Association of Maternal PM2.5 Exposure with Preterm Birth and Low Birth Weight: A Large-Scale Cohort Study in Northern Thailand (2016–2022)
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Study Design
2.3. Meteorological Data and Exposure Assessment
2.4. Data Collection and Outcome Measurements
2.5. Subgroup Analysis
2.6. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Population Characteristics
3.3. Characteristics of PM2.5 Exposure with Preterm Birth and Low Birth Weight: A Pregnancy Stage Analysis
3.4. Factors Associated with Preterm Birth, Low Birth Weight, and Small for Gestational Age: A Univariate Logistic Regression Analysis
3.5. Association of PM2.5 Exposure with Preterm Birth, Low Birth Weight, and Small for Gestational Age: A Multivariable Analysis Across Pregnancy Stage
3.6. Determining the Critical Threshold of PM2.5 Exposure for Adverse Pregnancy Outcomes Using ROC Curve Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gogna, P.; Borghese, M.M.; Villeneuve, P.J.; Kumarathasan, P.; Johnson, M.; Shutt, R.H.; Ashley-Martin, J.; Bouchard, M.F.; King, W.D. A cohort study of the multipollutant effects of PM2.5, NO2, and O3 on C-reactive protein levels during pregnancy. Environ. Epidemiol. 2024, 8, e308. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, Y.; Fu, Z.; Zhou, T.; Yuan, Z.; Gao, J.; Ji, Y. Ambient PM2.5, household environment and preterm birth: A birth cohort study in Shandong, China. Atmos. Environ. 2024, 332, 120612. [Google Scholar] [CrossRef]
- Jiang, P.; Li, Y.; Tong, M.K.; Ha, S.; Gaw, E.; Nie, J.; Mendola, P.; Wang, M. Wildfire particulate exposure and risks of preterm birth and low birth weight in the Southwestern United States. Public Health 2024, 230, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Lai, Y.; Zhuang, S.; Wei, Q.; Zhang, H.; Hu, Q.; Cheng, P.; Zhang, M.; Zhai, Y.; Wang, Q.; et al. The effects of prenatal PM2.5 oxidative potential exposure on feto-placental vascular resistance and fetal weight: A repeated-measures study. Environ. Res. 2023, 234, 116543. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, L.; Zhang, C.; Fu, H.; Yu, S.; Zhou, M.; Guo, J.; Fang, Z.; Li, A.; Zhao, M.; et al. PM2.5 leads to adverse pregnancy outcomes by inducing trophoblast oxidative stress and mitochondrial apoptosis via KLF9/CYP1A1 transcriptional axis. eLife 2023, 12, e85944. [Google Scholar] [CrossRef]
- Dadvand, P.; Basagaña, X.; Figueras, F.; Martinez, D.; Beelen, R.; Cirach, M.; de Nazelle, A.; Hoek, G.; Ostro, B.; Nieuwenhuijsen, M.J. Air pollution and preterm premature rupture of membranes: A spatiotemporal analysis. Am. J. Epidemiol. 2014, 179, 200–207. [Google Scholar] [CrossRef]
- Collins, A.; Weitkamp, J.H.; Wynn, J.L. Why are preterm newborns at increased risk of infection? Arch. Dis. Child.-Fetal Neonatal Ed. 2018, 103, F391–F394. [Google Scholar] [CrossRef]
- Siffel, C.; Hirst, A.; Sarda, S.; Kuzniewicz, M.; Li, D.-K. The clinical burden of extremely preterm birth in a large medical records database in the United States: Mortality and survival associated with selected complications. Early Hum. Dev. 2022, 171, 105613. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, C.; Ren, Z.; Feng, H.; Zuo, S.; Hao, J.; Liao, J.; Zou, Y.; Ma, L. Maternal PM2.5 exposure triggers preterm birth: A cross-sectional study in Wuhan, China. Glob. Health Res. Policy 2020, 5, 17. [Google Scholar] [CrossRef]
- Park, S.; Kwon, E.; Lee, G.; You, Y.A.; Kim, S.M.; Hur, Y.M.; Jung, S.; Jee, Y.; Park, M.H.; Na, S.H.; et al. Effect of Particulate Matter 2.5 on Fetal Growth in Male and Preterm Infants through Oxidative Stress. Antioxidants 2023, 12, 1916. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Gao, C.; Xu, X.; Li, L.; Liu, Y.; Li, Z.; Xia, Y.; Fang, X. Relationship Between Outdoor Air Pollutant Exposure and Premature Delivery in China-Systematic Review and Meta-Analysis. Int. J. Public Health 2023, 68, 1606226. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, X. The causal impact of fetal exposure to PM2.5 on birth outcomes: Evidence from rural China. Econ. Hum. Biol. 2024, 53, 101380. [Google Scholar] [CrossRef]
- Grillo, M.A.; Mariani, G.; Ferraris, J.R. Prematurity and Low Birth Weight in Neonates as a Risk Factor for Obesity, Hypertension, and Chronic Kidney Disease in Pediatric and Adult Age. Front. Med. 2021, 8, 769734. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, H.; Benmarhnia, T.; Ren, Z.; Luo, J.; Zhao, W.; Chen, S.; Wu, K.; Zhang, X.; Wang, L.; et al. Gestational PM2.5 exposure may increase the risk of small for gestational age through maternal blood pressure and hemoglobin: A mediation analysis based on a prospective cohort in China, 2014–2018. Ecotoxicol. Environ. Saf. 2022, 242, 113836. [Google Scholar] [CrossRef]
- Ludvigsson, J.F.; Lu, D.; Hammarström, L.; Cnattingius, S.; Fang, F. Small for gestational age and risk of childhood mortality: A Swedish population study. PLoS Med. 2018, 15, e1002717. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Ji, X.; Geng, X.; Yue, H.; Li, G.; Sang, N. Maternal PM2.5 exposure and abnormal placental nutrient transport. Ecotoxicol. Environ. Saf. 2021, 207, 111281. [Google Scholar] [CrossRef] [PubMed]
- Ardiyani, V.; Wooster, M.; Grosvenor, M.; Lestari, P.; Suri, W. The infiltration of wildfire smoke and its potential dose on pregnant women: Lessons learned from Indonesia wildfires in 2019. Heliyon 2023, 9, e18513. [Google Scholar] [CrossRef]
- Ho, T.H.; Van Dang, C.; Pham, T.T.B.; Thi Hien, T.; Wangwongwatana, S. Ambient particulate matter (PM2.5) and adverse birth outcomes in Ho Chi Minh City, Vietnam. Hyg. Environ. Health Adv. 2023, 5, 100049. [Google Scholar] [CrossRef]
- Ponsawansong, P.; Prapamontol, T.; Rerkasem, K.; Chantara, S.; Tantrakarnapa, K.; Kawichai, S.; Li, G.; Fang, C.; Pan, X.; Zhang, Y. Sources of PM2.5 Oxidative Potential During Haze and Non-Haze Seasons in Chiang Mai, Thailand. Aerosol Air Qual. Res. 2023, 23, 230030. [Google Scholar] [CrossRef]
- Kawichai, S.; Prapamontol, T.; Cao, F.; Song, W.; Zhang, Y.-L. Characteristics of Carbonaceous Species of PM2.5 in Chiang Mai City, Thailand. Aerosol Air Qual. Res. 2024, 24, 230269. [Google Scholar] [CrossRef]
- Gazette, R. Ministry of Public Health Announcement on General Air Quality Standards. Available online: https://ratchakitcha.soc.go.th/documents/140D157S0000000000300.pdf (accessed on 1 June 2023).
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://iris.who.int/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1 (accessed on 22 September 2021).
- Kawichai, S.; Sripan, P.; Rerkasem, A.; Rerkasem, K.; Srisukkham, W. Long-term retrospective predicted concentration of PM2.5 in upper northern Thailand using machine learning models. Toxics 2025, 13, 170. [Google Scholar] [CrossRef] [PubMed]
- Villar, J.; Cheikh Ismail, L.; Victora, C.G.; Ohuma, E.O.; Bertino, E.; Altman, D.G.; Lambert, A.; Papageorghiou, A.T.; Carvalho, M.; Jaffer, Y.A.; et al. International standards for newborn weight, length, and head circumference by gestational age and sex: The Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 2014, 384, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Bachwenkizi, J.; Liu, C.; Meng, X.; Zhang, L.; Wang, W.; van Donkelaar, A.; Martin, R.V.; Hammer, M.S.; Chen, R.; Kan, H. Maternal exposure to fine particulate matter and preterm birth and low birth weight in Africa. Environ. Int. 2022, 160, 107053. [Google Scholar] [CrossRef]
- Parasin, N.; Amnuaylojaroen, T.; Saokaew, S. Prenatal PM2.5 Exposure and Its Association with Low Birth Weight: A Systematic Review and Meta-Analysis. Toxics 2024, 12, 446. [Google Scholar] [CrossRef]
- Ghosh, R.; Causey, K.; Burkart, K.; Wozniak, S.; Cohen, A.; Brauer, M. Ambient and household PM2.5 pollution and adverse perinatal outcomes: A meta-regression and analysis of attributable global burden for 204 countries and territories. PLoS Med. 2021, 18, e1003718. [Google Scholar] [CrossRef] [PubMed]
- Mueller, W.; Tantrakarnapa, K.; Johnston, H.J.; Loh, M.; Steinle, S.; Vardoulakis, S.; Cherrie, J.W. Exposure to ambient particulate matter and biomass burning during pregnancy: Associations with birth weight in Thailand. J. Expo. Sci. Environ. Epidemiol. 2021, 31, 672–682. [Google Scholar] [CrossRef]
- Bekkar, B.; Pacheco, S.; Basu, R.; DeNicola, N. Association of Air Pollution and Heat Exposure with Preterm Birth, Low Birth Weight, and Stillbirth in the US: A Systematic Review. JAMA Netw. Open 2020, 3, e208243. [Google Scholar] [CrossRef]
- Sun, X.; Luo, X.; Zhao, C.; Chung Ng, R.W.; Lim, C.E.; Zhang, B.; Liu, T. The association between fine particulate matter exposure during pregnancy and preterm birth: A meta-analysis. BMC Pregnancy Childbirth 2015, 15, 300. [Google Scholar] [CrossRef]
- Pedersen, M.; Giorgis-Allemand, L.; Bernard, C.; Aguilera, I.; Andersen, A.M.; Ballester, F.; Beelen, R.M.; Chatzi, L.; Cirach, M.; Danileviciute, A.; et al. Ambient air pollution and low birthweight: A European cohort study (ESCAPE). Lancet Respir. Med. 2013, 1, 695–704. [Google Scholar] [CrossRef]
- Rich, D.Q.; Liu, K.; Zhang, J.; Thurston, S.W.; Stevens, T.P.; Pan, Y.; Kane, C.; Weinberger, B.; Ohman-Strickland, P.; Woodruff, T.J.; et al. Differences in Birth Weight Associated with the 2008 Beijing Olympics Air Pollution Reduction: Results from a Natural Experiment. Environ. Health Perspect. 2015, 123, 880–887. [Google Scholar] [CrossRef]
- O’Sharkey, K.; Xu, Y.; Cabison, J.; Rosales, M.; Yang, T.; Chavez, T.; Johnson, M.; Lerner, D.; Lurvey, N.; Corral, C.M.T.; et al. Effects of in-utero personal exposure to PM2.5 sources and components on birthweight. Sci. Rep. 2023, 13, 21987. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhao, Y.; Kan, J.; Chen, R.; Martin, R.; van Donkelaar, A.; Ao, J.; Zhang, J.; Kan, H.; Hua, J. Prenatal Exposure to Specific PM2.5 Chemical Constituents and Preterm Birth in China: A Nationwide Cohort Study. Environ. Sci. Technol. 2020, 54, 14494–14501. [Google Scholar] [CrossRef]
- Tapia, V.L.; Vasquez, B.V.; Vu, B.; Liu, Y.; Steenland, K.; Gonzales, G.F. Association between maternal exposure to particulate matter PM2.5 and adverse pregnancy outcomes in Lima, Peru. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 689–697. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Chen, Y.; Yao, C.; Che, Z.; Cao, J. Maternal exposure to fine particulate matter (PM2.5) and pregnancy outcomes: A meta-analysis. Environ. Sci. Pollut. Res. Int. 2015, 22, 3383–3396. [Google Scholar] [CrossRef]
- Guan, T.; Xue, T.; Gao, S.; Hu, M.; Liu, X.; Qiu, X.; Liu, X.; Zhu, T. Acute and chronic effects of ambient fine particulate matter on preterm births in Beijing, China: A time-series model. Sci. Total Environ. 2019, 650, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Estarlich, M.; Ballester, F.; Aguilera, I.; Fernández-Somoano, A.; Lertxundi, A.; Llop, S.; Freire, C.; Tardón, A.; Basterrechea, M.; Sunyer, J.; et al. Residential exposure to outdoor air pollution during pregnancy and anthropometric measures at birth in a multicenter cohort in Spain. Environ. Health Perspect. 2011, 119, 1333–1338. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yan, J.; Jiang, W. The role of maternal age on adverse pregnancy outcomes among primiparous women with singleton birth: A retrospective cohort study in urban areas of China. J. Matern. Fetal Neonatal Med. 2023, 36, 2250894. [Google Scholar] [CrossRef]
- Du, H.; Sun, Y.; Zhang, Y.; Wang, S.; Zhu, H.; Chen, S.; Pan, H. Interaction of PM2.5 and pre-pregnancy body mass index on birth weight: A nationwide prospective cohort study. Front. Endocrinol. 2022, 13, 963827. [Google Scholar] [CrossRef]
- Zhang, M.; Mueller, N.T.; Wang, H.; Hong, X.; Appel, L.J.; Wang, X. Maternal Exposure to Ambient Particulate Matter ≤ 2.5 µm During Pregnancy and the Risk for High Blood Pressure in Childhood. Hypertension 2018, 72, 194–201. [Google Scholar] [CrossRef]
- Ahn, T.G.; Kim, Y.J.; Lee, G.; You, Y.A.; Kim, S.M.; Chae, R.; Hur, Y.M.; Park, M.H.; Bae, J.G.; Lee, S.J.; et al. Association Between Individual Air Pollution (PM10, PM2.5) Exposure and Adverse Pregnancy Outcomes in Korea: A Multicenter Prospective Cohort, Air Pollution on Pregnancy Outcome (APPO) Study. J. Korean Med. Sci. 2024, 39, e131. [Google Scholar] [CrossRef]
- Fleischer, N.L.; Merialdi, M.; van Donkelaar, A.; Vadillo-Ortega, F.; Martin, R.V.; Betran, A.P.; Souza, J.P. Outdoor air pollution, preterm birth, and low birth weight: Analysis of the world health organization global survey on maternal and perinatal health. Environ. Health Perspect. 2014, 122, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gong, X.; Han, B.; Chu, M.; Gong, C.; Yang, J.; Chen, L.; Wang, J.; Bai, Z.; Zhang, Y. Ambient PM2.5 exposures and systemic inflammation in women with early pregnancy. Sci. Total Environ. 2022, 829, 154564. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.Y.; Li, W.K.; Li, J.S.; Hong, Q.H.; Khodahemmati, S.; Gao, J.F.; Zhou, Z.X. Effects of DNA Damage and Oxidative Stress in Human Bronchial Epithelial Cells Exposed to PM2.5 from Beijing, China, in Winter. Int. J. Environ. Res. Public Health 2020, 17, 4874. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, J.; Shen, J.; Del Rosario, I.; Janzen, C.; Devaskar, S.U.; Lakey, P.S.J.; Shiraiwa, M.; Weichenthal, S.; Zhu, Y.; et al. Ambient exposure to fine particulate matter with oxidative potential affects oxidative stress biomarkers in pregnancy. Am. J. Epidemiol. 2024, 194, 27–34. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, S.; Wang, C.; Fu, R.; Wu, D.; Abuduwaili, D.; Wang, C. Relationship between environmental PM2.5 exposure in early pregnancy and thyroid hormone levels in pregnant women. Ecotoxicol. Environ. Saf. 2024, 286, 117182. [Google Scholar] [CrossRef] [PubMed]
- Rider, C.F.; Carlsten, C. Air pollution and DNA methylation: Effects of exposure in humans. Clin. Epigenetics 2019, 11, 131. [Google Scholar] [CrossRef]
- Breton, C.V.; Marsit, C.J.; Faustman, E.; Nadeau, K.; Goodrich, J.M.; Dolinoy, D.C.; Herbstman, J.; Holland, N.; LaSalle, J.M.; Schmidt, R.; et al. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children’s Environmental Health Studies: The Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ. Health Perspect. 2017, 125, 511–526. [Google Scholar] [CrossRef]
- Fouladi, F.; Bailey, M.J.; Patterson, W.B.; Sioda, M.; Blakley, I.C.; Fodor, A.A.; Jones, R.B.; Chen, Z.; Kim, J.S.; Lurmann, F.; et al. Air pollution exposure is associated with the gut microbiome as revealed by shotgun metagenomic sequencing. Environ. Int. 2020, 138, 105604. [Google Scholar] [CrossRef]
- Jarernwong, K.; Gheewala, S.H.; Sampattagul, S. Health Impact Related to Ambient Particulate Matter Exposure as a Spatial Health Risk Map Case Study in Chiang Mai, Thailand. Atmosphere 2023, 14, 261. [Google Scholar] [CrossRef]
- Ming, X.; Yang, Y.; Li, Y.; He, Z.; Tian, X.; Cheng, J.; Zhou, W. Association between risk of preterm birth and long-term and short-term exposure to ambient carbon monoxide during pregnancy in chongqing, China: A study from 2016–2020. BMC Public Health 2024, 24, 1411. [Google Scholar] [CrossRef]
- Fussell, J.C.; Jauniaux, E.; Smith, R.B.; Burton, G.J. Ambient air pollution and adverse birth outcomes: A review of underlying mechanisms. BJOG 2024, 131, 538–550. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Miao, H.; Warren, J.L.; Ren, M.; Benmarhnia, T.; Knibbs, L.D.; Zhang, H.; Zhao, Q.; Huang, C. Association of maternal ozone exposure with term low birth weight and susceptible window identification. Environ. Int. 2021, 146, 106208. [Google Scholar] [CrossRef] [PubMed]
- Evangelopoulos, D.; Katsouyanni, K.; Schwartz, J.; Walton, H. Quantifying the short-term effects of air pollution on health in the presence of exposure measurement error: A simulation study of multi-pollutant model results. Environ. Health 2021, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, T.; Li, Z.; Hong, J. Exploring pollutant joint effects in disease through interpretable machine learning. J. Hazard. Mater. 2024, 467, 133707. [Google Scholar] [CrossRef]
- Ramírez, A.S.; Ramondt, S.; Van Bogart, K.; Perez-Zuniga, R. Public Awareness of Air Pollution and Health Threats: Challenges and Opportunities for Communication Strategies to Improve Environmental Health Literacy. J. Health Commun. 2019, 24, 75–83. [Google Scholar] [CrossRef]
Characteristics | Total | PM2.5 ≤ 15.0 µg/m3 A | PM2.5 15.1–37.5 µg/m3 | PM2.5 > 37.5 µg/m3 | p C |
---|---|---|---|---|---|
n | 16,965 | 445 (2.6%) | 15,170 (89.4%) | 1350 (8.0%) | |
Maternal Characteristics | |||||
Median age (years) | 29.0 (25.0–33.0) | 30.0 (26.0–34.0) | 29.0 (25.0–33.0) | 29.0 (25.0–33.0) | |
Age group | |||||
<20 years | 686 (4.1%) | 7 (1.6%) | 624 (4.1%) | 55 (4.1%) | 0.019 |
20–35 years | 13,813 (81.4%) | 356 (80.0%) | 12,356 (81.5%) | 1101 (81.6%) | |
>35 years | 2466 (14.5%) | 82 (18.4%) | 2190 (14.4%) | 194 (14.4%) | |
Median pre-pregnancy BMI (kg/m2) | 21.9 (19.7–24.9) | 21.9 (19.6,25.5) | 21.9 (19.7, 24.9) | 21.5 (19.5, 24.4) | |
Classification of BMI B | |||||
Underweight (<18.5) | 2302 (13.6%) | 69 (15.5%) | 2023 (13.3%) | 210 (15.5%) | |
Normal weight (18.5– 22.9) | 7919 (46.7%) | 188 (42.3%) | 7086 (46.7%) | 645 (47.8%) | |
Overweight (23.0–24.9) | 2668 (15.7%) | 67 (15.0%) | 2388 (15.8%) | 213 (15.8%) | 0.015 |
Obese (≥25.0) | 4076 (24.0%) | 121 (27.2%) | 3673 (24.2%) | 282 (20.9%) | |
Occupation | |||||
Outdoor | 3813 (22.5%) | 110 (24.7%) | 3380 (22.3%) | 323 (23.9%) | |
Indoor | 8955 (52.8%) | 209 (47.0%) | 8017 (52.9%) | 729 (54.0%) | 0.017 |
Jobless | 4197 (24.7%) | 126 (28.3%) | 3773 (24.8%) | 298 (22.1%) | |
Education | |||||
No education or lower than secondary school | 3106 (18.3%) | 98 (22.0%) | 2754 (18.2%) | 254 (18.8%) | 0.547 |
Secondary school or higher | 13,859 (81.7%) | 347 (78.0%) | 12,416 (81.8%) | 1096 (81.2%) | |
Median frequency of antenatal care visits | 8 (6,11) | 8 (6,10) | 8 (6,11) | 7 (6,10) | |
Antenatal care visits | |||||
<8 visits | 6848 (40.4%) | 189 (42.5%) | 5971 (39.4%) | 688 (51.0%) | <0.001 |
≥8 visits | 10,117 (59.6%) | 256 (57.5%) | 9199 (60.6%) | 662 (49.0%) | |
Parity | |||||
Nulliparous women | 9138 (53.9%) | 227 (51.0%) | 8214 (54.2%) | 697 (51.6%) | 0.097 |
Parous women | 7827 (46.1%) | 218 (49.0%) | 6956 (45.8%) | 653 (48.4%) | |
History of abortion | |||||
None | 13,174 (77.7%) | 335 (75.3%) | 11,804 77.8%) | 1035 (76.7%) | 0.298 |
Once or more | 3791 (22.3%) | 110 (24.7%) | 3366 (22.2%) | 315 (23.3%) | |
Complications | |||||
Pregnancy-induced hypertension | 1481 (8.7%) | 57 (12.8%) | 1280 (8.4%) | 144 (10.7%) | <0.001 |
Gestational diabetes | 2401 (14.2%) | 77 (17.3%) | 2130 (14.0%) | 194 (14.4%) | 0.146 |
Thalassemia | 2866 (16.9%) | 62 (13.9%) | 2568 (16.9%) | 236 (17.5%) | 0.210 |
Hepatitis B virus | 717 (4.2%) | 15 (3.4%) | 652 (4.3%) | 50 (3.7%) | 0.385 |
Human immunodeficiency virus | 133 (0.8%) | 1 (0.22%) | 122 (0.8%) | 10 (0.7%) | 0.802 |
Syphilis | 207 (1.2%) | 15 (3.4%) | 175 (1.2%) | 17 (1.3%) | 0.542 |
Condyloma | 24 (0.1%) | 1 (0.2%) | 20 (0.1%) | 3 (0.2%) | 0.625 |
Epilepsy | 18 (0.1%) | 2 (0.5%) | 13 (0.1%) | 3 (0.2%) | 0.210 |
Infant Characteristics | |||||
Median gestational age at delivery (weeks) | 38 (38, 39) | 38 (36,39) | 39 (38, 39) | 38 (37, 39) | <0.001 D |
Median birthweight (grams) | 3065 (2785, 3350) | 2950 (2470, 3240) | 3075 (2800, 3355) | 2980 (2650, 3290) | <0.001 D |
APGAR score at 5 min | |||||
<7/10 | 256 (1.5%) | 19 (4.3%) | 207 (1.4%) | 30 (2.2%) | <0.001 |
≥7/10 | 16,709 (98.5%) | 426 (95.7%) | 14,963 (98.6%) | 1320 (97.8%) | |
Infant sex | |||||
Male | 8624 (50.8%) | 211 (47.4%) | 7692 (50.7%) | 721 (53.4%) | 0.057 |
Female | 8341 (49.2%) | 234 (52.6%) | 7478 (49.3%) | 629 (46.6%) | |
Mode of delivery | |||||
Vaginal delivery | 11,812 (69.6%) | 273 (61.3%) | 10,600 (69.9%) | 939(69.6%) | <0.001 |
Cesarian section | 5153 (30.4%) | 172 (38.7%) | 4570 (30.1%) | 411 (30.4%) | |
Hospital sites | |||||
Maharaj Nakorn Chiang Mai hospital | 8420 (49.6%) | 259 (58.2%) | 7495 (49.4%) | 666 (49.3%) | 0.001 |
Regional Health Promotion Center1 Hospital, Chiang Mai | 8545 (50.4%) | 186 (41.8%) | 7675 (50.6%) | 684 (50.7%) |
Variable | Preterm Birth A | Term Birth | LBW B | NBW | SGA C | Non-SGA |
---|---|---|---|---|---|---|
n (%) | 1780 (10.5%) | 15,185 (89.5%) | 1894 (11.2%) | 15,071 (88.8%) | 1361 (8.0%) | 15,604 (92.0%) |
PM2.5 Exposure Concentrations D | ||||||
1st trimester | ||||||
Median (IQR) | 22.3 (14.4, 39.5) | 22.0 (14.4, 40.1) | 21.8 (14.4, 39.5) | 22.1 (14.4, 40.1) | 21.3 (14.5, 39.3) | 22.1 (14.4, 40.1) |
Range | 7.9–70.4 | 8.1–70.4 | 7.9–70.4 | 8.1–70.4 | 8.1–70.4 | 7.9–70.4 |
2nd trimester | ||||||
Median (IQR) | 20.2 (13.7, 37.0) | 20.8 (13.7, 37.1) | 20.5 (13.6, 37.3) | 20.4 (13.7, 37.0) | 20.7 (13.5, 36.6) | 20.4 (13.8, 37.1) |
Range | 8.1–70.4 | 8.1–70.4 | 8.1–70.4 | 8.1–70.4 | 8.1–70.4 | 8.1–70.4 |
3rd trimester | ||||||
Median (IQR) | 19.4 (12.8, 34.4) | 19.9 (13.2, 35.8) | 19.4 (12.7, 34.8) | 19.9 (13.2, 3) | 19.9 (12.7, 37.0) | 19.8 (13.1, 35.5) |
Range | 5.1–118.9 | 7.6–73.6 | 5.1–118.9 | 7.3–78.3 | 5.1–103.5 | 6.2–118.9 |
Entire pregnancy | ||||||
Median (IQR) | 26.5 (19.5, 33.9) | 27.1 (21.0, 32.3) | 26.9 (20.0, 33.6) | 27.1 (20.9, 32.3) | 26.9 (20.8, 32.3) | 27.1 (20.9, 32.5) |
Range | 9.5–52.9 | 12.5–40.3 | 9.5–52.9 | 12.3–41.8 | 10.5–46.6 | 9.5–52.9 |
Pregnancy Period | PM2.5 Category (μg/m3) | Preterm Birth | LBW | SGA | |||
---|---|---|---|---|---|---|---|
aOR (95% CI) | p A | aOR (95% CI) | p A | aOR (95% CI) | p A | ||
First trimester | ≤15.0 | 1.05 (0.93, 1.19) | 0.417 | 1.04 (0.92, 1.17) | 0.546 | 1.00 (0.88, 1.15) | 0.965 |
15.1–37.5 | Ref | Ref | Ref | ||||
>37.5 | 0.99 (0.87, 1.11) | 0.811 | 0.98 (0.87, 1.10) | 0.735 | 0.95 (0.83, 1.09) | 0.466 | |
Second trimester | ≤15.0 | 0.98 (0.87,1.11) | 0.779 | 0.99 (0.88,1.11) | 0.889 | 1.02 (0.90, 1.17) | 0.718 |
15.1–37.5 | Ref | Ref | Ref | ||||
>37.5 | 1.02 (0.90, 1.16) | 0.702 | 1.06 (0.94, 1.20) | 0.314 | 0.96 (0.83,1.10) | 0.550 | |
Third trimester | ≤15.0 | 1.04 (0.92, 1.16) | 0.552 | 1.04 (0.93, 1.17) | 0.470 | 1.09 (0.96, 1.24) | 0.204 |
15.1–37.5 | Ref | Ref | Ref | ||||
>37.5 | 1.05 (0.93, 1.20) | 0.420 | 1.13 (0.99, 1.27) | 0.055 | 1.11 (0.97, 1.28) | 0.141 | |
Entire pregnancy | ≤15.0 | 3.18 (2.52, 4.01) | <0.001 | 3.02 (2.41, 3.80) | <0.001 | 1.07 (0.76, 1.51) | 0.696 |
15.1–37.5 | Ref | Ref | Ref | ||||
>37.5 | 2.19 (1.89, 2.55) | <0.001 | 1.99 (1.71, 2.31) | <0.001 | 1.04 (0.85, 1.28) | 0.673 |
Pregnancy Period | Categories | N | Preterm Birth | LBW | ||
---|---|---|---|---|---|---|
aOR (95% CI) | p A | aOR (95% CI) | p A | |||
Maternal age (years) | ≤35.0 | 14,136 | 1.07 (0.98, 1.16) | 0.125 | 1.06 (0.98, 1.02) | 0.173 |
>35.0 | 2384 | 1.17 (0.98, 1.39) | 0.069 | 1.35 (1.14, 159) | 0.001 | |
Pre-pregnancy BMI (kg/m2) | <18.5 | 14,287 | 1.26 (1.05, 1.50) | 0.016 | 1.14 (0.697, 1.33) | 0.122 |
≥18.5 | 2233 | 1.06 (0.98, 1.15) | 0.173 | 1.14 (0.98, 1.34) | 0.098 | |
Pregnancy-induced hypertension | Yes | 1424 | 1.09 (1.01,1.19) | 0.030 | 1.11 (1.02, 1.20) | 0.012 |
No | 15,096 | 1.12 (0.91, 1.37) | 0.276 | 1.19 (0.97, 1.46) | 0.089 | |
Parity | Nulliparous | 9811 | 1.12 (1.02, 1.24) | 0.023 | 1.15 (1.02, 1.29) | 0.022 |
Parous | 7609 | 1.04 (0.93, 1.17) | 0.458 | 1.09 (0.99, 1.20) | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thaichana, P.; Sripan, P.; Rerkasem, A.; Tongsong, T.; Sangsawang, S.; Kawichai, S.; Srisukkham, W.; Wanapirak, C.; Sirilert, S.; Mattawanon, N.; et al. Association of Maternal PM2.5 Exposure with Preterm Birth and Low Birth Weight: A Large-Scale Cohort Study in Northern Thailand (2016–2022). Toxics 2025, 13, 304. https://doi.org/10.3390/toxics13040304
Thaichana P, Sripan P, Rerkasem A, Tongsong T, Sangsawang S, Kawichai S, Srisukkham W, Wanapirak C, Sirilert S, Mattawanon N, et al. Association of Maternal PM2.5 Exposure with Preterm Birth and Low Birth Weight: A Large-Scale Cohort Study in Northern Thailand (2016–2022). Toxics. 2025; 13(4):304. https://doi.org/10.3390/toxics13040304
Chicago/Turabian StyleThaichana, Pak, Patumrat Sripan, Amaraporn Rerkasem, Theera Tongsong, Suraphan Sangsawang, Sawaeng Kawichai, Worawut Srisukkham, Chanane Wanapirak, Sirinart Sirilert, Natnita Mattawanon, and et al. 2025. "Association of Maternal PM2.5 Exposure with Preterm Birth and Low Birth Weight: A Large-Scale Cohort Study in Northern Thailand (2016–2022)" Toxics 13, no. 4: 304. https://doi.org/10.3390/toxics13040304
APA StyleThaichana, P., Sripan, P., Rerkasem, A., Tongsong, T., Sangsawang, S., Kawichai, S., Srisukkham, W., Wanapirak, C., Sirilert, S., Mattawanon, N., Phanpong, C., Ongprasert, K., Derraik, J. G. B., & Rerkasem, K. (2025). Association of Maternal PM2.5 Exposure with Preterm Birth and Low Birth Weight: A Large-Scale Cohort Study in Northern Thailand (2016–2022). Toxics, 13(4), 304. https://doi.org/10.3390/toxics13040304