Nanocomposite-Enabled Next-Generation Food Packaging: A Comprehensive Review on Advanced Preparation Methods, Functional Properties, Preservation Applications, and Safety Considerations
Abstract
1. Introduction
2. Classification and Synthesis Strategies of NCFPs
2.1. Classification and Constituents: Matrices and Functional Fillers
2.2. Preparation Methods
2.2.1. Ionic Gelation
2.2.2. Tape Casting
2.2.3. Injection-Molded
2.2.4. Vapor Deposition
2.2.5. Electrospinning
2.2.6. Coaxial Electrospraying
3. Structural and Performance Characterization of Nanocomposites
3.1. Micromorphological Analysis
3.2. Analysis of Microstructure and Binding Mechanisms
4. Functional Properties of Nanocomposites for Food Packaging
4.1. Mechanical Strength and Flexibility
4.2. Water Vapor Permeability (WVP)
4.3. Oxygen Permeability
4.4. Antimicrobial Efficacy
4.4.1. Antibacterial Effects
4.4.2. Antimicrobial Mechanisms
4.5. Antioxidant Efficacy
4.5.1. Antimicrobial Mechanisms
Free Radical Scavenging
Metal Ion Chelation
UV Barrier
4.5.2. Antioxidant Effects
5. Application in Food Preservation: From Fresh Produce to Animal-Derived Products
5.1. Application of Nanocomposites in Common Foods
5.2. Different Forms of Nanocomposite Materials in Food Applications
6. Safety Evaluation of Nanocomposites in Food Packaging
6.1. Migration Testing
6.2. Biotoxicity Assessment
6.3. Regulatory Frameworks and Safety Assessment
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kechagias, E.P.; Gayialis, S.P.; Panayiotou, N.; Papadopoulos, G.A. A Holistic Framework for Evaluating Food Loss and Waste Due to Marketing Standards across the Entire Food Supply Chain. Foods 2024, 13, 3273. [Google Scholar] [CrossRef]
- Dou, Z.X.; Toth, J.D. Global primary data on consumer food waste: Rate and characteristics A review. Resour. Conserv. Recycl. 2021, 168, 12. [Google Scholar] [CrossRef]
- Yao, Q.-B.; Huang, F.; Lu, Y.-H.; Huang, J.-M.; Ali, M.; Jia, X.-Z.; Zeng, X.-A.; Huang, Y.-y. Polysaccharide-based food packaging and intelligent packaging applications: A comprehensive review. Trends Food Sci. Technol. 2024, 147, 104390. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Li, X.; Zhou, W. Safety assessment of nanocomposite for food packaging application. Trends Food Sci. Technol. 2015, 45, 187–199. [Google Scholar] [CrossRef]
- Jeevahan, J.J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Joseph, G.B.; Mageshwaran, G.; Durairaj, R.B. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Muthu, A.; Nguyen, D.H.H.; Neji, C.; Toeros, G.; Ferroudj, A.; Atieh, R.; Prokisch, J.; El-Ramady, H.; Beni, A. Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives. Foods 2025, 14, 2657. [Google Scholar] [CrossRef] [PubMed]
- Anjum, A.; Garg, R.; Kashif, M.; Eddy, N.O. Nano-scale innovations in packaging: Properties, types, and applications of nanomaterials for the future. Food Chem. Adv. 2023, 3, 100560. [Google Scholar] [CrossRef]
- Ashfaq, A.; Khursheed, N.; Fatima, S.; Anjum, Z.; Younis, K. Application of nanotechnology in food packaging: Pros and Cons. J. Agric. Food Res. 2022, 7, 100270. [Google Scholar] [CrossRef]
- Davila-Rodriguez, M.; Lopez-Malo, A.; Palou, E.; Ramirez-Corona, N.; Teresa Jimenez-Munguia, M. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. LWT-Food Sci. Technol. 2019, 112, 108247. [Google Scholar] [CrossRef]
- Jasrotia, S.; Gupta, S.; Kudipady, M.L.; Puttaiahgowda, Y.M. Advancing food preservation with quercetin-based Nanocomposites: Antimicrobial, antioxidant, and controlled-release strategies—A review. Curr. Res. Food Sci. 2025, 11, 101159. [Google Scholar] [CrossRef]
- Usman, I.; Sana, S.; Jaffar, H.M.; Munir, M.; Afzal, A.; Sukhera, S.; Boateng, I.D.; Afzaal, M.; Urugo, M.M. Recent progress in edible films and coatings: Toward green and sustainable food packaging technologies. Appl. Food Res. 2025, 5, 101070. [Google Scholar] [CrossRef]
- Schoonjans, R.; Castenmiller, J.; Chaudhry, Q.; Cubadda, F.; Daskaleros, T.; Franz, R.; Gott, D.; Mast, J.; Mortensen, A.; Oomen, A.G.; et al. Regulatory safety assessment of nanoparticles for the food chain in Europe. Trends Food Sci. Technol. 2023, 134, 98–111. [Google Scholar] [CrossRef]
- Sothornvit, R. Nanostructured materials for food packaging systems: New functional properties. Curr. Opin. Food Sci. 2019, 25, 82–87. [Google Scholar] [CrossRef]
- Gupta, R.K.; Guha, P.; Srivastav, P.P. Investigating the toxicological effects of nanomaterials in food packaging associated with human health and the environment. J. Hazard. Mater. Lett. 2024, 5, 100125. [Google Scholar] [CrossRef]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.A.; Shiha, A.M.; Mahrous, H.; Mohammed, A.B.A. Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi drug resistant biofilm-forming Acinetobacterbaumannii. Sci. Rep. 2022, 12, 19. [Google Scholar] [CrossRef] [PubMed]
- Hasheminejad, N.; Khodaiyan, F. The effect of clove essential oil loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chem. 2020, 309, 125520. [Google Scholar] [CrossRef]
- Manuel Montes-de-Oca-Avalos, J.; Altamura, D.; Herrera, M.L.; Huck-Iriart, C.; Scattarella, F.; Siliqi, D.; Giannini, C.; Jorge Candal, R. Physical and structural properties of whey protein concentrate-Corn oil-TiO2 nanocomposite films for edible food-packaging. Food Packag. Shelf Life 2020, 26, 100590. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; Wang, X.; Li, S.; Pei, X.; He, Y. Electrospinning of gelatin nanofibers containing sesamol nanoparticles. J. Text. Inst. 2024, 115, 844–852. [Google Scholar] [CrossRef]
- Nguyen, V.T.B.; Nguyen, D.H.H.; Nguyen, H.V.H. Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biol. Technol. 2020, 162, 111103. [Google Scholar] [CrossRef]
- Yuan, H.; Li, W.; Chen, C.; Yu, H.; Huang, J.; Lou, X.; Tian, H. The role of bacterial nanocellulose mats encapsulated with cinnamaldehyde on chilled meat preservation. Int. J. Food Sci. Technol. 2023, 58, 880–889. [Google Scholar] [CrossRef]
- Orsuwan, A.; Sothornvit, R. Active Banana Flour Nanocomposite Films Incorporated with Garlic Essential Oil as Multifunctional Packaging Material for Food Application. Food Bioprocess Technol. 2018, 11, 1199–1210. [Google Scholar] [CrossRef]
- Costa, C.; Conte, A.; Buonocore, G.G.; Del Nobile, M.A. Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int. J. Food Microbiol. 2011, 148, 164–167. [Google Scholar] [CrossRef]
- Van, T.T.; Tanaka, F.; Fanze, M.; Wardak, M.H.; Pham, D.T.; Wardana, A.A.; Wigati, L.P.; Yan, X.; Tanaka, F. Application of green pomelo peel essential oil-based carboxymethylcellulose coatings reinforced with nano chitosan and nano cellulose fibers during the drying process on dried silkworms. Sci. Rep. 2025, 15, 8749. [Google Scholar] [CrossRef]
- Zheng, M.; Ma, Q.; Li, L.; Wang, Y.; Suo, R.; Wang, W.; Sun, J.; Wang, J.; Liu, H. Gelatin-based smart film incorporated with nano cerium oxide for rapid detection of shrimp freshness. LWT-Food Sci. Technol. 2023, 175, 114417. [Google Scholar] [CrossRef]
- Scudeler, C.G.D.; Costa, T.D.; Cortez-Vega, W.R.; Prentice, C.; Fonseca, G.G. Development and characterization of Nile tilapia (Oreochromis niloticus) protein isolate-based biopolymer films incorporated with essential oils and nanoclay. Food Packag. Shelf Life 2020, 25, 16. [Google Scholar] [CrossRef]
- Jung, S.; Cui, Y.; Barnes, M.; Satam, C.; Zhang, S.; Chowdhury, R.A.; Adumbumkulath, A.; Sahin, O.; Miller, C.; Sajadi, S.M.; et al. Multifunctional Bio-Nanocomposite Coatings for Perishable Fruits. Adv. Mater. 2020, 32, 1908291. [Google Scholar] [CrossRef] [PubMed]
- Sani, M.A.; Ehsani, A.; Hashemi, M. Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int. J. Food Microbiol. 2017, 251, 8–14. [Google Scholar] [CrossRef]
- de S. Medeiros, B.G.; Souza, M.P.; Pinheiro, A.C.; Bourbon, A.I.; Cerqueira, M.A.; Vicente, A.A.; Carneiro-da-Cunha, M.G. Physical Characterisation of an Alginate/Lysozyme Nano-Laminate Coating and Its Evaluation on ‘Coalho’ Cheese Shelf Life. Food Bioprocess Technol. 2014, 7, 1088–1098. [Google Scholar] [CrossRef]
- Meindrawan, B.; Suyatma, N.E.; Wardana, A.A.; Pamela, V.Y. Nanocomposite coating based on carrageenan and ZnO nanoparticles to maintain the storage quality of mango. Food Packag. Shelf Life 2018, 18, 140–146. [Google Scholar] [CrossRef]
- Ji, Q.; Su, L.; Boateng, I.D.; Li, Z.; Zhou, C.; Liu, X.; Ma, Y. Preparation of chitosan/peanut shell nano-lignocellulose (CS/NLC) composite film and its preservation effect on cherry tomato and blueberry. Ind. Crops Prod. 2025, 228, 120881. [Google Scholar] [CrossRef]
- Yin, W.; Yan, R.; Zhou, X.; Li, X.; Sang, S.; McClements, D.J.; Chen, L.; Long, J.; Jiao, A.; Wang, J.; et al. Preparation of robust, water-resistant, antibacterial, and antioxidant chitosan-based films by incorporation of cinnamaldehyde-tannin acid-zinc acetate nanoparticles. Food Chem. 2023, 419, 136004. [Google Scholar] [CrossRef]
- Dolores Sanchez-Garcia, M.; Hilliou, L.; Maria Lagaron, J. Morphology and Water Barrier Properties of Nanobiocomposites of k/i-Hybrid Carrageenan and Cellulose Nanowhiskers. J. Agric. Food. Chem. 2010, 58, 12847–12857. [Google Scholar] [CrossRef] [PubMed]
- Figueroa-Enriquez, C.E.; Rodriguez-Felix, F.; Ruiz-Cruz, S.; Castro-Enriquez, D.D.; Gonzalez-Rios, H.; Perez-Alvarez, J.A.; Madera-Santana, T.J.; Burruel-Ibarra, S.E.; Tapia-Hernandez, J.A.; Estrella-Osuna, D.E. Edible Coating of Sodium Alginate with Gelatin Nanoparticles and Pitaya Extract (Stenocereus thurberi): Physicochemical and Antioxidant Properties. J. Food Qual. 2025, 2025, 5756522. [Google Scholar] [CrossRef]
- Goudarzi, V.; Shahabi-Ghahfarrokhi, I.; Babaei-Ghazvini, A. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. Int. J. Biol. Macromol. 2017, 95, 306–313. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Diaz, R.H.; Labidi, J.; Fernandes, S.C.M. Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocoll. 2015, 46, 93–102. [Google Scholar] [CrossRef]
- Yuan, X.; Zhou, Y.; Bi, J.; Li, S.; Wu, H.; Zeng, M.; Pan, Y.; Lin, W.; Zhou, M.; Zhang, Z.; et al. An antioxidant composite film based on loquat seed starch incorporating resveratrol-loaded core-shell nanoparticles. Int. J. Biol. Macromol. 2025, 306, 141493. [Google Scholar] [CrossRef]
- Avella, M.; De Vlieger, J.J.; Errico, M.E.; Fischer, S.; Vacca, P.; Volpe, M.G. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem. 2005, 93, 467–474. [Google Scholar] [CrossRef]
- Chu, Y.F.; Gao, C.C.; Liu, X.Y.; Zhang, N.; Xu, T.; Feng, X.; Yang, Y.L.; Shen, X.C.; Tang, X.Z. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT-Food Sci. Technol. 2020, 122, 109054. [Google Scholar] [CrossRef]
- Abdou, E.S.; Galhoum, G.F.; Mohamed, E.N. Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocoll. 2018, 83, 445–453. [Google Scholar] [CrossRef]
- Lepot, N.; Van Bael, M.K.; Van den Rul, H.; D’Haen, J.; Peeters, R.; Franco, D.; Mullens, J. Influence of Incorporation of ZnO Nanoparticles and Biaxial Orientation on Mechanical and Oxygen Barrier Properties of Polypropylene Films for Food Packaging Applications. J. Appl. Polym. Sci. 2011, 120, 1616–1623. [Google Scholar] [CrossRef]
- Bi, F.Y.; Zhang, X.; Liu, J.; Yong, H.M.; Gao, L.; Liu, J. Development of antioxidant and antimicrobial packaging films based on chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and silicon dioxide nanoparticles. Food Packag. Shelf Life 2020, 24, 11. [Google Scholar] [CrossRef]
- Rampazzo, R.; Alkan, D.; Gazzotti, S.; Ortenzi, M.A.; Piva, G.; Piergiovanni, L. Cellulose Nanocrystals from Lignocellulosic Raw Materials, for Oxygen Barrier Coatings on Food Packaging Films. Packag. Technol. Sci. 2017, 30, 645–661. [Google Scholar] [CrossRef]
- Li, W.; Li, L.; Zhang, H.; Yuan, M.; Qin, Y. Evaluation of PLA nanocomposite films on physicochemical and microbiological properties of refrigerated cottage cheese. J. Food Process. Preserv. 2018, 42, e13362. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Hu, X.; Chelliah, R.; Oh, D.-H.; Kathiresan, K.; Wang, M.-H. Biogenic silver nanoparticles-polyvinylpyrrolidone based glycerosomes coating to expand the shelf life of fresh-cut bell pepper (Capsicum annuum L. var. grossum (L.) Sendt). Postharvest Biol. Technol. 2020, 160, 111039. [Google Scholar] [CrossRef]
- Chowdhury, S.; Teoh, Y.L.; Ong, K.M.; Zaidi, N.S.R.; Mah, S.K. Poly(vinyl) alcohol crosslinked composite packaging film containing gold nanoparticles on shelf life extension of banana. Food Packag. Shelf Life 2020, 24, 10. [Google Scholar] [CrossRef]
- Yemmireddy, V.K.; Hung, Y.-C. Effect of binder on the physical stability and bactericidal property of titanium dioxide (TiO2) nanocoatings on food contact surfaces. Food Control 2015, 57, 82–88. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, Y.; Li, X.; Kang, H. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices. Meat Sci. 2020, 166, 108137. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, F.; Habibi, N.; Hosseini, M. Nano-Coating Loaded with Leaf and Flowers of Pelargonium graveolens Plant Extract Stabilized with Fenugreek Seed Gum and Soy Protein Isolate in Increasing the Shelf Life of Mutton Fillet. Food Sci. Nutr. 2025, 13, e4618. [Google Scholar] [CrossRef]
- Huang, Y.; Gu, C.; He, S.; Zhu, D.; Liu, X.; Chen, Z. Development and characterization of an edible chitosan-whey protein nano composite film for chestnut (Castanea mollissima Bl.) preservation. J. Food Sci. 2020, 85, 2114–2123. [Google Scholar] [CrossRef]
- Niaz, T.; Imran, M. Diffusion kinetics of nisin from composite coatings reinforced with nano-rhamnosomes. J. Food Eng. 2021, 288, 110143. [Google Scholar] [CrossRef]
- Behnezhad, M.; Goodarzi, M.; Baniasadi, H. Fabrication and characterization of polyvinyl alcohol/carboxymethyl cellulose/titanium dioxide degradable composite films: An RSM study. Mater. Res. Express 2019, 6, 13. [Google Scholar] [CrossRef]
- Hirvikorpi, T.; Vaha-Nissi, M.; Harlin, A.; Salomaki, M.; Areva, S.; Korhonen, J.T.; Karppinen, M. Enhanced water vapor barrier properties for biopolymer films by polyelectrolyte multilayer and atomic layer deposited Al2O3 double-coating. Appl. Surf. Sci. 2011, 257, 9451–9454. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhang, F.; Mi, S.; Yu, W.; Sang, Y.; Wang, X. Preparation of chitosan/polyvinyl alcohol antibacterial indicator composite film loaded with AgNPs and purple sweet potato anthocyanins and its application in strawberry preservation. Food Chem. 2025, 463, 141442. [Google Scholar] [CrossRef]
- Hu, J.; Li, D.; Huai, Q.; Geng, M.; Sun, Z.; Wang, M.; Wang, S.; Li, Y.; Zheng, H. Development and evaluation of soybean protein isolate-based antibacterial nanocomposite films containing nano-TiO2. Ind. Crops Prod. 2023, 197, 116620. [Google Scholar] [CrossRef]
- Qi, Z.; Xie, P.; Yang, C.; Xue, X.; Chen, H.; Zhou, H.; Yuan, H.; Yang, G.; Wang, C. Developing fisetin-AgNPs incorporated in reinforced chitosan/pullulan composite-film and its application of postharvest storage in litchi fruit. Food Chem. 2023, 407, 135122. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Fang, D.; Huang, C.; Lyu, L.; Wu, W.; Li, W. Electrospun biopolymer material for antimicrobial function of fresh fruit and vegetables: Application perspective and challenges. LWT-Food Sci. Technol. 2023, 174, 114374. [Google Scholar] [CrossRef]
- Tian, X.; Chen, Z.; Lu, X.; Mu, J.; Ma, Q.; Li, X. Soy Protein/Polyvinyl-Alcohol (PVA)-Based Packaging Films Reinforced by Nano-TiO2. Polymers 2023, 15, 1764. [Google Scholar] [CrossRef]
- Kaboudi, Z.; Peighambardoust, S.H.; Nourbakhsh, H.; Soltanzadeh, M. Nanoencapsulation of Chavir (Ferulago angulata) essential oil in chitosan carrier: Investigating physicochemical, morphological, thermal, antimicrobial and release profile of obtained nanoparticles. Int. J. Biol. Macromol. 2023, 237. [Google Scholar] [CrossRef]
- Wei, X.; Li, Q.; Hao, H.; Yang, H.; Li, Y.; Sun, T.; Li, X. Preparation, physicochemical and preservation properties of Ti/ZnO/in situ SiOx chitosan composite coatings. J. Sci. Food Agric. 2020, 100, 570–577. [Google Scholar] [CrossRef]
- Priya, D.S.; Suriyaprabha, R.; Yuvakkumar, R.; Rajendran, V. Chitosan-incorporated different nanocomposite HPMC films for food preservation. J. Nanopart. Res. 2014, 16, 2248. [Google Scholar] [CrossRef]
- Lu, P.; Yang, Y.; Liu, R.; Liu, X.; Ma, J.; Wu, M.; Wang, S. Preparation of sugarcane bagasse nanocellulose hydrogel as a colourimetric freshness indicator for intelligent food packaging. Carbohydr. Polym. 2020, 249, 116831. [Google Scholar] [CrossRef]
- Kang, Z.; Chen, S.; Zhou, Y.; Ullah, S.; Liang, H. Rational construction of citrus essential oil nanoemulsion with robust stability and high antimicrobial activity based on combination of emulsifiers. Innov. Food Sci. Emerg. Technol. 2022, 80, 103110. [Google Scholar] [CrossRef]
- Arezoo, E.; Mohammadreza, E.; Maryam, M.; Abdorreza, M.N. The synergistic effects of cinnamon essential oil and nano TiO2 on antimicrobial and functional properties of sago starch films. Int. J. Biol. Macromol. 2020, 157, 743–751. [Google Scholar] [CrossRef]
- Yadav, S.; Mehrotra, G.K.; Dutta, P.K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chem. 2021, 334, 127605. [Google Scholar] [CrossRef]
- das Neves, M.D.; Scandorieiro, S.; Pereira, G.N.; Ribeiro, J.M.; Seabra, A.B.; Dias, A.P.; Yamashita, F.; Martinez, C.B.D.; Kobayashi, R.K.T.; Nakazato, G. Antibacterial Activity of Biodegradable Films Incorporated with Biologically-Synthesized Silver Nanoparticles and the Evaluation of Their Migration to Chicken Meat. Antibiotics 2023, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Çakir, M.A.; Icyer, N.C.; Tornuk, F. Optimization of production parameters for fabrication of thymol-loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2020, 151, 230–238. [Google Scholar] [CrossRef]
- Zhuang, C.; Jiang, Y.; Zhong, Y.; Zhao, Y.; Deng, Y.; Yue, J.; Wang, D.; Jiao, S.; Gao, H.; Chen, H.; et al. Development and characterization of nano-bilayer films composed of polyvinyl alcohol, chitosan and alginate. Food Control 2018, 86, 191–199. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, C.; Huang, X.; Huang, H.; Zhao, H.; Wang, S.; Liu, S. Effectiveness of PECVD deposited nano-silicon oxide protective layer for polylactic acid film: Barrier and surface properties. Food Packag. Shelf Life 2020, 25, 100513. [Google Scholar] [CrossRef]
- Yilmaz, A.; Bozkurt, F.; Cicek, P.K.; Dertli, E.; Durak, M.Z.; Yilmaz, M.T. A novel antifungal surface-coating application to limit postharvest decay on coated apples: Molecular, thermal and morphological properties of electrospun zein-nanofiber mats loaded with curcumin. Innov. Food Sci. Emerg. Technol. 2016, 37, 74–83. [Google Scholar] [CrossRef]
- Bagheri, R.; Ariaii, P.; Motamedzadegan, A. Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. J. Food Meas. Charact. 2021, 15, 1395–1402. [Google Scholar] [CrossRef]
- Ma, W.; Yang, Y.; Yan, Y. Preparation and Rheological Properties of Paper-Based Superhydrophobic Materials. Polym. Sci. Ser. B 2023, 65, 192–200. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Yang, T.; Zou, Z.; Qi, Z.; Ma, L.; Chen, J. Space-confined physical vapour deposition of high quality ZnTe nanosheets for optoelectronic application. Mater. Lett. 2019, 238, 309–312. [Google Scholar] [CrossRef]
- Mokhova, E.; Gordienko, M.; Menshutina, N.; Serkina, K.; Avetissov, I. Obtaining Polyacrylonitrile Carbon Nanofibers by Electrospinning for Their Application as Flame-Retardant Materials. Polymers 2025, 17, 1255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Song, J.; Liu, L.; Zhang, P.; Si, Y.; Zhang, S.; Yu, J.; Ding, B. Electroconductive nanofibrous membranes with nanosheet-based microsphere-threaded heterostructures enabling oily wastewater remediation. J. Mater. Chem. A 2021, 9, 15310–15320. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, J.; Zhang, K.; Zhou, H.; Gao, Y.; Fan, J.; Chen, R.; Wang, H.-L. Carbon Nanofiber/Polyaniline Composite Aerogel with Excellent Electromagnetic Interference Shielding, Low Thermal Conductivity, and Extremely Low Heat Release. Nano Micro Lett. 2025, 17, 80. [Google Scholar] [CrossRef]
- Kuddushi, M.; Kumar, T.; Wu, H.; Chen, S.; Bin Xu, B.; Malek, N.; Unsworth, L.; Xu, J.; Zhang, J.; Wang, X.; et al. A semi-transparent strong biomimetic wound healing material: Zinc oxide and sodium alginate based bi-layer nanofiber membrane. Adv. Compos. Hybrid Mater. 2025, 8, 179. [Google Scholar] [CrossRef]
- Shan, H.; Si, Y.; Yu, J.; Ding, B. Facile access to highly flexible and mesoporous structured silica fibrous membranes for tetracyclines removal. Chem. Eng. J. 2021, 417, 129211. [Google Scholar] [CrossRef]
- Huang, X.; Jiang, W.; Zhou, J.; Yu, D.-G.; Liu, H. The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation. Polymers 2022, 14, 4947. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Zhao, Y.; Li, G.; Yan, J.; Yu, J.; Ding, B. A General Strategy to Fabricate Flexible Oxide Ceramic Nanofibers with Gradient Bending-Resilience Properties. Adv. Funct. Mater. 2021, 31, 2103989. [Google Scholar] [CrossRef]
- Amjadi, S.; Almasi, H.; Gholizadeh, S.; Hamishehkar, H.; Ebrahimi, A. Designing an active green packaging material based on black chickpea protein isolate electrospun nanofibers containing citral nanoliposomes. LWT-Food Sci. Technol. 2024, 213, 117042. [Google Scholar] [CrossRef]
- Zang, C.; Zhang, Y.; Yang, W.; Hu, Y. Polycaprolactone/chitosan electrospun nanofibrous membranes loaded Chinese yam polysaccharide for active food packaging. LWT-Food Sci. Technol. 2024, 198, 115985. [Google Scholar] [CrossRef]
- Figueroa-Enriquez, C.E.; Rodríguez-Félix, F.; Plascencia-Jatomea, M.; Sánchez-Escalante, A.; Vargas-López, J.M.; Tapia-Hernández, J.A.; Canizales-Rodríguez, D.F.; Castro-Enriquez, D.D.; Ruiz-Cruz, S.; Santos-Sauceda, I.; et al. Nanoparticles of Betalain–Gelatin with Antioxidant Properties by Coaxial Electrospraying: Preparation and Characterization. ACS Omega 2023, 8, 41156–41168. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.F.; Cheng, W.W.; Feng, X.; Gao, C.C.; Wu, D.; Meng, L.H.; Zhang, Y.; Tang, X.Z. Fabrication, structure and properties of pullulan-based active films incorporated with ultrasound-assisted cinnamon essential oil nanoemulsions. Food Packag. Shelf Life 2020, 25, 10. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Alejandra Rojas-Graue, M.; Martin-Belloso, O. Edible films from essential-oil-loaded nanoemulsions: Physicochemical characterization and antimicrobial properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef]
- Yuan, S.; Xue, Z.; Zhang, S.; Wu, C.; Feng, Y.; Kou, X. The characterization of antimicrobial nanocomposites based on chitosan, cinnamon essential oil, and TiO2 for fruits preservation. Food Chem. 2023, 413, 135446. [Google Scholar] [CrossRef]
- Alizadeh-Sani, M.; Khezerlou, A.; Ehsani, A. Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Ind. Crops Prod. 2018, 124, 300–315. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X.; Li, Y.-C.; Xiao, H.; Wang, X. Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr. Polym. 2018, 199, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Chen, W.; Wu, C.E.; Kou, X.; Fan, G.; Li, T.; Wu, Z. Preservation of Ginkgo biloba seeds by coating with chitosan/nano-TiO2 and chitosan/nano-SiO2 films. Int. J. Biol. Macromol. 2019, 126, 917–925. [Google Scholar] [CrossRef]
- Dong, X.R.; Liang, X.; Zhou, Y.T.; Bao, K.W.; Sameen, D.E.; Ahmed, S.; Dai, J.W.; Qin, W.; Liu, Y.W. Preparation of polylactic acid/TiO2/GO nano-fibrous films and their preservation effect on green peppers. Int. J. Biol. Macromol. 2021, 177, 135–148. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Y.; Cai, X.; Wang, S. Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. Int. J. Biol. Macromol. 2016, 84, 153–160. [Google Scholar] [CrossRef]
- Wei, X.-Q.; Li, X.-P.; Wu, C.-L.; Yi, S.-M.; Zhong, K.-L.; Sun, T.; Li, J.-R. The Modification of In Situ SiOx Chitosan Coatings by ZnO/TiO2 NPs and Its Preservation Properties to Silver Carp Fish Balls. J. Food Sci. 2018, 83, 2992–3001. [Google Scholar] [CrossRef]
- Jamroz, E.; Kulawik, P.; Kopel, P. The Effect of Nanofillers on the Functional Properties of Biopolymer-Based Films: A Review. Polymers 2019, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, A.; Castaño, J. Polysaccharide nanomaterial reinforced starch nanocomposites: A review. Starch-Starke 2017, 69, 19. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, C.; Zheng, S.; Li, W.; Li, B.; Xie, X. Poly (butylene adipate-co-terephthalate)/magnesium oxide/silver ternary composite biofilms for food packaging application. Food Packag. Shelf Life 2020, 24, 100487. [Google Scholar] [CrossRef]
- Al-Tayyar, N.A.; Youssef, A.M.; Al-hindi, R. Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chem. 2020, 310, 17. [Google Scholar] [CrossRef]
- Yang, L.; Yang, H.; Hao, W.; Li, Y.; Li, Q.; Sun, T. Fabrication, characterization and antibacterial mechanism of in-situ modification nano-CaCO3/TiO2/CS coatings. Int. J. Food Sci. Technol. 2021, 56, 2675–2686. [Google Scholar] [CrossRef]
- Youssef, A.M.; Abdel-Aziz, M.S.; El-Sayed, S.M. Chitosan nanocomposite films based on Ag-NP and Au-NP biosynthesis by Bacillus Subtilis as packaging materials. Int. J. Biol. Macromol. 2014, 69, 185–191. [Google Scholar] [CrossRef]
- Qin, C.Q.; Li, H.R.; Xiao, Q.; Liu, Y.; Zhu, J.C.; Du, Y.M. Water-solubility of chitosan and its antimicrobial activity. Carbohydr. Polym. 2006, 63, 367–374. [Google Scholar] [CrossRef]
- Apjok, R.; Cozmuta, A.M.; Peter, A.; Cozmuta, L.M.; Nicula, C.; Baia, M.; Vulpoi, A. Active packaging based on cellulose-chitosan-Ag/TiO2 nanocomposite for storage of clarified butter. Cellulose 2019, 26, 1923–1946. [Google Scholar] [CrossRef]
- Vieira, I.R.S.; da Silva, A.A.; da Silva, B.D.; Neto, L.T.; Tessaro, L.; Furtado, C.R.G.; de Sousa, A.M.F.; Carvalho, N.M.F.; Conte-Junior, C.A. Eco-friendly synthesis of ZnO nanomaterial from green tea extract: Photocatalytic, antibacterial and antioxidant potential. Biomass Convers. Biorefin. 2024, 14, 24317–24331. [Google Scholar] [CrossRef]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Chitosan nanoparticles loaded with Cinnamomum zeylanicum essential oil enhance the shelf life of cucumber during cold storage. Postharvest Biol. Technol. 2015, 110, 203–213. [Google Scholar] [CrossRef]
- Nogueira, J.O.E.; Campolina, G.A.; Batista, L.R.; Alves, E.; Silva Caetano, A.R.; Brandao, R.M.; Nelson, D.L.; Cardoso, M.d.G. Mechanism of action of various terpenes and phenylpropanoids against Escherichia coli and Staphylococcus aureus. FEMS Microbiol. Lett. 2021, 368, fnab052. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, J.; Zeng, Y.; Liu, X.; Chen, M.; Dai, J.; Li, S.; Qin, W.; Liu, Y. Nanofibrous composite membranes based on chitosan-nano zinc oxide and curcumin for Kyoho grapes preservation. Int. J. Biol. Macromol. 2023, 242, 124661. [Google Scholar] [CrossRef]
- Xu, K.; Li, H.; Huang, X.; Qin, Z. Multi-crosslinked network chitosan films containing caffeic acid and Fe3+ with high anti-oxidation and anti-UV abilities. Int. J. Biol. Macromol. 2022, 223, 1462–1473. [Google Scholar] [CrossRef] [PubMed]
- Farahanian, Z.; Zamindar, N.; Goksen, G.; Tucker, N.; Paidari, S.; Khosravi, E. Effects of Nano-Bentonite Polypropylene Nanocomposite Films and Modified Atmosphere Packaging on the Shelf Life of Fresh-Cut Iceberg Lettuce. Coatings 2023, 13, 15. [Google Scholar] [CrossRef]
- Dghais, S.; Ben Jemaa, M.; Chouchen, M.; Jallouli, S.; Ksouri, R.; Falleh, H. Nano-Emulsification of Cinnamon and Curcuma Essential Oils for the Quality Improvement of Minced Meat Beef. Foods 2023, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, A.; Shahidi, S.-A.; Shariatifar, N.; Shiran, M.; Ghorbani-HasanSaraei, A. Evaluation of Chitosan-zein Coating Containing Free and Nano-encapsulated Pulicaria gnaphalodes (Vent.) Boiss. Extract on Quality Attributes of Rainbow Trout. J. Aquat. Food Prod. Technol. 2021, 30, 62–75. [Google Scholar] [CrossRef]
- Niaz, T.; Shabbir, S.; Noor, T.; Imran, M. Active Composite Packaging Reinforced with Nisin-Loaded Nano-Vesicles for Extended Shelf Life of Chicken Breast Filets and Cheese Slices. Food Bioprocess Technol. 2022, 15, 1284–1298. [Google Scholar] [CrossRef]
- Xin, Y.; Chen, F.; Lai, S.; Yang, H. Influence of chitosan-based coatings on the physicochemical properties and pectin nanostructure of Chinese cherry. Postharvest Biol. Technol. 2017, 133, 64–71. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Li, L.; Cheng, M.; Zhang, L. Optimization of konjac glucomannan/carrageenan/nano-SiO2 coatings for extending the shelf-life of Agaricus bisporus. Int. J. Biol. Macromol. 2019, 122, 857–865. [Google Scholar] [CrossRef] [PubMed]
- Karimirad, R.; Behnamian, M.; Dezhsetan, S. Bitter orange oil incorporated into chitosan nanoparticles: Preparation, characterization and their potential application on antioxidant and antimicrobial characteristics of white button mushroom. Food Hydrocoll. 2020, 100, 105387. [Google Scholar] [CrossRef]
- Panea, B.; Ripoll, G.; Gonzalez, J.; Fernandez-Cuello, A.; Alberti, P. Effect of nanocomposite packaging containing different proportions of ZnO and Ag on chicken breast meat quality. J. Food Eng. 2014, 123, 104–112. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martin-Belloso, O. Improving the shelf life of low-fat cut cheese using nanoemulsionbased edible coatings containing oregano essential oil and mandarin fiber. Food Control 2017, 76, 1–12. [Google Scholar] [CrossRef]
- Li, K.; Zhang, M.; Bhandari, B.; Xu, J.; Yang, C. Improving storage quality of refrigerated steamed buns by mung bean starch composite coating enriched with nano-emulsified essential oils. J. Food Process Eng. 2020, 43, e13475. [Google Scholar] [CrossRef]
- Munteanu, B.S.; Aytac, Z.; Pricope, G.M.; Uyar, T.; Vasile, C. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity. J. Nanopart. Res. 2014, 16, 2643. [Google Scholar] [CrossRef]
- Arabpoor, B.; Yousefi, S.; Weisany, W.; Ghasemlou, M. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocoll. 2021, 111, 11. [Google Scholar] [CrossRef]
- Motlagh, N.V.; Aghazamani, J.; Gholami, R. Investigating the Effect of Nano-silver Contained Packaging on the Olivier Salad Shelf-life. Bionanoscience 2021, 11, 838–847. [Google Scholar] [CrossRef]
- Sami, R.; Soltane, S.; Helal, M. Microscopic Image Segmentation and Morphological Characterization of Novel Chitosan/Silica Nanoparticle/Nisin Films Using Antimicrobial Technique for Blueberry Preservation. Membranes 2021, 11, 303. [Google Scholar] [CrossRef] [PubMed]
- Robledo, N.; Vera, P.; Lopez, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem. 2018, 246, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Wang, W.; Liu, L.; Wu, S.; Wei, Y.; Li, W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J. Food Eng. 2013, 118, 125–131. [Google Scholar] [CrossRef]
- Sayadi, M.; Amiri, S.; Radi, M. Active packaging nanocomposite gelatin-based films as a carrier of nano TiO2 and cumin essential oil: The effect on quality parameters of fresh chicken. J. Food Meas. Charact. 2022, 16, 420–430. [Google Scholar] [CrossRef]
- Esmaeili, M.; Ariaii, P.; Nasiraie, L.R.; Pour, M.Y. Comparison of coating and nano-coating of chitosan-Lepidium sativum seed gum composites on quality and shelf life of beef. J. Food Meas. Charact. 2021, 15, 341–352. [Google Scholar] [CrossRef]
- Homayounpour, P.; Jalali, H.; Shariatifar, N.; Amanlou, M.; Khanjari, A. Protective Effect of Nanochitosan Incorporated with Free/nanoliposome Cumin (Cuminum cyminum L.) Aqueous Extract on Sardine Fish. J. Aquat. Food Prod. Technol. 2020, 29, 949–961. [Google Scholar] [CrossRef]
- Feng, X.; Hu, X.; Yu, J.; Zhao, M.; Yang, F.; Wang, X.; Zhang, C.; Weng, Y.; Han, J. A Hydrotalcite-Based PET Composites with Enhanced Properties for Liquid Milk Packaging Applications. Materials 2023, 16, 1857. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, G.; Wang, H.; Jin, M.C.; Dang, H.; Zhang, J.; Guo, R.; Yan, H.; Niu, B.; Wang, H. Development of smart packaging film incorporated with sodium alginate-chitosan quaternary ammonium salt nanocomplexes encapsulating anthocyanins for monitoring milk freshness. Int. J. Biol. Macromol. 2024, 263, 130336. [Google Scholar] [CrossRef]
- Wang, X.; Xue, Z.; Sun, Y.; Peng, B.; Wu, C.; Kou, X. Chitosan-ginger essential oil nanoemulsions loaded gelatin films: A biodegradable material for food preservation. Int. J. Biol. Macromol. 2024, 280, 135791. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, S.; Bing, X.; Gao, C.; Wang, T.; Yuan, B. Nanosilver Migrated into Food-Simulating Solutions from Commercially Available Food Fresh Containers. Packag. Technol. Sci. 2011, 24, 291–297. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, J.; Dai, X.; Huang, F.; Guan, L.; Wen, R. Design and Evaluation of a Cinnamomum burmannii Essential Oil-Loaded Preservative Film for Enhancing the Quality and Shelf Life of Squaliobarbus curriculus Filets. Foods 2025, 14, 3139. [Google Scholar] [CrossRef]
- Li, N.; Zhou, Z.; Wu, F.; Lu, Y.; Jiang, D.; Zhong, L.; Xie, F. Development of pH-Indicative and Antimicrobial Films Based on Polyvinyl Alcohol/Starch Incorporated with Ethyl Lauroyl Arginate and Mulberry Anthocyanin for Active Packaging. Coatings 2022, 12, 1392. [Google Scholar] [CrossRef]
- Houtman, J.; Maisanaba, S.; Puerto, M.; Gutiérrez-Praena, D.; Jordá, M.; Aucejo, S.; Jos, A. Toxicity assessment of organomodified clays used in food contact materials on human target cell lines. Appl. Clay Sci. 2014, 90, 150–158. [Google Scholar] [CrossRef]
- Pavicic, I.; Milic, M.; Pongrac, I.M.; Ahmed, L.B.; Glavan, T.M.; Ilic, K.; Zapletal, E.; Curlin, M.; Mitrecic, D.; Vrcek, I.V. Neurotoxicity of silver nanoparticles stabilized with different coating agents: In vitro response of neuronal precursor cells. Food Chem. Toxicol. 2020, 136, 110935. [Google Scholar] [CrossRef] [PubMed]
- More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernandez-Jerez, A.; Bennekou, S.H.; Koutsoumanis, K.; Lambre, C.; Machera, K.; et al. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021, 19, e06768. [Google Scholar] [CrossRef] [PubMed]




| Type of Film/Coating | Matrix | Filler | Ref. |
|---|---|---|---|
| Nanomaterials as matrix | |||
| Protein | Nano-whey protein concentrate | Corn oil and TiO2 | [18] |
| Gelatin nanofibers | Sesamol | [19] | |
| Polysaccharide | Nanochitosan | CaCl2 | [20] |
| Nanochitosan | Green tea oil Peppermint oil | [15] | |
| Bacterial nanocellulose | Cinnamaldehyde | [21] | |
| Polysaccharide | Banana flour starch nanoparticles | MMT and garlic essential oil | [22] |
| Others | Nanomontmorillonite | Ag | [23] |
| Compound matrix | Carboxymethylcellulose (CMC), nano-cellulose fiber (NCF), and nanochitosan (N-Ch) | Green pomelo peel essential oil (GPO) | [24] |
| Nanomaterials as filler | |||
| Protein | Gelatin | Nanocerium oxide | [25] |
| Nile tilapia (Oreochromis niloticus) protein isolate | Oregano essential oil and nano-clay clove essential oil and nano-clay | [26] | |
| Egg white and egg yolk albumen protein | Cellulose nanocrystal and curcumin | [27] | |
| Whey protein | Cellulose nanofiber and rosemary essential oil and TiO2 | [28] | |
| Polysaccharide | Alginate | Lysozyme | [29] |
| Carrageenan | Nano-ZnO | [30] | |
| Chitosan | peanut shell nano-lignocellulose (NLC) | [31] | |
| Chitosan | Cinnamaldehyde-tannic acid zinc acetate nanoparticles | [32] | |
| K/ι-Hybrid Carrageenan | Cellulose nanowhiskers | [33] | |
| Sodium alginate | Gelatin nanoparticles encapsulating pitaya extract (Stenocereus thurberi) | [34] | |
| Starch | Nano-TiO2 | [35] | |
| Polysaccharide | Starch | Chitin nanocrystal Chitin nanofiber | [36] |
| Loquat seed starch | Resveratrol core–shell biopolymer nanoparticles | [37] | |
| Potato starch | Clay | [38] | |
| Pullulan | Cinnamon essential oil | [39] | |
| Pectin | Curcumin and essential oil | [40] | |
| Synthetic polymer | Biaxially oriented polypropylene (BOPP) | ZnO nanorods Spherical ZnO | [41] |
| High-density polyethylene | Marigold flower extract and TiO2 | [42] | |
| Polyethylene terephthalate (PET) | Cellulose nanocrystals | [43] | |
| Polylactic acid (PLA) | TiO2 and Ag | [44] | |
| Polyvinylpyrrolidone (PLV) | AgNPs | [45] | |
| Polyvinyl alcohol (PVA) | AuNPs Graphene oxide | [46] | |
| Others | Shellac | TiO2 | [47] |
| Compound matrix | Chitosan and gelatin | Tarragon essential oils | [48] |
| Soy protein isolate (SPI) and fenugreek seed gum (FSG) | P. graveolens extract | [49] | |
| Chitosan and whey protein | Nano-cellulose and cinnamaldehyde | [50] | |
| Compound matrix | K-carrageenan and hydroxypropyl methylcellulose | Nisin and nano-rhamnose | [51] |
| PVA and CMC | TiO2 | [52] | |
| PLA, sodium alginate, and chitosan | Al2O3 | [53] | |
| Chitosan and polyvinyl alcohol | AgNPs and purple sweet potato anthocyanins | [54] | |
| Fabrication Method | Advantages | Disadvantages | Exemplary System | Ref. |
|---|---|---|---|---|
| Ionic gelation method | Simple, mild reaction conditions, without large-scale equipment. | Liquid, long reaction time, difficult to industrialize. | Chitosan and thymol | [67] |
| Tape casting | Simple, without large-scale equipment. | Long time, high-energy consumption, and discontinuous. | Chitosan, nano-ZnO, and gallic acid | [65] |
| Multilayer composite | Simple, without large-scale equipment. | Long time, easy to delaminate. | PVA, sodium alginate, and chitosan | [68] |
| Injection-molded | Simple, quantity production. | Need specialized equipment, unsuitable for heat-sensitive materials. | Potato starch and nano-clay | [38] |
| Chemical or physical vapor deposition | Mature technology, low substrate, fast deposition rate, uniform density, and good film-forming properties. | Complex chemical reactions, need specialized equipment, mostly used for metals and their oxides. | PLA and nano-SiO2 | [69] |
| Electrospinning method | Excellent performance, new technology, widely applicable. | High voltage, need specialized equipment. | Zein nanofibers and curcumin | [70] |
| Composition | Mechanical Property | Barrier Property | Ref. | ||
|---|---|---|---|---|---|
| TS (MPa) | EAB (%) | WVP (mm g/h m2 kPa) | OP (cm3 mm/h m2 kPa) | ||
| Protein | |||||
| Egg protein isolate | 2.5–15.0 | 3.0–16.5 | ~1.125 | ~31.66 | [27] |
| Egg protein, cellulose nanocrystal, and curcumin | 3.3–3.5 | 10–14 | ~0.417 | ~8.75 | |
| Gelatin | ~36.5 | ~26.8 | 0.4316 ± 0.0220 | NA | [91] |
| Gelatin and TiO2 | ~42.5 | ~49.6 | 0.3596 ± 0.01112 | NA | |
| Whey protein concentrate | 0.66 ± 0.09 | 55 ± 9 | 0.622 ± 0.051 | NA | [18] |
| Nano-whey protein concentrate | 0.82 ± 0.05 | 84 ± 8 | 0.571 ± 0.095 | NA | |
| Whey protein concentrate and TiO2 | 0.55 ± 0.06 | 58 ± 3 | 0.663 ± 0.103 | NA | |
| Nano-whey protein concentrate and TiO2 | 0.70 ± 0.03 | 73 ± 3 | 0.611 ± 0.119 | NA | |
| Whey protein isolate (WPI) | 13.07 ± 0.03 | 76.61 ± 0.07 | 0.105 ± 0.000 | NA | [87] |
| WPI and cellulose nanofiber (CNF) | 15.85 ± 0.05 | 62.14 ± 0.05 | 0.087 ± 0.000 | NA | |
| WPI and CNF and TiO2 | 18.61 ± 0.02 | 59.04 ± 0.03 | 0.078 ± 0.000 | NA | |
| WPI, CNF, TiO2, and rosemary essential oil | 17.03 ± 0.01 | 62.08 ± 0.02 | 0.045 ± 0.001 | NA | |
| Polysaccharide | |||||
| Carrageenan | 84.83 ± 4.67 | 60.94 ± 6.03 | 2.745 ± 0.064 (g/m2 day) | NA | [30] |
| Carrageenan and ZnO NPs (0.5%) | 121.53 ± 6.57 | 65.48 ± 1.49 | 2.556 ± 0.038 | NA | [30] |
| Carrageenan and ZnO NPs (1%) | 113.07 ± 4.66 | 65.91 ± 2.49 | 2.498 ± 0.036 | NA | |
| Chitosan (CS) | 0.1133 ± 0.0093 | 11.07 ± 0.3889 | 9.113 ± 0.1411 | 9.487 ± 0.2304 | [65] |
| CS and ZnO@gal (30 mg) | 10.47 ± 0.2899 | 13.19 ± 0.2192 | 3.065 ± 0.0586 | 8.772 ± 0.2091 | |
| CS and ZnO@gal (70 mg) | 54.83 ± 0.1414 | 52.17 ± 0.2192 | 1.176 ± 0.2157 | 5.570 ± 0.3051 | |
| Chitosan (CS) | 50.61 ± 0.45 | 4.32 ± 0.01 | 3.542 ± 0.125 (kg/m2 d) | 1.2917 ± 0.0017 (cm2/d kPa) | [94] |
| CS and Ti/ZnO nanorods/SiOx | 84.21 ± 0.16 | 4.60 ± 0.04 | 3.000 ± 0.250 | 0.9583 ± 0.0042 | |
| CS and Ti/ZnO nanoballs/SiOx | 72.86 ± 0.62 | 7.30 ± 0.08 | 3.042 ± 0.125 | 1.1667 ± 0.0004 | |
| Pullulan | 53.3 ± 3.9 | 3.0 ± 0.5 | 78 ± 6 | NA | [84] |
| Pullulan and cinnamon oil | 49.3 ± 0.6 | 5.4 ± 0.4 | 50 ± 4 | NA | |
| Starch | 5.74 ± 0.22 | 35.84 ± 2.39 | ~0.623 | NA | [35] |
| Starch and TiO2 (1%) | 5.51 ± 0.47 | 40.44 ± 3.28 | ~0.497 | NA | |
| Starch and TiO2 (3%) | 5.34 ± 0.71 | 42.50 ± 4.05 | ~0.367 | NA | |
| Starch and TiO2 (5%) | 5.27 ± 0.49 | 50.94 ± 3.56 | ~0.407 | NA | |
| Synthetic polymer | |||||
| PBAT | 8.78 ± 0.49 | 347.77 ± 4.95 | ~0.117 | ~5.20 | [95] |
| PBAT, MgO, and AgNPs (1%) | 11.91 ± 0.18 | 415.63 ± 2.87 | ~0.047 | ~3.80 | |
| PBAT, MgO, and AgNPs (5%) | 6.27 ± 0.32 | 187.22 ± 16.12 | ~0.036 | ~3.46 | |
| PVA | 0.47 ± 0.41 | 118.42 ± 5.86 | 54.24 ± 2.67 (g/m2 h) | NA | [46] |
| PVA and AuNPs | 1.45 ± 0.07 | 34.79 ± 1.56 | 33.11 ± 1.65 | NA | |
| PVA and graphene oxide | 1.51 ± 0.07 | 96.97 ± 4.81 | 32.13 ± 1.73 | NA | |
| Compound matrix | |||||
| Chitosan | 27.28 ± 1.39 | 20.59 ± 0.93 | 0.0860 ± 0.0022 | 0.28 ± 0.02 | [42] |
| Chitosan and TPGS | 25.54 ± 1.50 | 32.22 ± 1.65 | 0.0752 ± 0.0011 | 0.11 ± 0.01 | |
| Chitosan, TPGS, and SiO2 | 32.99 ± 0.91 | 40.53 ± 0.97 | 0.0626 ± 0.0036 | 0.09 ± 0.01 | |
| PVA | 23.20 | 291.23 | 0.1516 | NA | [52] |
| PVA and CMC | 25.21 | 215.36 | 0.1292 | NA | |
| PVA, CMC, and TiO2 | 33.50 | 270.54 | 0.1746 | NA | |
| Application | Composition | Performance | Effect | Ref. |
|---|---|---|---|---|
| Fruit | ||||
| Chinese cherry | Chitosan and nano-SiOx | Coating | Reduce weight loss by 51%, decay rate by 32% and increase firmness by 57%. | [110] |
| Pomegranate arils | Chitosan NPs and clove essential oil | Coating | Maintain the sensory and nutritional qualities of pomegranate, extend the shelf life by 54 days. | [17] |
| Mango | Carrageenan and ZnO | Coating | Avoid bacterial Black Spot in 33 days of storage. | [30] |
| Grape Plum | Chitosan, HPMC, TiO2, neem-doped chitosan, HPMC, and Ag NPs | Film | Extend the shelf life of the grape by 10 days and the plums by 3 weeks. | [61] |
| Banana | PVA and glyoxal and AuNPs | Film | With the formation of minimum black spots in 5 days. | [46] |
| Kiwifruit and pineapple fresh salad | Montmorillonite and Ag | Nanoparticles | Extend the shelf life by more than 5 days. | [23] |
| Vegetable | ||||
| Cucumber | Chitosan and Cinnamomum zeylanicum essential oil | Coating | Firmer, maintain color, water content, lower microbial counts, and extend the shelf life up to 21 d at 10 ± 1 °C. | [102] |
| Fresh-cut pepper | PVP and AgNPs | Coating | Extend the shelf life to 12 days at 4 °C without any other damage. | [45] |
| White mushrooms | Konjac glucomannan, carrageenan, and nano-SiO2 | Coating | Maintain the whiteness, visual appearance and hardness and extend the shelf life by 5 to 12 days. | [111] |
| Green pepper | PLA, TiO2, and GO nano-fibrous | Film | Delay the green pepper to turn red and soften and inhibit microbial corruption. | [90] |
| Button mushroom | Nanochitosan and Citrus aurantium essential oil | Nanoparticles | Increase the activity of GR and APX and decrease the microbial count of button mushrooms during the 15-day storage period. | [112] |
| Meat, Fish, and Seafood | ||||
| Silver carp fish balls | Chitosan, ZnO, TiO2, and SiOx | Coating | Not corrupted until the 24th day. | [60] |
| Chicken filets | Pectin, curcumin, and curcumin–cinnamon essential oil | Coating | Delay the appearance of microbial spoilage and extend the shelf life to 12 days. | [40] |
| Lamb meat | Whey protein isolate, cellulose nanofiber, TiO2 nanoparticle, and rosemary essential oil | Film | Extend the shelf life by 9 days. | [28] |
| Chicken breasts | LDPE, ZnO, and Ag | Film | A lower depletion of oxygen and lower microbial counts than control packaging. | [113] |
| Dry fruit | ||||
| Chestnut | Chitosan, whey protein, nano-cellulose, and cinnamaldehyde | Coating | Reduce the weight loss rate, mildew rate, and calcification index. | [50] |
| Roasted peanuts | Banana flour and garlic essential oil | Film | A good alternative to PET. | [22] |
| Others | ||||
| Cheese | Sodium alginate, mandarin fiber, and oregano essential oil | Coating | Inhibit the growth of psychrophilic bacteria, molds, and yeasts and prolong shelf life. | [114] |
| Egg | PVA, sodium alginate, and chitosan | Coating | Maintain A grade for 15 days. | [68] |
| G. biloba seeds | Chitosan and nano-SiO2 Chitosan and nano-TiO2 | Coating | Inhibit mildew occurrence, shrinkage, and maintain the firmness, positively affecting the antioxidant activity. | [89] |
| Steamed buns | Mung bean starch, soluble soybean polysaccharide, and cinnamon and clove essential oil | Coating | Extend the shelf life of steamed buns from the normal 3 days to 10 days, at 10 °C. | [115] |
| Apple juice | PLA, Ag NPs, and Vitamin E | Film | The absorbance, conductivity, and pH do not vary obviously after 48 h, while other samples change soon. | [116] |
| Clarified butter | Cellulose, chitosan, and Ag/TiO2 | Active paper | Extend the shelf life to 9.3 months. | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Qi, X.; Qiao, L.; Lu, J.; Qian, Z.; Wu, C.; Xue, Z.; Kou, X. Nanocomposite-Enabled Next-Generation Food Packaging: A Comprehensive Review on Advanced Preparation Methods, Functional Properties, Preservation Applications, and Safety Considerations. Foods 2025, 14, 3688. https://doi.org/10.3390/foods14213688
Peng B, Qi X, Qiao L, Lu J, Qian Z, Wu C, Xue Z, Kou X. Nanocomposite-Enabled Next-Generation Food Packaging: A Comprehensive Review on Advanced Preparation Methods, Functional Properties, Preservation Applications, and Safety Considerations. Foods. 2025; 14(21):3688. https://doi.org/10.3390/foods14213688
Chicago/Turabian StylePeng, Bo, Xiaohui Qi, Linxiang Qiao, Jingting Lu, Ziyan Qian, Caie Wu, Zhaohui Xue, and Xiaohong Kou. 2025. "Nanocomposite-Enabled Next-Generation Food Packaging: A Comprehensive Review on Advanced Preparation Methods, Functional Properties, Preservation Applications, and Safety Considerations" Foods 14, no. 21: 3688. https://doi.org/10.3390/foods14213688
APA StylePeng, B., Qi, X., Qiao, L., Lu, J., Qian, Z., Wu, C., Xue, Z., & Kou, X. (2025). Nanocomposite-Enabled Next-Generation Food Packaging: A Comprehensive Review on Advanced Preparation Methods, Functional Properties, Preservation Applications, and Safety Considerations. Foods, 14(21), 3688. https://doi.org/10.3390/foods14213688

