Embryonic Benzo[a]pyrene Exposure Induces Multigenerational Reproductive Effects on Adult Male Medaka: Phenotypic and Transcriptomic Insights
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Stock Solution Preparation
2.2. Medaka Stock Fish Maintenance
2.3. Benzo[a]pyrene Exposure and Multigenerational Experiments
2.4. Assessment of Fecundity and Fertilization in Adult Fish
2.5. Morphometric Measurement in Adult Fish
2.6. Sperm Velocity Assessment in Adult Male Fish
2.7. Testicular Transcriptomic Analysis
2.8. Statistical Analysis
3. Results
3.1. Embryonic B[a]P Exposure Reduced Survivorship and Hatching Rate
3.2. Embryonic B[a]P Exposure Affected Morphometric Parameters and Reproductive Fitness in the F0 and F1 Adult Fish
3.3. Embryonic B[a]P Exposure Affected Sperm Motility of F0 Adult Fish
3.4. Embryonic B[a]P Exposure Altered Testicular Transcriptomic Profiles of F0 Adult Fish
4. Discussion
4.1. Hormonal Regulation of Testicular Function
4.2. Energy and Metabolic Support for Spermatogenesis
4.3. Sperm Cell Structure and Motility
4.4. Spermatogenic Cell Fate and Protection
4.5. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mo, J.; Au, D.W.T.; Guo, J.; Winkler, C.; Kong, R.Y.C.; Seemann, F. Benzo[a]pyrene osteotoxicity and the regulatory roles of genetic and epigenetic factors: A review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 3244–3282. [Google Scholar] [CrossRef]
- Singare, P.U. Carcinogenic and endocrine-disrupting PAHs in the aquatic ecosystem of India. Environ. Monit. Assess. 2016, 188, 599. [Google Scholar] [CrossRef] [PubMed]
- Ekere, N.R.; Yakubu, N.M.; Oparanozie, T.; Ihedioha, J.N. Levels and risk assessment of polycyclic aromatic hydrocarbons in water and fish of Rivers Niger and Benue confluence Lokoja, Nigeria. J. Environ. Health Sci. Eng. 2019, 17, 383–392. [Google Scholar] [PubMed]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci. Total Environ. 2019, 696, 133971. [Google Scholar]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene—Environmental occurrence, human exposure, and mechanisms of toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Yang, S.K.; Deutsch, J.O.S.E.P.H.; Gelboin, H.V. Benzo[a]pyrene metabolism: Activation and detoxification. Polycycl. Hydrocarb. Cancer 2012, 1, 205–231. [Google Scholar]
- Chepelev, N.L.; Moffat, I.D.; Bowers, W.J.; Yauk, C.L. Neurotoxicity may be an overlooked consequence of benzo[a]pyrene exposure that is relevant to human health risk assessment. Mutat. Res./Rev. Mutat. Res. 2015, 764, 64–89. [Google Scholar]
- Mo, J.; Chen, Y.; Lai, K.P.; Seemann, F.; Liu, W. Benzo[a]pyrene osteotoxicity, neurotoxicity, and epigenetic effects in fishes and mammals: A review. Environ. Chem. Lett. 2025. [Google Scholar] [CrossRef]
- Corrales, J.; Thornton, C.; White, M.; Willett, K.L. Multigenerational effects of benzo[a]pyrene exposure on survival and developmental deformities in zebrafish larvae. Aquat. Toxicol. 2014, 148, 16–26. [Google Scholar] [CrossRef]
- Caiment, F.; Gaj, S.; Claessen, S.; Kleinjans, J. High-throughput data integration of RNA–miRNA–circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity. Nucleic Acids Res. 2015, 43, 2525–2534. [Google Scholar]
- Mo, J.; Au, D.W.-T.; Wan, M.T.; Shi, J.; Zhang, G.; Winkler, C.; Kong, R.Y.-C.; Seemann, F. Multigenerational impacts of benzo[a]pyrene on bone modeling and remodeling in medaka (Oryzias latipes). Environ. Sci. Technol. 2020, 54, 12271–12284. [Google Scholar] [CrossRef]
- Booc, F.; Thornton, C.; Lister, A.; MacLatchy, D.; Willett, K.L. Benzo[a]pyrene effects on reproductive endpoints in Fundulus heteroclitus. Toxicol. Sci. 2014, 140, 73–82. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, L.; Zhou, Y.; Xu, R.; Li, D. Benzo[a]pyrene exposure disrupts steroidogenesis and impairs spermatogenesis in diverse reproductive stages of male scallop (Chlamys farreri). Environ. Res. 2020, 191, 110125. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Harris, K.J.; Archibong, A.E. Reproductive toxicity of polycyclic aromatic hydrocarbons. In Reproductive and Developmental Toxicology; Academic Press: Cambridge, MA, USA, 2022; pp. 759–778. [Google Scholar]
- Montano, L.; Baldini, G.M.; Piscopo, M.; Liguori, G.; Lombardi, R.; Ricciardi, M.; Esposito, G.; Pinto, G.; Fontanarosa, C.; Spinelli, M.; et al. Polycyclic aromatic hydrocarbons (PAHs) in the environment: Occupational exposure, health risks and fertility implications. Toxics 2025, 13, 151. [Google Scholar] [CrossRef] [PubMed]
- Bouayed, J.; Desor, F.; Soulimani, R. Subacute oral exposure to benzo[a]pyrene (B[a]P) increases aggressiveness and affects consummatory aspects of sexual behaviour in male mice. J. Hazard. Mater. 2009, 169, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.-S.A.; Song, W.-H.; Oh, S.-A.; Park, Y.-J.; You, Y.-A.; Lee, S.; Choi, J.-Y.; Kim, Y.-J.; Jo, I.; Pang, M.-G. The transgenerational impact of benzo[a]pyrene on murine male fertility. Hum. Reprod. 2010, 25, 2427–2433. [Google Scholar] [CrossRef]
- Chung, J.Y.; Kim, Y.J.; Kim, J.Y.; Lee, S.G.; Park, J.E.; Kim, W.R.; Kim, J.M. Benzo[a]pyrene reduces testosterone production in rat Leydig cells via a direct disturbance of testicular steroidogenic machinery. Environ. Health Perspect. 2011, 119, 1569–1574. [Google Scholar] [CrossRef]
- Liang, J.; Zhu, H.; Li, C.; Ding, Y.; Zhou, Z.; Wu, Q. Neonatal exposure to benzo[a]pyrene decreases the levels of serum testosterone and histone H3K14 acetylation of the StAR promoter in the testes of SD rats. Toxicology 2012, 302, 285–291. [Google Scholar] [CrossRef]
- Xu, G.; McMahan, C.A.; Walter, C.A. Early-life exposure to benzo[a]pyrene increases mutant frequency in spermatogenic cells in adulthood. PLoS ONE 2014, 9, e87439. [Google Scholar] [CrossRef]
- Ling, X.; Yang, W.; Zou, P.; Zhang, G.; Wang, Z.; Zhang, X.; Ao, L. TERT regulates telomere-related senescence and apoptosis through DNA damage response in male germ cells exposed to BPDE in vitro and to B[a]P in vivo. Environ. Pollut. 2018, 235, 836–849. [Google Scholar] [CrossRef]
- Godschalk, R.W.; Verhofstad, N.; Verheijen, M.; Yauk, C.L.; Linschooten, J.O.; van Steeg, H.; van Schooten, F.J. Effects of benzo[a]pyrene on mouse germ cells: Heritable DNA mutation, testicular cell hypomethylation and their interaction with nucleotide excision repair. Toxicol. Res. 2015, 4, 718–724. [Google Scholar] [CrossRef]
- Jeng, H.A.; Yordt, D.; Davis, S.; Swanson, J.R. Assessment of alteration of reproductive system in vivo induced by subchronic exposure to benzo[a]pyrene via oral administration. Environ. Toxicol. 2015, 30, 1–8. [Google Scholar] [CrossRef]
- Jorge, B.C.; Reis, A.C.C.; Stein, J.; da Silva Balin, P.; Sterde, E.T.; Barbosa, M.G.; Arena, A.C. Parental exposure to benzo[a]pyrene in the peripubertal period impacts reproductive aspects of the F1 generation in rats. Reprod. Toxicol. 2021, 100, 126–136. [Google Scholar] [CrossRef]
- Jorge, B.C.; Reis, A.C.C.; Sterde, É.T.; da Silva Balin, P.; Scarano, W.R.; Hisano, H.; Arena, A.C. Exposure to benzo[a]pyrene from juvenile period to peripubertal impairs male reproductive parameters in adult rats. Chemosphere 2021, 263, 128016. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.M.; Beal, M.A.; Yauk, C.L.; Marchetti, F. Benzo[a]pyrene is mutagenic in mouse spermatogonial stem cells and dividing spermatogonia. Toxicol. Sci. 2016, 152, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yang, J.; Lv, Y.; Li, S.; Qiang, M. Paternal benzo[a]pyrene exposure alters the sperm DNA methylation levels of imprinting genes in F0 generation mice and their unexposed F1-2 male offspring. Chemosphere 2019, 228, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ma, Y.; Liu, W.; Ma, S.; Chen, Z.; Hao, X.; Wang, Z. ranscriptomic and proteomic features of a mouse model of sperm DNA damage induced by benzo[a]pyrene. Reprod. Toxicol. 2024, 126, 108596. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, W.Q.; Han, X.Y.; Wang, H.L.; Gao, P.Z.; Wang, D.M.; Liu, S.Z. Benzo[a]pyrene exposure during pregnancy leads to germ cell apoptosis in male mice offspring via affecting histone modifications and oxidative stress levels. Sci. Total Environ. 2024, 952, 175877. [Google Scholar]
- Kennedy, C.J.; Smyth, K.R. Disruption of the rainbow trout reproductive endocrine axis by the polycyclic aromatic hydrocarbon benzo[a]pyrene. Gen. Aomparative Andocrinology 2015, 219, 102–111. [Google Scholar] [CrossRef]
- Colli-Dula, R.C.; Fang, X.; Moraga-Amador, D.; Albornoz-Abud, N.; Zamora-Bustillos, R.; Conesa, A.; Hernandez-Nuñez, E. Transcriptome analysis reveals novel insights into the response of low-dose benzo[a]pyrene exposure in male tilapia. Aquat. Toxicol. 2018, 201, 162–173. [Google Scholar]
- Xu, K.; Gao, D.; Lin, J.; Dai, Q.; Zhou, Q.; Chen, Y.; Wang, C. Benzo[a]pyrene exposure in early life suppresses spermatogenesis in adult male zebrafish and association with the methylation of germ cell-specific genes. Aquat. Toxicol. 2023, 258, 106504. [Google Scholar] [CrossRef] [PubMed]
- Zeb, R.; Yin, X.; Chen, F.; Bo, J.; Wang, K.J. Life-cycle benzo[a]pyrene exposure induces sex-specific reproductive impairment, feminization, and transgenerational disruption in marine medaka (Oryzias melastigma). Environ. Sci. Technol. 2025, 59, 15037–15046. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Wan, M.T.; Au, D.W.T.; Shi, J.; Tam, N.; Qin, X.; Seemann, F. Transgenerational bone toxicity in F3 medaka (Oryzias latipes) induced by ancestral benzo[a]pyrene exposure: Cellular and transcriptomic insights. J. Environ. Sci. 2023, 127, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, M.; Murata, K.; Naruse, K.; Tanaka, M. (Eds.) Medaka: Biology, Management, and Experimental Protocols; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Organisation for Economic Co-operation and Development. OECD Guideline for Testing of Chemicals; Fish, early-life stage toxicity test, OECD 210; Organisation for Economic Co-operation and Development: Paris, France, 1992. [Google Scholar]
- Qin, X.; Lai, K.P.; Wu, R.S.S.; Kong, R.Y.C. Continuous 17α-ethinylestradiol exposure impairs the sperm quality of marine medaka (Oryzias melastigma). Mar. Pollut. Bull. 2022, 183, 114093. [Google Scholar] [CrossRef]
- Plant, T.M. 60 Years of neuroendocrinology: The hypothalamo-pituitary–gonadal axis. J. Endocrinol. 2015, 226, T41–T54. [Google Scholar]
- Acevedo-Rodriguez, A.; Kauffman, A.S.; Cherrington, B.D.; Borges, C.S.; Roepke, T.A.; Laconi, M. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J. Neuroendocrinol. 2018, 30, e12590. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Z.; Shen, W.-J.; Azhar, S. Cellular cholesterol delivery, intracellular processing and utilization for biosynthesis of steroid hormones. Nutr. Metab. 2010, 7, 47. [Google Scholar] [CrossRef]
- Wang, H.; McGoldrick, L.L.; Chung, J.-J. Sperm ion channels and transporters in male fertility and infertility. Nat. Rev. Urol. 2021, 18, 46–66. [Google Scholar]
- Rahman, M.S.; Kwon, W.S.; Pang, M.G. Calcium influx and male fertility in the context of the sperm proteome: An update. BioMed Res. Int. 2014, 2014, 841615. [Google Scholar] [CrossRef]
- Stewart, T.A.; Davis, F.M. An element for development: Calcium signaling in mammalian reproduction and development. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2019, 1866, 1230–1238. [Google Scholar] [CrossRef]
- Yang, W.; Wang, L.; Wang, F.; Yuan, S. Roles of AMP-activated protein kinase (AMPK) in mammalian reproduction. Front. Cell Dev. Biol. 2020, 8, 593005. [Google Scholar] [CrossRef]
- Cannarella, R.; Condorelli, R.A.; La Vignera, S.; Calogero, A.E. Effects of the insulin-like growth factor system on testicular differentiation and function: A review of the literature. Andrology 2018, 6, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.F.; Li, Y.K.; Ren, K.; Xie, Y.J.; Yin, W.D.; Mo, Z.C. Characterization of cholesterol metabolism in Sertoli cells and spermatogenesis. Mol. Med. Rep. 2018, 17, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Wu, Z.; Hang, S.; Zhu, W.; Wu, G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. MHR Basic Sci. Reprod. Med. 2015, 21, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Han, J.; Ren, J.; Chen, H.; Xu, B.; Song, N.; Shen, G. Untargeted LC-MS-based metabonomics revealed that aristolochic acid I induces testicular toxicity by inhibiting amino acids metabolism, glucose metabolism, β-oxidation of fatty acids and the TCA cycle in male mice. Toxicol. Appl. Pharmacol. 2019, 373, 26–38. [Google Scholar] [CrossRef]
- Mital, P.; Hinton, B.T.; Dufour, J.M. The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol. Reprod. 2011, 84, 851–858. [Google Scholar] [CrossRef]
- Roa-Espitia, A.L.; Hernández-Rendón, E.R.; Baltiérrez-Hoyos, R.; Muñoz-Gotera, R.J.; Cote-Vélez, A.; Jiménez, I.; Hernández-González, E.O. Focal adhesion kinase is required for actin polymerization and remodeling of the cytoskeleton during sperm capacitation. Biol. Open 2016, 5, 1189–1199. [Google Scholar] [CrossRef]
- Breitbart, H.; Finkelstein, M. Actin cytoskeleton and sperm function. Biochem. Biophys. Res. Commun. 2018, 506, 372–377. [Google Scholar] [CrossRef]
- Soda, T.; Miyagawa, Y.; Fukuhara, S.; Tanaka, H. Physiological role of actin regulation in male fertility: Insight into actin capping proteins in spermatogenic cells. Reprod. Med. Biol. 2020, 19, 120–127. [Google Scholar] [CrossRef]
- Cyr, D.G.; Dufresne, J.; Gregory, M. Cellular junctions in the epididymis, a critical parameter for understanding male reproductive toxicology. Reprod. Toxicol. 2018, 81, 207–219. [Google Scholar] [CrossRef]
- Deng, C.Y.; Lv, M.; Luo, B.H.; Zhao, S.Z.; Mo, Z.C.; Xie, Y.J. The role of the PI3K/AKT/mTOR signalling pathway in male reproduction. Curr. Mol. Med. 2021, 21, 539–548. [Google Scholar]
- Xu, Z.J.; Liu, M.; Niu, Q.J.; Huang, Y.X.; Zhao, L.; Lei, X.G.; Sun, L.H. Both selenium deficiency and excess impair male reproductive system via inducing oxidative stress-activated PI3K/AKT-mediated apoptosis and cell proliferation signaling in testis of mice. Free Radic. Biol. Med. 2023, 197, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, B.; Chakraborty, S.; Ghosh, D.; Raha, S.; Sen, P.C.; Jana, K. Benzo[a]pyrene induced p53 mediated male germ cell apoptosis: Synergistic protective effects of curcumin and resveratrol. Front. Pharmacol. 2016, 7, 245. [Google Scholar]
- Banerjee, B.; Nandi, P.; Chakraborty, S.; Raha, S.; Sen, P.C.; Jana, K. Resveratrol ameliorates benzo[a]pyrene-induced testicular dysfunction and apoptosis: Involvement of p38 MAPK/ATF2/iNOS signaling. J. Nutr. Biochem. 2016, 34, 17–29. [Google Scholar] [PubMed]
- Yang, W.; Cui, H.; Chai, Z.; Zou, P.; Shi, F.; Yang, B.; Ao, L. Benzo[a]pyrene inhibits testosterone biosynthesis via NDUFA10-mediated mitochondrial compromise in mouse Leydig cells: Integrating experimental and in silico toxicological approaches. Ecotoxicol. Environ. Saf. 2022, 244, 114075. [Google Scholar] [CrossRef]
- Traini, G.; Tamburrino, L.; Ragosta, M.E.; Guarnieri, G.; Morelli, A.; Vignozzi, L.; Baldi, E.; Marchiani, S. Effects of benzo[a]pyrene on human sperm functions: An in vitro study. Int. J. Mol. Sci. 2023, 24, 14411. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, X.; Ding, F.; Wu, X.; Tang, N.; Wu, Q. Apoptosis and blood-testis barrier disruption during male reproductive dysfunction induced by PAHs of different molecular weights. Environ. Pollut. 2022, 300, 118959. [Google Scholar] [CrossRef]
- Luo, D.; He, Z.; Yu, C.; Guan, Q. Role of p38 MAPK signalling in testis development and male fertility. Oxidative Med. Cell. Longev. 2022, 2022, 6891897. [Google Scholar] [CrossRef]
- Sharma, S.S.; Vats, A.; Majumdar, S. Regulation of Hippo pathway components by FSH in testis. Reprod. Biol. 2019, 19, 61–66. [Google Scholar] [CrossRef]
- Kruger, R.E.; Aziz, F.; Ralston, A. Hippo signaling in mammalian reproduction. Reproduction 2025, 169, e250016. [Google Scholar] [CrossRef]
- Stadler, B.; Whittaker, M.R.; Exintaris, B.; Middendorff, R. Oxytocin in the male reproductive tract; the therapeutic potential of oxytocin-agonists and-antagonists. Front. Endocrinol. 2020, 11, 565731. [Google Scholar] [CrossRef]
- Hornung, M.W.; Cook, P.M.; Fitzsimmons, P.N.; Kuehl, D.W.; Nichols, J.W. Tissue distribution and metabolism of benzo[a]pyrene in embryonic and larval medaka (Oryzias latipes). Toxicol. Sci. 2007, 100, 393–405. [Google Scholar] [CrossRef]





| Pathways | ID | p-Value | Up-DEGs | Down-DEGs |
|---|---|---|---|---|
| PPAR signaling pathway | hsa03320 | 0.000152 | ACSL5 | ACOX3, CYP8B1 |
| Drug metabolism—other enzymes | hsa00983 | 0.00017 | - | UPB1, UGT2B17, XDH |
| Fatty acid metabolism | hsa01212 | 0.002695 | ACSL5 | ACOX3 |
| Insulin secretion | hsa04911 | 0.005887 | - | PLCB1, ABCC8 |
| GnRH signaling pathway | hsa04912 | 0.006827 | - | PLCB1, MAP2K6 |
| Glucagon signaling pathway | hsa04922 | 0.008741 | - | PLCB1, G6PC1 |
| Thyroid hormone signaling pathway | hsa04919 | 0.010865 | - | PLCB1, DIO1 |
| Primary bile acid biosynthesis | hsa00120 | 0.023111 | - | CYP8B1 |
| Calcium signaling pathway | hsa04020 | 0.026641 | TRHR | PLCB1 |
| Apoptosis—multiple species | hsa04215 | 0.043213 | - | DIABLO |
| Pathways | ID | p-Value | Up-DEGs | Down-DEGs |
|---|---|---|---|---|
| Glycine, serine and threonine metabolism | hsa00260 | 1.63 × 10−5 | PGAM2 | GAMT, BHMT, PIPOX, CBS, DMGDH |
| Tight junction | hsa04530 | 0.000295 | CLDN11, PARD6G, ARHGEF2, CACNA1D, EZR, MSN, TJP1, VASP, CFTR | - |
| PI3K-Akt signaling pathway | hsa04151 | 0.0004735 | PDGFA, PDGFRA, ITGB8, LAMC1, ITGA7 | COL6A2, G6PC1, THBS1, MAP2K2, NGFR, ATF4, MYC, ANGPT4 |
| Focal adhesion | hsa04510 | 0.000871 | PDGFA, PDGFRA, ITGB8, ITGA7, PAK5, VASP, LAMC1 | COL6A2, THBS1 |
| GnRH signaling pathway | hsa04912 | 0.0011547 | ADCY5, CACNA1D, PTK2B, MAPK12 | MAP2K2, ATF4 |
| Regulation of actin cytoskeleton | hsa04810 | 0.0014148 | PDGFA, PDGFRA, ITGB8, EZR, ITGA7, MSN, ARPC1B, PAK5 | MAP2K2 |
| Cysteine and methionine metabolism | hsa00270 | 0.0035349 | - | CBS, AHCY, MAT1A, BHMT |
| AMPK signaling pathway | hsa04152 | 0.0038957 | LIPE, PFKFB1, TBC1D1, PFKFB4, CFTR | G6PC1 |
| Gap junction | hsa04540 | 0.0049489 | PDGFA, PDGFRA, TJP1, ADCY5 | MAP2K2 |
| Steroid hormone biosynthesis | hsa00140 | 0.0069325 | AKR1D1 | CYP1A1, HSD3B2, CYP17A1 |
| beta-Alanine metabolism | hsa00410 | 0.0087031 | - | ALDH3B2, ALDH6A1, ABAT |
| Oxytocin signaling pathway | hsa04921 | 0.0117059 | ADCY5, CACNA1D, CACNG4 | CD38, MAP2K2 |
| Cellular senescence | hsa04218 | 0.0142243 | CACNA1D, SMAD2, MAPK12 | MAP2K2, MYC |
| cAMP signaling pathway | hsa04024 | 0.0163771 | ADCY5, PPP1R1B, LIPE, CACNA1D, RAPGEF4, CFTR | MAP2K2 |
| Cholesterol metabolism | hsa04979 | 0.0246684 | ABCA1 | APOB, APOA1 |
| Apoptosis | hsa04210 | 0.0261614 | CTSF | MAP2K2, PARP1, DIABLO, ATF4 |
| Insulin signaling pathway | hsa04910 | 0.0268635 | LIPE, PRKAR1B | MAP2K2, G6PC1, SOCS3 |
| Estrogen signaling pathway | hsa04915 | 0.0275775 | MMP9, PGR, ADCY5 | MAP2K2, ATF4 |
| Calcium signaling pathway | hsa04020 | 0.03121 | PDGFRA, TPCN1, CACNA1D, PLCG1, PTK2B | CD38 |
| Glutathione metabolism | hsa00480 | 0.0325229 | - | CHAC1, ANPEP, RRM2 |
| Cell adhesion molecules | hsa04514 | 0.0337238 | CLDN11, ITGB8, F3, CADM3 | CD34 |
| Endocrine resistance | hsa01522 | 0.0328224 | MMP9, MAPK12, ADCY5 | MAP2K2 |
| Hippo signaling pathway | hsa04390 | 0.0406579 | PARD6G, FZD3, SMAD2 | MYC, GDF7 |
| Glucagon signaling pathway | hsa04922 | 0.0414946 | PFKFB1, PGAM2 | ATF4, G6PC1 |
| Necroptosis | hsa04217 | 0.0483953 | STAT6, GLUL, SPATA2L | PPIA, PARP1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yang, Y.; Qin, X.; Wang, J.; Tang, G.; Amouri, R.E.; Chen, J.; Ip, J.C.-H.; Liu, W.; Mo, J. Embryonic Benzo[a]pyrene Exposure Induces Multigenerational Reproductive Effects on Adult Male Medaka: Phenotypic and Transcriptomic Insights. Toxics 2025, 13, 886. https://doi.org/10.3390/toxics13100886
Chen Y, Yang Y, Qin X, Wang J, Tang G, Amouri RE, Chen J, Ip JC-H, Liu W, Mo J. Embryonic Benzo[a]pyrene Exposure Induces Multigenerational Reproductive Effects on Adult Male Medaka: Phenotypic and Transcriptomic Insights. Toxics. 2025; 13(10):886. https://doi.org/10.3390/toxics13100886
Chicago/Turabian StyleChen, Yinhua, Yi Yang, Xian Qin, Jiangang Wang, Guanglong Tang, Rim EL Amouri, Jiayang Chen, Jack Chi-Ho Ip, Wenhua Liu, and Jiezhang Mo. 2025. "Embryonic Benzo[a]pyrene Exposure Induces Multigenerational Reproductive Effects on Adult Male Medaka: Phenotypic and Transcriptomic Insights" Toxics 13, no. 10: 886. https://doi.org/10.3390/toxics13100886
APA StyleChen, Y., Yang, Y., Qin, X., Wang, J., Tang, G., Amouri, R. E., Chen, J., Ip, J. C.-H., Liu, W., & Mo, J. (2025). Embryonic Benzo[a]pyrene Exposure Induces Multigenerational Reproductive Effects on Adult Male Medaka: Phenotypic and Transcriptomic Insights. Toxics, 13(10), 886. https://doi.org/10.3390/toxics13100886

