Association between Air Pollution and Short-Term Outcome of ST-Segment Elevation Myocardial Infarction in a Tropical City, Kaohsiung, Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Pollutant and Meteorological Data
2.3. Variables and Outcome Measures
2.4. Statistical Analyses
3. Results
3.1. Air Pollutants and Meteorological Results
3.2. Association between Air Pollutants Exposure and In-Hospital Mortality for STEMI
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, Y.N.; Cheng, F.J.; Tsai, M.T.; Tsai, C.M.; Chuang, P.C.; Cheng, C.Y. Fine particulate matter constituents associated with emergency room visits for pediatric asthma: A time-stratified case-crossover study in an urban area. BMC Public Health 2021, 21, 1593. [Google Scholar] [CrossRef]
- Baneras, J.; Ferreira-Gonzalez, I.; Marsal, J.R.; Barrabes, J.A.; Ribera, A.; Lidon, R.M.; Domingo, E.; Marti, G.; Garcia-Dorado, D.; Codi, I.A.M.R.I. Short-term exposure to air pollutants increases the risk of ST elevation myocardial infarction and of infarct-related ventricular arrhythmias and mortality. Int. J. Cardiol. 2018, 250, 35–42. [Google Scholar] [CrossRef]
- Rhinehart, Z.J.; Kinnee, E.; Essien, U.R.; Saul, M.; Guhl, E.; Clougherty, J.E.; Magnani, J.W. Association of Fine Particulate Matter and Risk of Stroke in Patients With Atrial Fibrillation. JAMA Netw. Open 2020, 3, e2011760. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Tseng, Y.L.; Huang, K.C.; Chiu, I.M.; Pan, H.Y.; Cheng, F.J. Association between Ambient Air Pollution and Emergency Room Visits for Pediatric Respiratory Diseases: The Impact of COVID-19 Pandemic. Toxics 2022, 10, 247. [Google Scholar] [CrossRef]
- de Bont, J.; Jaganathan, S.; Dahlquist, M.; Persson, A.; Stafoggia, M.; Ljungman, P. Ambient air pollution and cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. J. Intern. Med. 2022, 291, 779–800. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhao, T.; Hu, H.; Shi, Y.; Xu, Q.; Miller, M.R.; Duan, J.; Sun, Z. Repeat dose exposure of PM2.5 triggers the disseminated intravascular coagulation (DIC) in SD rats. Sci. Total Environ. 2019, 663, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Maciejczyk, P.; Jin, L.; Hwang, J.-S.; Guo, X.; Zhong, M.; Thurston, G.; Qu, Q.; Zhang, J.; Sun, Q.; Chen, L.-C. Association of Cardiovascular Responses in Mice with Source-apportioned PM2.5 Air Pollution in Beijing. Aerosol Air Qual. Res. 2018, 18, 1839–1852. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.I.; Tsai, C.H.; Sun, Y.L.; Hsieh, W.Y.; Lin, Y.C.; Chen, C.Y.; Lin, C.S. Instillation of particulate matter 2.5 induced acute lung injury and attenuated the injury recovery in ACE2 knockout mice. Int. J. Biol. Sci. 2018, 14, 253–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aztatzi-Aguilar, O.G.; Uribe-Ramirez, M.; Narvaez-Morales, J.; De Vizcaya-Ruiz, A.; Barbier, O. Early kidney damage induced by subchronic exposure to PM2.5 in rats. Part. Fibre Toxicol. 2016, 13, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Executive summary: Heart disease and stroke statistics--2014 update: A report from the American Heart Association. Circulation 2014, 129, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Ghaffari, S.; Hajizadeh, R.; Pourafkari, L.; Shokouhi, B.; Tajlil, A.; Mazani, S.; Kavandi, H.; Ansari, H.; Nader, N.D. Air pollution and admissions due to ST elevation myocardial infarction-a time-series study from northwest of Iran. Environ. Sci. Pollut. Res. Int. 2017, 24, 27469–27475. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, J.; Fan, C.; Xu, R.; Wang, Y.; Xu, C.; Xie, S.; Zhang, H.; Cui, X.; Peng, Z.; et al. Short-Term Exposure to Ambient Air Pollution and Mortality From Myocardial Infarction. J. Am. Coll. Cardiol. 2021, 77, 271–281. [Google Scholar] [CrossRef]
- Ishii, M.; Seki, T.; Kaikita, K.; Sakamoto, K.; Nakai, M.; Sumita, Y.; Nishimura, K.; Miyamoto, Y.; Noguchi, T.; Yasud, S.a; et al. Association of short-term exposure to air pollution with myocardial infarction with and without obstructive coronary artery disease. Eur. J. Prev. Cardiol. 2021, 28, 1435–1444. [Google Scholar] [CrossRef]
- Cheng, C.-Y.; Cheng, S.-Y.; Chen, C.-C.; Pan, H.-Y.; Wu, K.-H.; Cheng, F.-J. Ambient air pollution is associated with pediatric pneumonia: A time-stratified case–crossover study in an urban area. Environ. Health 2019, 18, 77. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.H.; Chen, S.H.; Liu, P.H.; Huang, K.C.; Chiu, I.M.; Pan, H.Y.; Cheng, F.J. Ambient Air Pollution and Risk for Stroke Hospitalization: Impact on Susceptible Groups. Toxics 2022, 10, 350. [Google Scholar] [CrossRef]
- Kuzma, L.; Pogorzelski, S.; Struniawski, K.; Bachorzewska-Gajewska, H.; Dobrzycki, S. Exposure to air pollution-a trigger for myocardial infarction? A nine-year study in Bialystok-the capital of the Green Lungs of Poland (BIA-ACS registry). Int. J. Hyg. Environ. Health 2020, 229, 113578. [Google Scholar] [CrossRef]
- Zou, W.; Wang, X.; Hong, W.; He, F.; Hu, J.; Sheng, Q.; Zhu, T.; Ran, P. PM2.5 Induces the Expression of Inflammatory Cytokines via the Wnt5a/Ror2 Pathway in Human Bronchial Epithelial Cells. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 2653–2662. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Li, H.; Cai, J.; Wang, C.; Lin, Z.; Liu, C.; Niu, Y.; Zhao, Z.; Li, W.; Kan, H. Fine Particulate Air Pollution and the Expression of microRNAs and Circulating Cytokines Relevant to Inflammation, Coagulation, and Vasoconstriction. Environ. Health Perspect. 2018, 126, 017007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Wang, H.; Liu, S.; Xing, C.; Liu, Y.; Aodengqimuge; Zhou, W.; Yuan, X.; Ma, Y.; Hu, M.; et al. TP53-dependent autophagy links the ATR-CHEK1 axis activation to proinflammatory VEGFA production in human bronchial epithelial cells exposed to fine particulate matter (PM2.5). Autophagy 2016, 12, 1832–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dadvand, P.; Nieuwenhuijsen, M.J.; Agusti, A.; de Batlle, J.; Benet, M.; Beelen, R.; Cirach, M.; Martinez, D.; Hoek, G.; Basagana, X.; et al. Air pollution and biomarkers of systemic inflammation and tissue repair in COPD patients. Eur. Respir. J. 2014, 44, 603–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.; Gong, Y.Y.; Xu, Y.; Ariens, R.A.S.; Routledge, M.N. Urban Particulate Matter Induces Changes in Gene Expression in Vascular Endothelial Cells that Are Associated with Altered Clot Structure In Vitro. Thromb. Haemost. 2018, 118, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Hassanvand, M.S.; Naddafi, K.; Kashani, H.; Faridi, S.; Kunzli, N.; Nabizadeh, R.; Momeniha, F.; Gholampour, A.; Arhami, M.; Zare, A.; et al. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ. Pollut. 2017, 223, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Lane, K.J.; Levy, J.I.; Scammell, M.K.; Peters, J.L.; Patton, A.P.; Reisner, E.; Lowe, L.; Zamore, W.; Durant, J.L.; Brugge, D. Association of modeled long-term personal exposure to ultrafine particles with inflammatory and coagulation biomarkers. Environ. Int. 2016, 92–93, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Pálková, L.; Vondracek, J.; Trilecova, L.; Ciganek, M.; Pencikova, K.; Neca, J.; Milcova, A.; Topinka, J.; Machala, M. The aryl hydrocarbon receptor-mediated and genotoxic effects of fractionated extract of standard reference diesel exhaust particle material in pulmonary, liver and prostate cells. Toxicol. Vitr. 2015, 29, 438–448. [Google Scholar] [CrossRef]
- Zhu, N.; Li, H.; Han, M.; Guo, L.; Chen, L.; Yun, Y.; Guo, Z.; Li, G.; Sang, N. Environmental nitrogen dioxide (NO2) exposure influences development and progression of ischemic stroke. Toxicol. Lett. 2012, 214, 120–130. [Google Scholar] [CrossRef]
- Yuan, C.S.; Lai, C.S.; Chang-Chien, G.P.; Tseng, Y.L.; Cheng, F.J. Kidney damage induced by repeated fine particulate matter exposure: Effects of different components. Sci. Total Environ. 2022, 847, 157528. [Google Scholar] [CrossRef]
- Hsu, W.H.; Hwang, S.A.; Kinney, P.L.; Lin, S. Seasonal and temperature modifications of the association between fine particulate air pollution and cardiovascular hospitalization in New York state. Sci. Total Environ. 2017, 578, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.T.; Chen, C.C.; Ho, Y.N.; Tsai, M.T.; Tsai, C.M.; Chuang, P.C.; Cheng, F.J. Short-Term Effects of Particulate Matter and Its Constituents on Emergency Room Visits for Chronic Obstructive Pulmonary Disease: A Time-Stratified Case-Crossover Study in an Urban Area. Int. J. Environ. Res. Public Health 2021, 18, 4400. [Google Scholar] [CrossRef] [PubMed]
- Grivas, G.; Cheristanidis, S.; Chaloulakou, A.; Koutrakis, P.; Mihalopoulos, N. Elemental Composition and Source Apportionment of Fine and Coarse Particles at Traffic and Urban Background Locations in Athens, Greece. Aerosol Air Qual. Res. 2018, 18, 1642–1659. [Google Scholar] [CrossRef] [Green Version]
- Pardo, M.; Xu, F.; Qiu, X.; Zhu, T.; Rudich, Y. Seasonal variations in fine particle composition from Beijing prompt oxidative stress response in mouse lung and liver. Sci. Total Environ. 2018, 626, 147–155. [Google Scholar] [CrossRef]
- Lu, H.; Wang, S.; Li, Y.; Gong, H.; Han, J.; Wu, Z.; Yao, S.; Zhang, X.; Tang, X.; Jiang, B. Seasonal variations and source apportionment of atmospheric PM(2.5)-bound polycyclic aromatic hydrocarbons in a mixed multi-function area of Hangzhou, China Environ. Sci. Pollut. Res. Int. 2017, 24, 16195–16205. [Google Scholar] [CrossRef]
- Qi, L.; Chen, M.; Ge, X.; Zhang, Y.; Guo, B. Seasonal Variations and Sources of 17 Aerosol Metal Elements in Suburban Nanjing. China Atmos. 2016, 7, 153. [Google Scholar] [CrossRef] [Green Version]
- Altemose, B.; Robson, M.G.; Kipen, H.M.; Strickland, P.O.; Meng, Q.; Gong, J.; Huang, W.; Wang, G.; Rich, D.Q.; Zhu, T.; et al. Association of air pollution sources and aldehydes with biomarkers of blood coagulation, pulmonary inflammation, and systemic oxidative stress. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Lin, Y.C.; Lin, C.M.; Hsiao, K.Y. Effects of fine particulate matter and its constituents on emergency room visits for asthma in southern Taiwan during 2008–2010: A population-based study. Environ. Sci. Pollut. Res. Int. 2017, 24, 15012–15021. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.-S.; Lai, C.-S.; Tseng, Y.-L.; Hsu, P.-C.; Lin, C.-M.; Cheng, F.-J. Repeated exposure to fine particulate matter constituents lead to liver inflammation and proliferative response in mice. Ecotoxicol. Environ. Saf. 2021, 224, 112636. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Liu, Y.; Mulholland, J.A.; Russell, A.G.; Darrow, L.A.; Tolbert, P.E.; Strickland, M.J. Pediatric emergency department visits and ambient Air pollution in the U.S. State of Georgia: A case-crossover study. Environ. Health 2016, 15, 115. [Google Scholar] [CrossRef] [Green Version]
- Imaizumi, Y.; Eguchi, K.; Kario, K. Coexistence of PM2.5 and low temperature is associated with morning hypertension in hypertensives. Clin. Exp. Hypertens. 2015, 37, 468–472. [Google Scholar] [CrossRef]
Survival to Discharge | In-Hospital Mortality | ||
---|---|---|---|
Characteristics | N = 947 | N = 56 | p |
Male | 789 | 46 | 0.819 |
Age | 60.3 ± 12.7 | 60.1 ± 12.9 | 0.652 |
Diabetes | 359 | 24 | 0.459 |
Hypertension | 595 | 34 | 0.75 |
Current smoker | 531 | 17 | <0.001 *** |
Dyslipidemia | 696 | 32 | 0.008 ** |
Killip III to IV | 193 | 38 | <0.001 *** |
Body mass index | 25.4 ± 3.7 | 24.6 ± 5.1 | 0.192 |
History of coronary artery disease | 53 | 4 | 0.627 |
PM2.5, μg/m3 | |||
lag 0 | 34.3 ± 19.6 | 31.9 ± 18.3 | 0.363 |
lag 1 | 33.9 ± 19.7 | 34.1 ± 17.7 | 0.954 |
lag 2 | 33.6 ± 19.2 | 36.6 ± 19.6 | 0.261 |
lag 3 | 33.7 ± 19.0 | 36.2 ± 21.3 | 0.345 |
lag 0–3 | 33.8 ± 17.7 | 34.7 ± 17.7 | 0.724 |
PM10, μg/m3 | |||
lag 0 | 65.3 ± 29.8 | 63.1 ± 28.5 | 0.595 |
lag 1 | 65.0 ± 30.1 | 66.2 ± 26.7 | 0.766 |
lag 2 | 64.8 ± 29.3 | 69.8 ± 30.3 | 0.217 |
lag 3 | 64.8 ± 29.2 | 70.7 ± 32.9 | 0.145 |
lag 0–3 | 65.2 ± 26.9 | 67.9 ± 26.9 | 0.456 |
NO2, ppb | |||
lag 0 | 17.7 ± 6.5 | 18.7 ± 7.3 | 0.252 |
lag 1 | 17.6 ± 6.6 | 19.3 ± 7.1 | 0.075 |
lag 2 | 17.6 ± 6.7 | 19.9 ± 7.9 | 0.017 * |
lag 3 | 17.8 ± 6.7 | 20.4 ± 7.8 | 0.005 ** |
lag 0–3 | 17.7 ± 6.1 | 19.6 ± 7.0 | 0.027 * |
O3, ppb | |||
lag 0 | 28.5 ± 12.2 | 28.3 ± 12.2 | 0.883 |
lag 1 | 28.6 ± 12.7 | 27.9 ± 14.8 | 0.677 |
lag 2 | 28.2 ± 12.5 | 27.1 ± 11.8 | 0.5 |
lag 3 | 28.3 ± 12.7 | 26.8 ± 11.4 | 0.403 |
lag 0–3 | 28.4 ± 10.7 | 27.5 ± 10.4 | 0.543 |
Minimum | Percentiles | Maximum | Mean | Warm Season (Mean ± SD) | Cold Season (Mean ± SD) | p | |||
---|---|---|---|---|---|---|---|---|---|
25% | 50% | 75% | |||||||
PM2.5 μg/m3 | 1.6 | 16.1 | 29.9 | 44.1 | 120.8 | 31.3 ± 17.8 | 16.9 ± 11.9 | 42.9 ± 14.9 | <0.001 |
PM10 μg/m3 | 16.1 | 37.0 | 61.0 | 84.7 | 181.0 | 63.5 ± 28.8 | 43.1 ± 17.0 | 84.0 ± 23.2 | <0.001 |
NO2 (ppb) | 4.8 | 11.6 | 16.4 | 21.9 | 35.0 | 17.1 ± 7.4 | 12.6 ± 6.6 | 21.7 ± 5.0 | <0.001 |
O3 (ppb) | 3.5 | 18.6 | 27.1 | 36.6 | 61.7 | 28.4 ± 12.4 | 23.2 ± 13.2 | 30.7 ± 11.2 | <0.001 |
Temperature (°C) | 7.1 | 22.5 | 26.5 | 29.0 | 32.1 | 25.5 ± 4.2 | 28.5 ± 1.9 | 22.5 ± 3.6 | <0.001 |
Humidity (%) | 35.3 | 70.4 | 73.8 | 77.4 | 94.4 | 74.0 ± 6.6 | 75.4 ± 6.4 | 72.5 ± 6.6 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.-B.; Huang, K.-C.; Hsieh, T.-M.; Tsai, C.-M.; Hsiao, H.-Y.; Cheng, C.-Y.; Cheng, F.-J. Association between Air Pollution and Short-Term Outcome of ST-Segment Elevation Myocardial Infarction in a Tropical City, Kaohsiung, Taiwan. Toxics 2023, 11, 541. https://doi.org/10.3390/toxics11060541
Huang J-B, Huang K-C, Hsieh T-M, Tsai C-M, Hsiao H-Y, Cheng C-Y, Cheng F-J. Association between Air Pollution and Short-Term Outcome of ST-Segment Elevation Myocardial Infarction in a Tropical City, Kaohsiung, Taiwan. Toxics. 2023; 11(6):541. https://doi.org/10.3390/toxics11060541
Chicago/Turabian StyleHuang, Jyun-Bin, Kuo-Chen Huang, Ting-Min Hsieh, Chih-Min Tsai, Hao-Yi Hsiao, Chi-Yung Cheng, and Fu-Jen Cheng. 2023. "Association between Air Pollution and Short-Term Outcome of ST-Segment Elevation Myocardial Infarction in a Tropical City, Kaohsiung, Taiwan" Toxics 11, no. 6: 541. https://doi.org/10.3390/toxics11060541