Urinary Cypermethrin Metabolites among Conventional and Organic Farmers in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Urine Sample Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pongsrihadulchai, A. Thailand Agricultural Policies and Development Strategies. Available online: https://ap.fftc.org.tw/article/1393 (accessed on 12 May 2023).
- Office of Agricultural Economics, Ministry of Agriculture and Cooperatives. Top Ten Pesticides Imported in 2021. Available online: https://www.doa.go.th/ard/?page_id=386 (accessed on 12 May 2023). (In Thai)
- McKinlay, R.; Plant, J.A.; Bell, J.N.B.; Voulvoulis, N. Endocrine disrupting pesticides: Implications for risk assessment. Environ. Int. 2008, 34, 168–183. [Google Scholar] [CrossRef] [PubMed]
- Mnif, W.; Hassine, A.I.H.; Bouaziz, A.; Bartegi, A.; Thomas, O.; Roig, B. Effect of endocrine disruptor pesticides: A review. Int. J. Environ. Res. Public Health 2011, 8, 2265–2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertz-Picciotto, I.; Sass, J.B.; Engel, S.; Bennett, D.H.; Bradman, A.; Eskenazi, B.; Lanphear, B.; Whyatt, R. Organophosphate exposures during pregnancy and child neurodevelopment: Recommendations for essential policy reforms. PLoS Med. 2018, 15, e1002671. [Google Scholar] [CrossRef]
- Costa, L.G. Organophosphorus Compounds at 80: Some Old and New Issues. Toxicol. Sci. 2018, 162, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saillenfait, A.M.; Ndiaye, D.; Sabaté, J.P. Pyrethroids: Exposure and health effects—An update. Int. J. Hyg. Environ. Health 2015, 218, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Ratelle, M.; Coté, J.; Bouchard, M. Time profiles and toxicokinetic parameters of key biomarkers of exposure to cypermethrin in orally exposed volunteers compared with previously available kinetic data following permethrin exposure. J. Appl. Toxicol. 2015, 35, 1586–1593. [Google Scholar] [CrossRef]
- Siriwat, S.; Ong-artborirak, P.; Nganchamung, T.; Robson, M.G.; Siriwong, W. Health risk assessment of residential exposure to cypermethrin among young children in agricultural communities in northeastern Thailand. Hum. Ecol. Risk Assess. 2019, 25, 614–623. [Google Scholar] [CrossRef]
- Cote, J.; Bonvalot, Y.; Carrier, G.; Lapointe, C.; Fuhr, U.; Tomalik-Scharte, D.; Wachall, B.; Bouchard, M. A Novel Toxicokinetic Modeling of Cypermethrin and Permethrin and Their Metabolites in Humans for Dose Reconstruction from Biomarker Data. PLoS ONE 2014, 9, e88517. [Google Scholar] [CrossRef] [Green Version]
- Woollen, B.H.; Marsh, J.R.; Laird, W.J.D.; Lesser, J.E. The metabolism of cypermethrin in man: Differences in urinary metabolite profiles following oral and dermal administration. Xenobiotica 1991, 22, 983–991. [Google Scholar] [CrossRef]
- Klimowska, A.; Amenda, K.; Rodzaj, W.; Wilenska, M.; Jurewicz, J.; Wielgomas, B. Evaluation of 1-year urinary excretion of eight metabolites of synthetic pyrethroids, chlorpyrifos, and neonicotinoids. Environ. Int. 2020, 145, 106119. [Google Scholar] [CrossRef]
- Singleton, S.T.; Lein, P.J.; Farahat, F.M.; Farahat, T.; Bonner, M.R.; Knaak, J.B.; Olson, J.R. Characterization of cypermethrin Exposure in Egyptian Agricultural Workers. Int. J. Hyg. Environ. Health 2014, 217, 538–545. [Google Scholar] [CrossRef] [Green Version]
- Barr, D.B.; Olsson, A.O.; Wong, L.Y.; Udunka, S.; Baker, S.E.; Whitehead, R.D.; Magsumbol, J.M.S.; Williams, B.L.; Needham, L.L. Urinary Concentrations of Metabolites of Pyrethroid Insecticides in the General U.S. Population: National Health and Nutrition Examination Survey 1999–2002. Environ. Health Perspect 2010, 118, 742–748. [Google Scholar] [CrossRef]
- Garí, M.; González-Quinteiro, Y.; Bravo, N.; Grimalt, J.O. Analysis of metabolites of organophosphate and pyrethroid pesticides in human urine from urban and agricultural populations (Catalonia and Galicia). Sci. Total Environ. 2018, 622–623, 526–533. [Google Scholar] [CrossRef]
- Panuwet, P.; Prapamontol, T.; Chantara, S.; Olsson, A.O.; Barr, D.B. A Pilot Survey of Pesticide-Specific Urinary Metabolites among Farmers in Chiang Mai Highland Agricultural Area. CMU J. 2004, 3, 25–34. [Google Scholar]
- Thiphom, S.; Prapamontol, T.; Chantara, S.; Mangklabruks, A.; Suphavilai, C.; Ahn, K.C.; Gee, S.J.; Hammock, B.D. Determination of the pyrethroid insecticide metabolite 3-PBA in plasma and urine samples from farmer and consumer groups in northern Thailand. J. Environ. Sci. Health 2014, 49, 15–22. [Google Scholar] [CrossRef]
- Leng, G.; Gries, W. Determination of Pyrethroids in Blood Plasma and Pyrethroid/Pyrethrin Metabolites in Urine by Gas Chromatography-Mass Spectrometry and High-Resolution GC-MS. In Pesticide Protocols: Methods in Biotechnology; Martínez Vidal, J.L., Frenich, A.G., Eds.; Humana Press: Cham, Switzerland, 2006; Volume 19, pp. 17–33. [Google Scholar]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Beckmann Coulter, Instruction for Use. Creatinine. Available online: https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/A69463/%%/EN (accessed on 13 May 2023).
- Chareonviriyaphap, T.; Bangs, M.J.; Suwonkerd, W.; Kongmee, M.; Corbel, V.; Ngoen-Klan, R. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasites Vectors 2013, 6, 280. [Google Scholar] [CrossRef] [Green Version]
- S. C. Johnson & Son, Inc. Information for Baygon Products. Available online: https://www.baygon.co.th/th-th/products/baygon-multi-insect-killer-dlinonene/tabs/ingredients (accessed on 12 May 2023). (In Thai).
- Pantry Express. Shieldtox Mosquito Spray. Available online: https://www.pantryexpress.my/pest-control-repellents/1138-shieldtox-mosquito-spray-600ml-x2-9556111175270.html (accessed on 12 May 2023).
- Mosquito Coil. Available online: https://en.wikipedia.org/wiki/Mosquito_coil (accessed on 12 May 2023).
- Norkaew, S.; Taneepanichskul, N.; Siriwong, W.; Siripattanakul, S.; Robson, M. Household pesticide use in agricultural community, Northeastern Thailand. J. Med. Med. Sci. 2012, 3, 631–637. [Google Scholar]
- Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, N.; Bunngamchairat, A.; Yimsabai, J.; Pataitiemthong, A.; Woskie, S. Across-sectional investigation of cardiovascular and metabolic biomarkers among conventional and organic farmers in Thailand. Int. J. Environ. Res. Public Health 2018, 15, 2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahaboonpeeti, R.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Bunngamchairat, A.; Yoosook, W.; Woskie, S. Evaluation of Dermal Exposure to the Herbicide Alachlor Among Vegetable Farmers in Thailand. Ann. Work. Expo. Health 2018, 62, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Chouichom, S.; Yamao, M. Comparing opinions and attitudes of organic and non-organic farmers towards organic rice farming system in north-eastern Thailand. J. Org. Syst. 2010, 5, 25–35. [Google Scholar]
- Kings, D.; Ilbery, B. Organic and Conventional Farmers’ Attitudes towards Agricultural Sustainability. Available online: https://www.intechopen.com/books/organic-farming-and-food-production/organic-and-conventional-farmers-attitudes-towards-agricultural-sustainability (accessed on 13 May 2023).
- Nankongnab, N.; Kongtip, P.; Tipayamongkholgul, M.; Bunngamchairat, A.; Sitthisak, S.; SusanWoskie, S. Difference in accidents, health symptoms and ergonomic problems between chemical use and organic farmers. J. Agromed. 2020, 25, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Aungkulanon, S.; Pitayarangsarit, S.; Bundhamcharoen, K.; Akaleephan, C.; Chongsuvivatwong, V.; Phoncharoen, R.; Tangcharoensathien, V. Smoking prevalence and attributable deaths in Thailand: Predicting outcomes of different tobacco control interventions. BMC Public Health 2019, 19, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, M.; McKetin, R.; Banwell, C.; Yiengprugsawan, V.; Kelly, M.; Seubsman, S.; Iso, H.; Sleigh, A.; Thai Cohort Study Team. Alcohol consumption patterns in Thailand and their relationship with non-communicable disease. BMC Public Health 2015, 15, 1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Yimsabai, J.; Woskie, S. Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand. Int. J. Environ. Res. Public Health 2020, 17, 4178. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.K.; Jones, P.A. Dietary predictors of young children’s exposure to current-use pesticides using urinary biomonitoring. Food Chem. Toxicol. 2013, 62, 131–141. [Google Scholar] [CrossRef]
- Kimata, A.; Kondo, T.; Ueyama, J.; Yamamoto, K.; Kamijima, M.; Suzuki, K.; Inoue, T.; Ito, Y.; Hamajima, N. Relationship between dietary habits and urinary concentrations of 3-phenoxybonzoic acid in a middle-aged and elderly general population in Japan. Environ. Health Prev. Med. 2009, 14, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Beach, J.; Martin, J.W.; Senthilselvan, A. Associations between dietary factors and urinary concentrations of organophosphate and pyrethroid metabolites in a Canadian general population. Int. J. Hyg. Environ. Health 2015, 218, 616–626. [Google Scholar] [CrossRef]
- Li, Z.M.; Robinson, M.; Kannan, K. An assessment of exposure to several classes of pesticides in pet dogs and cats from New York, United States. Environ. Int. 2022, 169, 107526. [Google Scholar] [CrossRef]
- Wise, C.F.; Hammel, C.S.; Herkert, N.J.; Ospina, M.; Calafat, A.M.; Breen, M.; Stapleton, H.M. Comparative Assessment of Pesticide Exposures in Domestic Dogs and Their Owners Using Silicone Passive Samplers and Biomonitoring. Environ. Sci. Technol. 2022, 56, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Kimata, A.; Kondo, T.; Ueyama, J.; Yamamoto, K.; Yoshitake, J.; Takagi, K.; Suzuki, K.; Inoue, T.; Ito, Y.; Hamajima, N.; et al. Comparison of urinary concentrations of 3-phenoxybenzoic acid among general residents in rural and suburban areas and employees of pest control firms. Int. Arch. Occup. Environ. Health 2009, 82, 1173–1178. [Google Scholar] [CrossRef] [PubMed]
- Wielgomas, B.; Klimowska, A.; Rodzaj, W. Analytical Methods for Determination Urinary Metabolites of Synthetic Pyrethroids. In Pyrethroid Insecticides; Eljarrat, E., Ed.; Springer: Cham, Switzerland, 2020; Volume 92, pp. 47–80. [Google Scholar]
- Yoshida, T. Biomarkers for monitoring transfluthrin exposure: Urinary excretion kinetics of transfluthrin metabolites in rats. Environ. Toxicol. Pharmacol. 2014, 37, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- López-Gálvez, N.; Wagoner, R.; Beamer, P.; de Zapien, J.; Rosales, C. Migrant Farmworkers’ Exposure to Pesticides in Sonora, Mexico. Int. J. Environ. Res. Public Health 2018, 15, 2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chetna, D.; Vaibhav, K.; Pallavi, N.; Jitendra, R. Gender differences in knowledge, attitude and practices regarding the pesticide use among farm workers: A questionnaire based study. RJPBCS Res. J. Pharm. Biol. Chem. Sci. 2012, 3, 632–639. [Google Scholar]
- Wang, D.; Kamijima, M.; Imai, R.; Suzuki, T.; Kameda, Y.; Asai, K.; Okamura, A.; Naito, H.; Ueyama, J.; Saito, I.; et al. Biological Monitoring of Pyrethroid Exposure of Pest Control Workers in Japan. J. Occup. Health 2007, 49, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Zheng, M.; Wu, C.; Wang, G.; Feng, C.; Zhou, Z. Urinary pyrethroid metabolites among pregnant women in an agricultural area of the Province of Jiangsu, China. Int. J. Hyg. Environ. Health 2012, 215, 487–495. [Google Scholar] [CrossRef]
- Trunnelle, K.J.; Bennett, D.H.; Tulve, N.S.; Clifton, M.S.; Davis, M.D.; Calafat, A.M.; Moran, R.; Tancredi, D.J.; Hertz-Picciotto, I. Urinary Pyrethroid and Chlorpyrifos Metabolite Concentrations in Northern California Families and Their Relationship to Indoor Residential Insecticide Levels, Part of the Study of Use of Products and Exposure Related Behavior (SUPERB). Environ. Sci. Technol. 2014, 48, 1931–1939. [Google Scholar] [CrossRef]
- Health Canada, Second Report on Human Biomonitoring of Environmental Chemicals in Canada: Results of the Canadian Health Measures Survey Cycle 2 (2009–2011). Available online: https://www.canada.ca/content/dam/hc-sc/migration/hc-sc/ewh-semt/alt_formats/pdf/pubs/contaminants/chms-ecms-cycle2/chms-ecms-cycle2-eng.pdf (accessed on 12 May 2023).
- Ratelle, M.; Côté, J.; Bouchard, M. Toxicokinetics of permethrin biomarkers of exposure in orally exposed volunteers. Toxicol. Lett. 2015, 232, 369–375. [Google Scholar] [CrossRef]
- Chaingard, Thailand. Information for Chaingard Products. Available online: https://chaingardthailand.com/product-category/shampoo-th/shampoo-for-dog (accessed on 12 May 2023). (In Thai).
Variables | Conventional Farmers n (%) | Organic Farmers n (%) | p-Value | |
---|---|---|---|---|
Sex 1 | ||||
Male | 155 (74.2) | 115 (51.3) | <0.001 * | |
Female | 54 (25.8) | 109 (48.7) | ||
Age 3 | ||||
Mean (SD) | 50.10 (11.1) | 53.22 (10.3) | 0.003 * | |
Min–max | 18–69 | 28–79 | ||
Education level 1 | ||||
Below elementary | 14 (6.7) | 4 (1.8) | 0.036 * | |
Elementary | 119 (56.9) | 125 (55.8) | ||
High school | 71 (34.0) | 84 (37.5) | ||
Bachelor’s degree or higher | 5 (2.4) | 11 (4.9) | ||
Marital status 2 | ||||
Single | 21 (10.0) | 13 (5.8) | 0.027 * | |
Married | 180 (86.1) | 188 (83.9) | ||
Widowed/divorced | 8 (3.8) | 23 (10.3) | ||
Body mass index (BMI) (kg/m2) 1 | ||||
Normal (<18.49–24.99) | 118 (56.7) | 167 (74.6) | <0.001 * | |
Abnormal (>25.00) | 90 (43.3) | 57 (25.4) | ||
Missing | 1 (0.2) | |||
Expense adequacy 1 | ||||
Not in debt | 135 (64.6) | 143 (63.08) | 0.870 | |
In debt | 74 (35.4) | 81 (36.2) | ||
Agricultural work time (h/week) 3 | ||||
Mean (SD) | 26.5 (3.4) | 28.8 (17.2) | 0.149 | |
Has a second job 1 | ||||
Yes | 160 (76.6) | 96 (42.9) | <0.001 * | |
No | 49 (23.4) | 128 (57.1) | ||
Second job work time (h/week) 3 | ||||
Mean (SD) | 24.9 (13.6) | 26.6 (17.8) | 0.537 | |
Main types of crop plant | ||||
Rice 1 | 162 (77.5) | 213 (96.8) | <0.001 * | |
Sugarcane 1 | 80 (38.3) | 14 (6.6) | <0.001 * | |
Banana 1 | 14 (6.7) | 118 (55.9) | <0.001 * | |
Vegetables 1 | 78 (37.3) | 180 (84.8) | <0.001 * | |
Fruits 1 | 10 (4.8) | 102 (48.6) | <0.001 * | |
Smoking 1 | ||||
Current smoker | 57 (27.3) | 36 (16.1) | 0.001 * | |
Former smoker | 9 (4.3) | 25 (11.2) | ||
Non-smoker | 143 (68.4) | 163 (72.8) | ||
Alcohol intake 1 | ||||
Current drinker | 134 (64.1) | 92 (41.1) | <0.001 * | |
Former drinker | 7 (3.3) | 45 (20.1) | ||
Non-drinker | 68 (32.5) | 87 (38.8) |
Risk Factors | Conventional Farmers n (%) | Organic Farmers n (%) | p-Value | |
---|---|---|---|---|
Living near farm 1 | ||||
Yes | 177 (84.7) | 103 (46.4) | <0.001 * | |
No | 32 (15.3) | 117 (52.7) | ||
Insecticide use at home in the past 1 year 1 | ||||
Yes | 187 (89.5) | 33 (14.8) | <0.001 * | |
No | 22 (10.5) | 190 (85.2) | ||
Type of insecticide used at home | ||||
Aswin or Atsawin 1,2 | ||||
Yes | 2 (1.1) | 1 (0.6) | 1.000 | |
No | 187 (98.9) | 170 (99.4) | ||
Ars 1,2 | ||||
Yes | 25 (13.2) | 3 (1.7) | <0.001 * | |
No | 164 (86.8) | 169 (98.3) | ||
Baygon 1,2 | ||||
Yes | 107 (56.6) | 11 (6.4) | <0.001 * | |
No | 82 (43.4) | 161 (93.6) | ||
Shieldtox 1,2 | ||||
Yes | 25 (13.2) | 4 (2.3) | <0.001 * | |
No | 164 (86.8) | 169 (97.7) | ||
Mosquito coil 1,2 | ||||
Yes | 148 (78.3) | 19 (10.9) | <0.001 * | |
No | 41 (21.7) | 156 (89.1) | ||
Cypermethrin used in farm 1 | ||||
Yes | 95 (45.9) | 0 (0) | <0.001 * | |
No | 113 (54.1) | 224 (100) | ||
Water consumption source 1 | ||||
House and community well | 9 (4.3) | 6 (2.7) | <0.001 * | |
Bottled water | 14 (6.7) | 142 (64.5) | ||
Rainwater | 5 (2.4) | 64 (29.1) | ||
Filtered tap water | 181 (86.6) | 8 (3.6) | ||
Daily vegetable intake 1 | ||||
Yes | 121 (57.9) | 148 (66.7) | 0.060 | |
No | 88 (42.1) | 74 (33.3) | ||
Did not take a shower after spraying 1 | ||||
Yes | 137 (65.5) | 0 (0) | <0.001 * | |
No | 72 (34.4) | 224 (100) | ||
Keeping all used containers at home for disposal 1 | ||||
Yes | 105 (50.2) | 0 (0) | <0.001 * | |
No | 104 (49.8) | 224 (100) |
Cypermethrin Metabolites | Conventional Farmers (nmole/g Creatinine) | Organic Farmers (nmole/g Creatinine) | p-Value 1 | ||
---|---|---|---|---|---|
GM (GSD) | Median | GM (GSD) | Median | ||
3-PBA | 6.01 (3.31) | 6.42 | 5.12 (3.13) | 4.74 | 0.159 |
Cis-DCCA | 17.78 (2.46) | 16.08 | 15.45 (2.54) | 12.48 | 0.112 |
Trans-DCCA | 11.15 (2.40) | 10.7 | 10.03 (2.48) | 8.14 | 0.219 |
Cis,Trans-DCCA | 30.03 (2.32) | 26.65 | 26.33 (2.45) | 21.49 | 0.113 |
Total Cypermethrin | 37.30 (2.36) | 33.78 | 32.30 (2.46) | 26.72 | 0.089 |
1. Farm and Home Use (n = 93) | 2. Farm Use Only (n = 3) | 3. Home Use Only (n = 95) | 4. No Farm or Home Use (n = 18) | p-Value of Overall ANOVA | p-Value for Multiple Comparisons 1 | |
---|---|---|---|---|---|---|
3PBA | 9.58 (2.62) | 17.93 (4.38) | 3.69 (3.41) | 5.88 (3.06) | <0.001 | (1–3) * p < 0.001 |
Cis-DCCA | 24.63 (2.27) | 17.58 (2.97) | 13.51 (2.33) | 14.10 (2.92) | <0.001 | (1–3) * p < 0.001, (1–4) p = 0.059 |
Trans-DCCA | 12.86 (2.36) | 9.97 (4.21) | 9.86 (2.34) | 10.34 (2.68) | 0.212 | |
Cis,Trans-DCCA | 38.19 (2.23) | 27.85 (3.38) | 24.54 (2.21) | 25.85 (2.32) | 0.003 | (1–3) * p = 0.002 |
Total Cypermethrin | 48.60 (2.23) | 46.06 (3.76) | 29.24 (2.26) | 33.13 (2.59) | 0.001 | (1–3) * p < 0.001 |
Conventional Farmers | Organic Farmers | p-Value of Overall ANOVA * | |||
---|---|---|---|---|---|
Home Use Only (n = 95) | No Farm or Home Use (n = 18) | Home Use Only (n = 33) | No Farm or Home Use (n = 191) | ||
3PBA | 3.69 (3.41) | 5.88 (3.06) | 6.72 (1.25) | 4.89 (1.08) | 0.045 |
Cis-DCCA | 13.51 (2.33) | 14.10 (2.92) | 20.66 (1.21) | 14.69 (1.07) | 0.146 |
Trans-DCCA | 9.86 (2.34) | 10.34 (2.68) | 10.89 (1.20) | 9.89 (1.07) | 0.945 |
Cis,Trans-DCCA | 24.54 (2.21) | 25.85 (2.32) | 32.69 (1.20) | 25.37 (1.06) | 0.420 |
Total Cypermethrin | 29.24 (2.26) | 33.13 (2.59) | 40.29 (1.20) | 31.09 (1.06) | 0.337 |
3-PBA | Cis-DCCA | Trans-DCCA | Cis,trans-DCCA | Total Cypermethrin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GM (GSD) | p-Value | GM (GSD) | p-Value | GM (GSD) | p-Value | GM (GSD) | p-Value | GM (GSD) | p-Value | |
Age 1 | ||||||||||
1. <35 | 4.52 (1.45) | 0.129 | 9.42 (1.58) | 0.073 | 7.94 (1.66) | 0.311 | 18.54 (1.33) | 0.185 | 25.15 (1.37) | 0.170 |
2. 35–60 | 5.57 (3.28) | 16.63 (2.68) | 10.54 (2.60) | 27.89 (2.58) | 35.44 (2.56) | |||||
3. >60 | 3.85 (2.75) | 12.53 (2.09) | 8.59 (2.15) | 22.25 (2.04) | 27.94 (2.07) | |||||
Sex 2 | ||||||||||
Male | 3.91 (2.97) | <0.001 * | 13.13 (2.38) | 0.007 * | 8.99 (2.41) | 0.064 | 23.02 (2.30) | 0.021 * | 27.66 (2.29) | 0.008 * |
Female | 6.81 (3.11) | 18.35 (2.65) | 11.26 (2.54) | 30.34 (2.56) | 38.04 (2.56) | |||||
Insecticide use at home in the past 1 year 2 | ||||||||||
Yes | 6.72 (3.59) | 0.145 | 20.66 (3.00) | 0.055 | 10.89 (2.79) | 0.584 | 32.69 (2.84) | 0.138 | 40.29 (2.84) | 0.131 |
No | 4.91 (3.05) | 14.72 (2.45) | 9.91 (2.44) | 25.43 (2.38) | 31.18 (2.38) | |||||
Type of insecticide used at home | ||||||||||
Baygon 2,3 | ||||||||||
Yes | 6.67 (3.58) | 0.607 | 18.83 (2.86) | 0.544 | 10.45 (2.92) | 0.924 | 29.69 (2.82) | 0.723 | 36.93 (2.87) | 0.716 |
No | 5.56 (3.07) | 15.68 (2.61) | 0.16 (2.53) | 26.79 (2.51) | 33.25 (2.50) | |||||
Shieldtox 2,3 | ||||||||||
Yes | 6.27 (2.28) | 0.839 | 18.04 (1.54) | 0.785 | 10.78 (2.25) | 0.899 | 29.52 (1.70) | 0.841 | 36.32 (1.73) | 0.854 |
No | 5.58 (3.11) | 15.79 (2.64) | 10.15 (2.55) | 26.86 (2.54) | 33.32 (2.53) | |||||
Mosquito coil 2,3 | ||||||||||
Yes | 7.12 (3.75) | 0.320 | 21.59 (3.30) | 0.137 | 11.72 (2.85) | 0.503 | 34.72 (3.07) | 0.208 | 43.06 (3.05) | 0.205 |
No | 5.43 (2.99) | 15.27 (2.51) | 10.07 (2.50) | 26.20 (2.44) | 32.47 (2.43) | |||||
Daily vegetable intake 2 | ||||||||||
Yes | 9.18 (2.30) | 0.011 * | 15.56 (2.68) | 0.196 | 9.19 (2.95) | 0.316 | 25.47 (2.69) | 0.226 | 35.37 (2.54) | 0.114 |
No | 6.66 (2.03) | 13.14 (2.31) | 8.31 (2.50) | 22.24 (2.27) | 29.34 (2.17) |
3-PBA | Cis-DCCA | Trans-DCCA | Cis,trans-DCCA | Total Cypermethrin | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GM (GSD) | p-Value | GM (GSD) | p-Value | GM (GSD) | p-Value | GM (GSD) | p-Value | GM (GSD) | p-Value | |
Age 1 | ||||||||||
1. <35 | 4.14 (3.30) | 0.287 | 12.07 (2.50) | 0.090 | 6.82 (2.52) | 0.016, (1–2) p = 0.013, (1–3) p = 0.046 | 20.16 (2.26) | 0.053, (1–2) p = 0.042 | 24.94 (2.33) | 0.056, |
2. 35–60 | 6.33 (3.25) | 18.76 (2.41) | 11.84 (2.41) | 31.74 (2.31) | 39.45 (2.33) | (1–2) p = 0.044 | ||||
3. >60 | 6.09 (3.58) | 18.22 (2.57) | 11.88 (2.13) | 30.96 (2.29) | 38.15 (2.38) | |||||
Sex 2 | ||||||||||
Male | 5.67 (3.41) | 0.241 | 16.35 (2.50) | 0.022 * | 10.87 (2.47) | 0.477 | 28.46 (2.36) | 0.112 | 35.32 (2.40) | 0.119 |
Female | 7.08 (3.02) | 22.61 (2.25) | 12.00 (2.22) | 35.18 (2.19) | 43.63 (2.20) | |||||
Insecticide use at home in the past 1 year 2 | ||||||||||
Yes | 5.89 (3.33) | 0.480 | 18.11 (2.26) | 0.389 | 11.21 (2.37) | 0.791 | 30.43 (2.29) | 0.544 | 37.46 (2.33) | 0.831 |
No | 7.13 (3.26) | 15.21 (2.84) | 10.63 (2.73) | 27.11 (2.66) | 35.94 (2.64) | |||||
Cypermethrin use on the farm 2 | ||||||||||
Yes | 9.77 (2.66) | <0.001 * | 24.37 (2.28) | <0.001 * | 12.76 (2.39) | 0.040 * | 37.82 (2.25) | <0.001 * | 48.52 (2.33) | <0.001 * |
No | 3.97 (3.38) | 13.60 (2.41) | 9.94 (2.38) | 24.74 (2.27) | 29.83 (2.30) | |||||
Type of insecticide used at home | ||||||||||
ARS 2,3 | ||||||||||
Yes | 9.24 (2.54) | 0.052 | 25.31 (2.18) | 0.043 * | 12.46 (2.27) | 0.515 | 38.02 (2.18) | 0.151 | 48.04 (2.17) | 0.123 |
No | 5.58 (3.45) | 17.22 (2.44) | 11.02 (2.41) | 29.41 (2.31) | 36.20 (2.36) | |||||
Baygon 2,3 | ||||||||||
Yes | 8.03 (2.93) | <0.001 * | 21.02 (2.46) | 0.008 * | 12.54 (2.36) | 0.043 * | 34.74 (2.29) | 0.012 * | 43.83 (2.31) | 0.004 * |
No | 4.05 (3.57) | 14.92 (2.30) | 9.67 (2.40) | 25.59 (2.25) | 30.75 (2.30) | |||||
Shieldtox 2,3 | ||||||||||
Yes | 5.89 (3.61) | 0.958 | 17.12 (2.46) | 0.734 | 11.63 (2.49) | 0.816 | 29.98 (2.34) | 0.924 | 36.94 (2.42) | 0.914 |
No | 5.98 (3.33) | 18.27 (2.43) | 11.14 (2.38) | 30.49 (2.30) | 37.68 (2.34) | |||||
Mosquito coil 2,3 | ||||||||||
Yes | 6.09 (3.29) | 0.662 | 18.69 (2.43) | 0.358 | 11.61 (2.37) | 0.289 | 31.57 (2.29) | 0.245 | 38.86 (2.32) | 0.307 |
No | 5.54 (3.64) | 16.18 (2.41) | 9.89 (2.46) | 26.61 (2.33) | 33.31 (2.43) | |||||
Did not take a bath immediately after spraying 2 | ||||||||||
Yes | 11.12 (2.20) | <0.001 * | 25.32 (2.25) | <0.001 * | 13.69 (2.32) | 0.014 * | 40.07 (2.18) | <0.001 * | 52.01 (2.15) | <0.001 * |
No | 4.34 (3.49) | 14.77 (2.44) | 10.01 (2.41) | 25.85 (2.31) | 31.32 (2.35) | |||||
Kept all used chemical containers at home for disposal 2 | ||||||||||
Yes | 9.25 (2.48) | <0.001 * | 22.44 (2.27) | <0.001 * | 12.34 (2.30) | 0.092 | 35.41 (2.22) | 0.005 * | 45.42 (2.22) | <0.001 * |
No | 3.88 (3.66) | 14.06 (2.52) | 10.06 (2.49) | 25.49 (2.36) | 30.57 (2.40) | |||||
Daily vegetable intake 2 | ||||||||||
Yes | 7.25 (3.04) | 0.007 * | 20.28 (2.47) | 0.013 * | 12.40 (2.39) | 0.039 * | 34.16 (2.30) | 0.010 * | 42.65 (2.32) | 0.008 * |
No | 4.63 (3.56) | 14.84 (2.39) | 9.63 (2.38) | 25.22 (2.28) | 31.02 (2.33) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremongkoltip, A.; Pengpumkiat, S.; Kongtip, P.; Nankongnab, N.; Siri, S.; Woskie, S. Urinary Cypermethrin Metabolites among Conventional and Organic Farmers in Thailand. Toxics 2023, 11, 507. https://doi.org/10.3390/toxics11060507
Tremongkoltip A, Pengpumkiat S, Kongtip P, Nankongnab N, Siri S, Woskie S. Urinary Cypermethrin Metabolites among Conventional and Organic Farmers in Thailand. Toxics. 2023; 11(6):507. https://doi.org/10.3390/toxics11060507
Chicago/Turabian StyleTremongkoltip, Atima, Sumate Pengpumkiat, Pornpimol Kongtip, Noppanun Nankongnab, Sukhontha Siri, and Susan Woskie. 2023. "Urinary Cypermethrin Metabolites among Conventional and Organic Farmers in Thailand" Toxics 11, no. 6: 507. https://doi.org/10.3390/toxics11060507
APA StyleTremongkoltip, A., Pengpumkiat, S., Kongtip, P., Nankongnab, N., Siri, S., & Woskie, S. (2023). Urinary Cypermethrin Metabolites among Conventional and Organic Farmers in Thailand. Toxics, 11(6), 507. https://doi.org/10.3390/toxics11060507