiangxi, Hunan Province. Chin. J. Appl. Environ. Biol. 2018, 24, 602–608. [Google Scholar]
- Ma, Y.Q.; Shi, Y.; Qin, Y.W.; Zheng, B.H.; Zhao, Y.M.; Zhang, L. Temporal-spatial distribution and pollution assessment of heavy metals in the Upper Reaches of Hunhe River (Qingyang Section), northeast China. Environ. Sci. 2014, 35, 108–116. [Google Scholar]
- Yu, C.C.; Zhao, W.T.; Gao, X.F.; Cheng, S.G.; Xie, D.; Ma, P.T. Distribution characteristics and health risks assessment of metals in drinking water sources from the Luhun Reservior. Environ. Sci. 2018, 39, 89–98. [Google Scholar]
- Li, S.Y.; Xu, Z.; Cheng, X.; Zhang, Q. Dissolved trace elements and heavy metals in the Danjiangkou Reservoir, China. Environ. Geol. 2008, 55, 977–983. [Google Scholar] [CrossRef]
- Mi, W.J.; Song, G.; Zhang, Y.; Zhu, Y.; Bi, Y. Contents and risk assessment of heavy metals in water environment of Lushui Reservoir. Environ. Sci. Technol. 2023, 46, 9–16. [Google Scholar]
- Liu, Z.T.; Li, C.H.; Zhang, G.Y. Application of principal component analysis to the distributions of heavy metals in the water of lakes and reservoirs in Yunnan Province. Res. Environ. Sci. 2010, 23, 459–466. [Google Scholar]
- Tu, C.L.; Cun, D.; Tao, L.; Chen, C.; Zou, Z.; He, C.; Pang, L. Distribution and health risk assessment of heavy metals in Xiaohuangni River Basin on Yunnan-Guizhou Plateau. Environ. Chem. 2023, 42, 4238–4252. [Google Scholar]
- Zhang, Y.J.; Deng, M.; Huang, X.-R.; Yao, J.; Li, Y.-Y.; Liu, R. Health risk assessment of metals form drinking water sources in Chongqing Ecological Protection Area. Adm. Tech. Environ. Monit. 2017, 29, 32–36. [Google Scholar]
- He, S.J.; Zhao, R.-Y.; Li, Z.-T.; Huang, S.-Q.; Lai, X.-H. Health Risk Assessment and Source Analysis of Heavy Metal Pollution in the Liangtan River Basin, Chongqing City. J. Hydroecol. 2023, 44, 115–123. [Google Scholar]
- He, Y.; Hong, X.; Bi, X.Y. Characteristic and sources of heavy metal pollution in water environment of Jiuzhou River basin. Environ. Chem. 2021, 40, 240–253. [Google Scholar]
- Zhang, Q.H.; Wei, Y.Z.; Cao, J.H.; Yu, S. Heavy metal pollution of the drinking water sources in the Liujiang River Basin, and related health risk assessments. Environ. Sci. 2018, 39, 1598–1607. [Google Scholar]
- Zhang, M.; Zhu, G.-Y.; Hua, G.-C.; Shi, W.-J. Spatial distribution characteristics and health risk assessment of heavy metals in Yamdrok Lake, Tibet. Water Resour. Hydropower Northeast China 2024, 3, 23–28. [Google Scholar]
- Lü, L.L.; Li, Z.X.; Huang, Y.; Cui, C. Distribution characteristics and risk assessment of heavy metals in Niyang River, Tibet. Trans. Chin. Soc. Agric. Eng. 2019, 35, 193–199. [Google Scholar]
- Qin, H.H.; Gao, B.; Huang, B.-X.; Zhang, S.-Q.; Dong, L.; Sun, Z.-X. Distribution characteristics and pollution risk assessment of heavy metals in Lhasa River Basin. Nonferrous Met. (Extr. Metall.) 2020, 10, 79–86. [Google Scholar]
- Wang, Z.G.; Zhan, H.M.; Xu, L.G.; Guo, H.K.; Li, J.L. Distribution of heavy metal and human health risk assessment of water bodies in the Basin of Poyang Lake into the Yangtze River. Resour. Environ. Yangtze Basin 2023, 32, 1281–1290. [Google Scholar]
- Chen, J.H. Study on Pollution Characteristics and Health Risk of Heavy Metals in Nanchang Section of the Fuhe River, in Hydraulic Engineering. Master’s Thesis, East China University of Technology, Shanghai, China, 2021. [Google Scholar]
- Zhao, Q.L.; Li, J.; Dong, Y.; Ao, Y.; Zhu, S.; Zhang, X.; Sun, Z. Pollution characteristics and human health risk assessment of heavy metals in water bodies around Poyang Lake. Nonferrous Met. Eng. 2024, 14, 194–206. [Google Scholar]
- Ge, Q.; Gao, B.; Lin, C.Y. Sources of heavy metals and related health risk of surfae water in Xinjiang River Basin. Sci. Technol. Eng. 2023, 23, 4984–4994. [Google Scholar]
- Zhang, Y.H.; Tang, Y.H.; Chen, J.H.; Sun, K.X.; Wu, J.X.; Liu, B. Pollution characteristics and health risk assessment of heavy metals in surface water of Pingshui River. Nonferrous Met. (Extr. Metall.) 2021, 7, 116–125. [Google Scholar]
- Zhao, Z.F.; Shi, W.; Qiu, X.C.; Ouyang, H.; Wang, S.Q.; Sun, X.Y.; Li, S.L. Distribution characteristics and health risk assessment of five heavy metals in the w of Qingshuihe River Basin. Adm. Tech. Environ. Monit. 2021, 33, 35–40. [Google Scholar]
- Pu, Y.L. Heavy Metal Contamination Pollution Assessment and Source Analysis of Natural Water Sediments in Shanghai, in Environmental Science. Master’s Thesis, Shanghai Normal University, Shanghai, China, 2018. [Google Scholar]
- Shi, X.S. The Time and Space Distribution and Geochemical Characteristics of Heavy Metals in Haihe River Trunk Stream Water, in Environmental Science. Master’s Thesis, Tianjin Normal University, Tianjin, China, 2014. [Google Scholar]
- Xin, C.L.; Ren, J.L.; Zhang, G.L.; Shao, Y.P.; Liu, S.M. Distributions and pollution status of heavy metals in the suspended particles of the Esyuaries and Coastal Area of Eastern Hainan. Environ. Sci. 2013, 34, 1315–1323. [Google Scholar]
- Wang, Q.; Mai, Z.Y.; Zhao, Y. Characteristics of heavy metal content and health risk Assessment in centralized drinking water sources in western Zhuhai. Shandong Chem. Ind. 2024, 53, 274–278. [Google Scholar] [CrossRef]
- Wang, R.S.; Xu, Q.J.; Zhang, X.; Wei, Q.S.; Yan, C.Z. Health risk assessment of heavy metals in typical township water sources in Dongjiang River Basin. Environ. Sci. 2012, 33, 3083–3088. [Google Scholar]
- Xie, W.P.; Chen, K.C.; Zhu, X.P.; Nie, X.P.; Zheng, G.M.; Pan, D.B.; Wang, S.B. Evaluation on heavy metal contents in water and fishes collected from the waterway in the Pearl River Delta, South China. J. Agro-Environ. Sci. 2010, 29, 1917–1923. [Google Scholar]
- Wang, H.H.; Sun, Y.; Zhang, S.; Xu, X.; Shang, C.; Li, C. Pollution characteristics and health risk assessment of heavy metals in drinking water source of Guiyang. Ecol. Environ. Sci. 2022, 31, 2039–2047. [Google Scholar]
- Guo, Y.Y.; Hua, J.H.; Zhu, Y.X.; Song, G.F.; Li, R.W.; Han, J.; Yang, L.H.; Zhou, B.S. Contents and risk assessment of heavy metals in surface water in the main canal of middle route of the South-to-North Water Diversion Project. Acta Ecol. Sin. 2022, 46, 995–1006. [Google Scholar]
- He, X.; Zhang, Y.J.; Lai, C.Y. Preliminary assessment on health risks of heavy metals in drinking water sources in Chengdu City. Water Resour. Dev. Manag. 2023, 6, 7–12. [Google Scholar]
- Zheng, Q.; Tang, C.M.; Liao, Y.M.; Quan, Q.M.; Li, Y.X. Preliminary assessment of health risk of heavy metals in urban drinking water source of Guangyuan City from 2012–2014. Sichuan Environ. 2020, 39, 172–178. [Google Scholar]
- Zhao, R.Y.; Huang, S.; Zhang, Q.; Liu, C.; Wang, Y.; Li, Z. Distribution characteristics of heavy metals and health risk assessment for Yingjing River. Ecol. Environ. Monit. Three Gorges 2021, 6, 24–31. [Google Scholar]
- Wu, J.W.; Zeng, Y.; Yang, Y.; Chen, Q. Environmental health risk assessment of heavy metals in drinking water source based on cloud model. J. Fuzhou Univ. (Nat. Sci. Ed.) 2014, 42, 327–332. [Google Scholar]
- Sun, Q.Z.; Zang, S.; Sun, L.; Li, M. Heavy metal pollution and its potential ecological risk assessment of Xianhe Lake. Chin. Agric. Sci. Bull. 2012, 28, 261–266. [Google Scholar]
- Liu, F.; Li, P.; Han, Z.; Zhaxi, G.; Zheng, Q.; Ni, Y.; Liu, S. Monitoring and health risk assessment of Heavy Metals in River of Spring City. Shandong Chem. Ind. 2017, 46, 176–178. [Google Scholar]
- Xu, M.J.; Yang, J.; Ren, X.J.; Zhao, H.Y.; Gao, F.Y.; Jiang, Y.J. Temporal-spatial distribution and health risk assessment of heavy metals in the surface water of Ningbo. Environ. Sci. 2023, 44, 1407–1415. [Google Scholar]
- Wang, L.; Wang, W.D.; Liu, D.; Li, G.; Yu, H.M.; Huang, S.; Xu, Y.Y. Risk assessment and source analysis of heavy metals in the river of a typical bay watershed. Environ. Sci. 2020, 41, 3194–3203. [Google Scholar]
- Zhang, G.Z.; Gao, G.H.; Wang, G.Z.; Wu, F.P.; Zhou, T.H. Water quality assessment and heavy metal health risk evaluation in Northwest Alpine Pastoral Area. China Water Wastewater 2023, 39, 42–48. [Google Scholar]
- Li, M.Y.; Xu, J.R.; Liu, Z.X.; Shi, Z.W. Characteristic analysis of trace heavy metal elements of Kunes River. Water Resour. Prot. 2009, 25, 44–48. [Google Scholar]
- Xu, X.Y.; Pu, X.; Liu, X.L. Tempo-spatial variations of dissolved organic carbon and heavy metals in Miyun Section of Chaobai River. J. Ecol. Rural Environ. 2020, 36, 1177–1184. [Google Scholar]
- Ye, D.Y. Water Environment Quality Status of Inlet Streams and Its Response to the Spatial Pattern of Land Use in the Watershed of Nansihu Lake, in Geography. Master’s Thesis, Qufu Normal University, Qufu, China, 2022. [Google Scholar]
LHC5 (μg/L) | AF | LWQC (μg/L) |
---|---|---|
690 μg/L | 2 | 27.9 μg/L |
Risk Class | Low | Medium | High | Mean |
---|---|---|---|---|
SQRs | 14 (22%) | 31 (48%) | 19 (30%) | 0.92 |
LQRs | 0 | 11 (17%) | 53 (83%) | 11 |
Effective Data for the Risk Quotient Method | LOW SQRs and Medium LQRs | SQRs and High LQRs | SQRs and High LQRs | SQRs and High LQRs | |
---|---|---|---|---|---|
Data volume | 64 | 11 | 3 | 31 | 19 |
Proportion (%) | 100 | 17 | 55 | 48 | 30 |
Basin (Reaches) | Province (Amount) | Data Amount | Mean of the SQRs | Mean of the LQRs |
---|---|---|---|---|
Yangtze River Basin, (middle and upper reaches) | Hunan, Hubei, Jiangxi (3) | 10 | 0.58 | 6.1 |
Yangtze River Basin, (lower reaches) | Anhui, Jiangsu, Shanghai (3) | 8 | 1.1 | 13 |
Southwest Basin | Tibet, Sichuan, Chongqing, Guizhou, Yunnan (5) | 18 | 0.56 | 7.0 |
Pearl River Basin | Guangdong, Guangxi, Hainan (3) | 7 | 0.92 | 11 |
Southeast Basin | Fujian, Zhejiang (2) | 3 | 0.78 | 9.7 |
Yellow River Basin and Huaihe River Basin | Beijing, Tianjin, Hebei, Shanxi (4) | 8 | 2.2 | 27 |
Songhua and Liaohe River Basin | Heilongjiang, Jilin, Liaoning (3) | 2 | 2.3 | 28 |
Continental Basin | Xinjiang, Ningxia, Gansu (3) | 5 | 0.65 | 8.0 |
Countries or Organizations | Standard | Category | Limit (μg/L) |
---|---|---|---|
United States | National Recommended Water [59] | CCC | 1000 |
Quality Criteria for Water 1976 [60] | domestic water | 300 | |
aquatic organisms | 1000 | ||
Quality Criteria for Water 1986 [61] | domestic water | 300 | |
aquatic organisms | 1000 | ||
WHO | Guidelines for Drinking-water Quality [62] | - | - |
EU | Drinking Water Directive [63] | 200 | |
Canada | Drinking Water Standards [64] | - | 300 |
Germany | Drinking Water Standards [65] | - | 200 |
France | Drinking Water Standards [66] | - | 200 |
China | Surface Water Quality Standard (GB 3838-2002) [6] | - | 300 |
Drinking Water Standard (GB 5749-2006) [7] | - | 300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Q.; Guo, F. Derivation of a Freshwater Quality Benchmark and an Ecological Risk Assessment of Ferric Iron in China. Toxics 2025, 13, 475. https://doi.org/10.3390/toxics13060475
Geng Q, Guo F. Derivation of a Freshwater Quality Benchmark and an Ecological Risk Assessment of Ferric Iron in China. Toxics. 2025; 13(6):475. https://doi.org/10.3390/toxics13060475
Chicago/Turabian StyleGeng, Qijie, and Fei Guo. 2025. "Derivation of a Freshwater Quality Benchmark and an Ecological Risk Assessment of Ferric Iron in China" Toxics 13, no. 6: 475. https://doi.org/10.3390/toxics13060475
APA StyleGeng, Q., & Guo, F. (2025). Derivation of a Freshwater Quality Benchmark and an Ecological Risk Assessment of Ferric Iron in China. Toxics, 13(6), 475. https://doi.org/10.3390/toxics13060475