Neurotoxic Effects of Bisphenol (BPA): Mini-Reviews
Abstract
1. Introduction
2. Methodology
3. Results
3.1. Bisphenol A-Induced Neurotoxicity: Evidence from Cell Cultures
3.2. Teratogenic Potential of Bisphenol A in the Central Nervous System and Its Interference with Synaptic Plasticity in the Prefrontal Cortex and Hippocampus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vandenberg, L.N.; Hauser, R.; Marcus, M.; Olea, N.; Welshons, W.V. Human exposure to bisphenol A (BPA). Reprod. Toxicol. 2007, 24, 139–177. [Google Scholar] [CrossRef]
- Buoso, E.; Masi, M.; Limosani, R.V.; Oliviero, C.; Saeed, S.; Iulini, M.; Passoni, F.C.; Racchi, M.; Corsini, E. Endocrine Disrupting Toxicity of Bisphenol A and Its Analogs: Implications in the Neuro-Immune Milieu. J. Xenobiot. 2025, 15, 13. [Google Scholar] [CrossRef]
- Richter, C.A.; Birnbaum, L.S.; Farabollini, F.; Newbold, R.R.; Rubin, B.S.; Talsness, C.E.; Vandenbergh, J.G.; Walser-Kuntz, D.R.; Saal, F.S.V. In vivo effects of bisphenol A in laboratory rodent studies. Reprod. Toxicol. 2007, 24, 199–224. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S. Effects of Bisphenol-A and Other Endocrine Disruptors Compared With Abnormalities of Schizophrenia: An Endocrine-Disruption Theory of Schizophrenia. Schizophr. Bull. 2009, 35, 256–278. [Google Scholar] [CrossRef] [PubMed]
- Wolstenholme, J.T.; Rissman, E.F.; Connelly, J.J. The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm. Behav. 2011, 59, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, T.; Frankfurt, M.; Luine, V. Estrogen-Induced Memory Enhancements Are Blocked by Acute Bisphenol A in Adult Female Rats: Role of Dendritic Spines. Endocrinology 2012, 153, 3357–3367. [Google Scholar] [CrossRef]
- Farabollini, F.; Porrini, S.; Della Seta, D.; Bianchi, F.; Dessì-Fulgheri, F. Effects of perinatal exposure to bisphenol A on sociosexual behavior of female and male rats. Environ. Health Perspect. 2002, 110 (Suppl. 3), 409–414. [Google Scholar] [CrossRef]
- Foehr, E.D.; Bohuslav, J.; Chen, L.F.; DeNoronha, C.; Geleziunas, R.; Lin, X.; O’MAhony, A.; Greene, W.C. The NF-kappa B-inducing kinase induces PC12 cell differentiation and prevents apoptosis. J. Biol. Chem. 2000, 275, 34021–34024. [Google Scholar] [CrossRef]
- Gómez-Santos, C.; Ferrer, I.; Reiriz, J.; Viñals, F.; Barrachina, M.; Ambrosio, S. MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells. Brain Res. 2002, 935, 32–39. [Google Scholar] [CrossRef]
- Gomes, F.T.D.S.; Andrade, A.V.D.D.; Moura Melo, P.K.; Júnior, R.R.D.S.; Souza, D.L.S.D.; Tavares, É.A.F.; Sena, I.G.D.; Fernandes, T.A.A.D.M.; Morais, P.L.A.D.G.; Fonseca, I.A.T.; et al. The Effects of the Association Between a High-Fat Diet and Physical Exercise on BDNF Expression in the Hippocampus: A Comprehensive Review. Life 2025, 15, 945. [Google Scholar] [CrossRef]
- Kim, M.E.; Park, H.R.; Gong, E.J.; Choi, S.Y.; Kim, H.S.; Lee, J. Exposure to bisphenol A appears to impair hippocampal neurogenesis and spatial learning and memory. Food Chem. Toxicol. 2011, 49, 3383–3389. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Liu, H.; Liu, Y.; Wei, W.; Sun, Q.; Wen, D.; Jia, L. Protective effect of alpha-lipoic acid on bisphenol A-induced learning and memory impairment in developing mice: nNOS and keap1/Nrf2 pathway. Food Chem. Toxicol. 2021, 154, 112307. [Google Scholar] [CrossRef]
- Zhang, H.; Kuang, H.; Luo, Y.; Liu, S.; Meng, L.; Pang, Q.; Fan, R. Low-dose bisphenol A exposure impairs learning and memory ability with alterations of neuromorphology and neurotransmitters in rats. Sci. Total Environ. 2019, 697, 134036. [Google Scholar] [CrossRef]
- Wang, H.; Chang, L.; Aguilar, J.S.; Dong, S.; Hong, Y. Bisphenol-A exposure induced neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Environ. Int. 2019, 127, 324–332. [Google Scholar] [CrossRef]
- Lee, C.T.; Hsieh, C.F.; Wang, J.Y. Bisphenol a Induces Autophagy Defects and AIF-Dependent Apoptosis via HO-1 and AMPK to Degenerate N2a Neurons. Int. J. Mol. Sci. 2021, 22, 10948. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, A.H.; Lee, S.; Lee, Y.; Lee, W.J.; Chang, S.C.; Lee, J. Sensitive neurotoxicity assessment of bisphenol A using double immunocytochemistry of DCX and MAP2. Arch. Pharm. Res. 2018, 41, 1098–1107. [Google Scholar] [CrossRef]
- Yin, Z.; Hua, L.; Chen, L.; Hu, D.; Li, J.; An, Z.; Tian, T.; Ning, H.; Ge, Y. Bisphenol-A exposure induced neurotoxicity and associated with synapse and cytoskeleton in Neuro-2a cells. Toxicol. In Vitro 2020, 67, 104911. [Google Scholar] [CrossRef]
- Kiso-Farnè, K.; Yaoi, T.; Fujimoto, T.; Itoh, K. Low Doses of Bisphenol A Disrupt Neuronal Differentiation of Human Neuronal Stem/Progenitor Cells. Acta Histochem. Cytochem. 2022, 55, 193–202. [Google Scholar]
- Flores, A.; Moyano, P.; Sola, E.; García, J.M.; García, J.; Frejo, M.T.; Guerra-Menéndez, L.; Labajo, E.; Lobo, I.; Abascal, L.; et al. Bisphenol-A Neurotoxic Effects on Basal Forebrain Cholinergic Neurons In Vitro and In Vivo. Biology 2023, 12, 782. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Li, Y.; Meng, L.; Li, G.; Luo, Z.; Fan, R. Neurotoxicity of BPA, BPS, and BPB for the hippocampal cell line (HT-22): An implication for the replacement of BPA in plastics. Chemosphere 2019, 226, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Yin, N.; Liang, S.; Yang, R.; Liu, S.; Lu, Y.; Jiang, L.; Zhou, Q.; Jiang, G.; Faiola, F. Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. Food Chem. Toxicol. 2020, 135, 111015. [Google Scholar] [CrossRef]
- Xing, L.; Xu, Y.; Xiao, Y.; Shang, L.; Liu, R.; Wei, X.; Jiang, J.; Hao, W. Embryotoxic and teratogenic effects of the combination of bisphenol A and genistein on in vitro cultured postimplantation rat embryos. Toxicol. Sci. 2010, 115, 577–588. [Google Scholar] [CrossRef]
- Sadowski, R.N.; Wise, L.M.; Park, P.Y.; Schantz, S.L.; Juraska, J.M. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience 2014, 279, 122–131. [Google Scholar] [CrossRef]
- Elsworth, J.D.; Jentsch, J.D.; Groman, S.M.; Roth, R.H.; Redmond, E.D.; Leranth, C. Low circulating levels of bisphenol-A induce cognitive deficits and loss of asymmetric spine synapses in dorsolateral prefrontal cortex and hippocampus of adult male monkeys. J. Comp. Neurol. 2015, 523, 1248–1257. [Google Scholar] [CrossRef]
- Castro, B.; Sánchez, P.; Torres, J.M.; Ortega, E. Effects of adult exposure to bisphenol a on genes involved in the physiopathology of rat prefrontal cortex. PLoS ONE 2013, 8, e73584. [Google Scholar] [CrossRef] [PubMed]
- Hanganu-Opatz, I.L. Between molecules and experience: Role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res. Rev. 2010, 64, 160–176. [Google Scholar] [CrossRef]
- Bowman, R.E.; Luine, V.; Khandaker, H.; Villafane, J.J.; Frankfurt, M. Adolescent bisphenol-A exposure decreases dendritic spine density: Role of sex and age. Synapse 2014, 68, 498–507. [Google Scholar] [CrossRef]
- Lisman, J.; Yasuda, R.; Raghavachari, S. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 2012, 13, 169–182. [Google Scholar] [CrossRef]
- Yeo, M.; Berglund, K.; Hanna, M.; Guo, J.U.; Kittur, J.; Torres, M.D.; Abramowitz, J.; Busciglio, J.; Gao, Y.; Birnbaumer, L.; et al. Bisphenol A delays the perinatal chloride shift in cortical neurons by epigenetic effects on the Kcc2 promoter. Proc. Natl. Acad. Sci. USA 2013, 110, 4315–4320. [Google Scholar] [CrossRef] [PubMed]
- Leranth, C.; Hajszan, T.; Szigeti-Buck, K.; Bober, J.; MacLusky, N.J. Bisphenol A prevents the synaptogenic response to estradiol in hippocampus and prefrontal cortex of ovariectomized nonhuman primates. Proc. Natl. Acad. Sci. USA 2008, 105, 14187–14191. [Google Scholar] [CrossRef] [PubMed]
- Roselli, C.E.; Liu, M.; Hurn, P.D. Brain Aromatization: Classic Roles and New Perspectives. Semin. Reprod. Med. 2009, 27, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ye, Y.; Li, T.; Chen, L.; Tian, D.; Luo, Q.; Lu, M. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B. Toxicol. Appl. Pharmacol. 2010, 249, 188–196. [Google Scholar] [PubMed]
- Masuo, Y.; Ishido, M. Neurotoxicity of endocrine disruptors: Possible involvement in brain development and neurodegeneration. J. Toxicol. Environ. Health B 2011, 14, 346–369. [Google Scholar]
- Kanlayaprasit, S.; Saeliw, T.; Thongkorn, S.; Panjabud, P.; Kasitipradit, K.; Lertpeerapan, P.; Songsritaya, K.; Yuwattana, W.; Jantheang, T.; Jindatip, D.; et al. Sex-specific impacts of prenatal bisphenol A exposure on genes associated with cortical development, social behaviors, and autism in the offspring’s prefrontal cortex. Biol. Sex Differ. 2024, 15, 40. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Kang, Y.; Bai, W.; Liu, Q.; Zhang, R.; Wang, Y.; Wang, C. Perinatal Exposure to Bisphenol A Impairs Cognitive Function via the Gamma-Aminobutyric Acid Signaling Pathway in Male Rat Offspring. Available online: https://onlinelibrary.wiley.com/doi/10.1002/tox.24007 (accessed on 1 October 2025).


| Descriptors and Combinations |
|---|
| 1#—Diphenylolpropane OR 2,2-bis(4-hydroxyphenyl)propane OR 4,4′-dihydroxy-2,2-diphenylpropane OR bisphenol A, sodium salt OR bisphenol A, disodium salt OR disodium bisphenol A |
| 2#—Neurotoxicity Syndrome OR Syndrome, Neurotoxicity OR Syndromes, Neurotoxicity OR Poisoning, Nervous System OR Nervous System Poisonings OR Poisonings, Nervous System OR Nervous System Poisoning OR Neurotoxic Disorders OR Neurotoxic Disorder OR Neurotoxin Diseases ORNeurotoxin Disease OR Neurotoxin Disorders OR Neurotoxin Disorder OR Toxic Encephalitis OR Encephalitides, Toxic OR Encephalitis, Toxic Toxic Encephalitides OR Encephalopathy, Toxic OR Encephalopathies, Toxic OR Toxic Encephalopathies OR Toxic Encephalopathy. |
| 3#—Central Nervous Systems OR Nervous System, Central OR Nervous Systems, Central OR Systems, Central Nervous OR Cerebrospinal Axis OR Axi, Cerebrospinal OR Axis, Cerebrospinal OR Cerebrospinal Axi. |
| 4#—Cortex, Prefrontal OR Frontal Sulcus OR Sulcus, Frontal OR Superior Frontal Gyrus OR Frontal Gyrus, Superior OR Gyrus, Superior Frontal OR Marginal Gyrus OR Gyrus, Marginal OR Gyrus Frontalis Superior OR Frontalis Superior, Gyrus OR Superior, Gyrus Frontalis OR Superior Frontal Convolution OR Convolutions, Superior Frontal OR Convolution, Superior Frontal OR Frontal Convolution, Superior OR Superior Frontal Convolutions OR Medial Frontal Gyrus OR Frontal Gyrus, Medial OR Gyrus, Medial Frontal OR Inferior Frontal Gyrus OR Frontal Gyrus, Inferior OR Gyrus, Inferior Frontal OR Gyrus Frontalis Inferior OR Inferior, Gyrus Frontalis OR Straight Gyrus OR Gyrus, Straight Brodmann’s Area 11 OR Area 11, Brodmann’s OR Brodmanns Area 11 OR Gyrus Rectus OR Rectus Gyrus OR Gyrus, Rectus OR Rectal Gyrus OR Gyrus, Rectal OR Brodmann Area 11 OR Area 11, Brodmann OR Orbitofrontal Cortex OR Cortex, Orbitofrontal OR Orbitofrontal Cortices OR Orbitofrontal Gyrus OR Gyrus, Orbitofrontal OR Orbitofrontal Gyri OR Orbital Cortex OR Cortex, Orbital OR Orbital Cortices OR Orbital Area OR Area, Orbital OR Orbital Areas OR Gyrus Orbitalis OR Orbital Gyri OR Gyrus, Orbital OR Orbital Gyrus OR Orbitofrontal Region OR Orbitofrontal Regions OR Region, Orbitofrontal OR Subcallosal Area OR Area, Subcallosal OR Subcallosal Areas OR Ventromedial Prefrontal Cortex OR Cortex, Ventromedial Prefrontal OR Cortices, Ventromedial Prefrontal OR Prefrontal Cortex, Ventromedial OR Ventromedial Prefrontal Cortices OR Ventral Medial Prefrontal Cortex OR Olfactory Sulci OR Olfactory Sulcus OR Lateral Orbitofrontal Cortex OR Cortex, Lateral Orbitofrontal OR Lateral Orbitofrontal Cortices OR Orbitofrontal Cortex, Lateral OR Orbitofrontal Cortices, Lateral OR Anterior Prefrontal Cortex OR Anterior Prefrontal Cortices OR Cortex, Anterior Prefrontal OR Prefrontal Cortex, Anterior OR Prefrontal Cortices, Anterior OR Brodmann Area 10 OR Area 10, Brodmann OR Brodmann’s Area 10 OR Area 10, Brodmann’s OR Brodmanns Area 10 OR Brodmann Area 12 OR Area 12, Brodmann OR Brodmann’s Area 12 OR Area 12, Brodmann’s OR Brodmanns Area 12 OR Brodmann Area 47 OR Area 47, Brodmann OR Brodmann’s Area 47 OR Area 47, Brodmann’s OR Brodmanns Area 47 OR Pars Orbitalis OR Orbitalis, Pars. |
| Author/Year | BPA Dosages | Neurotoxicity | Results |
|---|---|---|---|
| Kim et al. [11] | 1, 5, and 20 mg/kg/day | Neurogenesis, BDNF, ROS, cognition. | 20 mg/kg ↓ new hippocampal cells & spatial memory; low dose ↑ cell survival without cognitive gain; no neuronal loss or astrocyte activation |
| Wu et al. [12] | 0.1–0.2 μg/mL BPA ± 0.6 mg/mL ALA. | Cognition, oxidative stress, synaptic proteins, PKC/ERK/CREB. | BPA impaired multiple memory types, ↓ neurotransmitters & synaptic proteins; induced oxidative stress. ALA reversed these effects. |
| Zhang et al. [13] | 0.5, 50, and 5000 μg/kg/day | Learning/memory, dendritic complexity, neurotransmitters. | Low & high doses impaired spatial learning, reduced dendritic complexity/spine density; sex-specific neurotransmitter shifts (↑ Glu/ACh, ↓ GABA/5-HT in males). |
| Wang et al. [14] | 0.1–10 μM | Reduced neurite outgrowth, synaptic disruption, apoptosis. | BPA reduced neurite length, disrupted dendritic spines, increased synaptic proteins, and triggered oxidative/nitrosative stress with calcium imbalance. |
| Lee et al. [15] | 10–100 μM | Autophagy and apoptosis. | BPA ≥ 100 μM ↓ viability & axon growth; AIF-driven apoptosis and blocked autophagic flux; HO-1/AMPK involved. |
| Cho et al. [16] | 1–100 μM | Early neuronal differentiation. | Standard assays only detected toxicity ≥ 200 μM; DCX/MAP2 ICC revealed impaired maturation at 100 μM. |
| Yin et al. [17] | 1–100 μM | Synaptic and cytoskeletal damage. | Dose-dependent ↑ cell death, synapse loss, cytoskeleton injury (↓ MAP2/Tau/Dbn, ↑ SYP); mitochondrial/nuclear alterations. |
| Kiso-Farnè et al. [18] | 0.1; 1; 10; 100 nM | Corticogenesis disruption. | 100 nM ↓ stem cells & ↑ immature neurons; morphological shift to multipolar cells. |
| Flores et al. [19] | 40 µg/kg (rats); 0.001–1 µM (cells) | Basal forebrain cholinergic degeneration. | BPA caused neuronal loss, PSD95/SYP ↓, glutamate ↑, WNT/β-catenin disruption, HDAC2-driven cell death. |
| Pang et al. [20] | 0.1–200 µM | Oxidative stress & cell death. | BPA ↑ ROS/apoptosis and ↓ proliferation; non-monotonic dose–response. |
| Liang et al. [21] | Nanomolar to micromolar (0.024–50 nM, up to µM) | Reduced neurite length and impaired human neuronal development. | BPA and its analogues shortened neurite outgrowth even at very low concentrations; BPAF most toxic, BPS least. |
| Xing et al. [22] | BPA: 0–32 μg/mL; GEN: 0–10 μg/mL | Severe CNS malformations | BPA alone minimally teratogenic; co-exposure with GEN significantly enhanced embryotoxicity and neural malformations. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueirôa, L.V.d.A.; Teófilo, T.d.S.; Batista, J.S.; Ramos, A.C.M.O.; de Lemos, G.C.; Gomes Junior, S.V.; Lima, G.B.S.; Feitosa, J.L.; da Silva, A.B.; de Souza, L.N.; et al. Neurotoxic Effects of Bisphenol (BPA): Mini-Reviews. Toxics 2025, 13, 888. https://doi.org/10.3390/toxics13100888
Figueirôa LVdA, Teófilo TdS, Batista JS, Ramos ACMO, de Lemos GC, Gomes Junior SV, Lima GBS, Feitosa JL, da Silva AB, de Souza LN, et al. Neurotoxic Effects of Bisphenol (BPA): Mini-Reviews. Toxics. 2025; 13(10):888. https://doi.org/10.3390/toxics13100888
Chicago/Turabian StyleFigueirôa, Luciana Veras de Aquino, Tiago da Silva Teófilo, Jael Soares Batista, Ana Caroline Maia Oliveira Ramos, Gustavo Coringa de Lemos, Salvador Viana Gomes Junior, Guilherme Braga Silva Lima, Jose Leonilson Feitosa, Ana Beatriz da Silva, Larissa Nayara de Souza, and et al. 2025. "Neurotoxic Effects of Bisphenol (BPA): Mini-Reviews" Toxics 13, no. 10: 888. https://doi.org/10.3390/toxics13100888
APA StyleFigueirôa, L. V. d. A., Teófilo, T. d. S., Batista, J. S., Ramos, A. C. M. O., de Lemos, G. C., Gomes Junior, S. V., Lima, G. B. S., Feitosa, J. L., da Silva, A. B., de Souza, L. N., Silva Júnior, R. R. d., Knackfuss, M. I., Pinto, E. F., do Nascimento, E. G. C., Fernandes, T. A. A. d. M., & Guzen, F. P. (2025). Neurotoxic Effects of Bisphenol (BPA): Mini-Reviews. Toxics, 13(10), 888. https://doi.org/10.3390/toxics13100888

