Study on the Calcium Transport-Promoting Property and Mechanism of the Peptide–Calcium Complex DEEENDQVK–Ca Based on a Caco-2 Monolayer Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of DK–Ca
2.3. Caco-2 Cell Culture and Cell Viability Assays
2.4. Establishment of Caco-2 Monolayer Model
2.5. Calcium Transport Assay
2.6. Effects of Different Samples and Dietary Components on Calcium Transport
2.7. Component Detection After DK–Ca Transmembrane Transport
2.8. Visual Detection of Calcium Transport-Promoting Effects
2.9. Calcium Transport Channel Assay
2.10. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR)
2.11. Molecular Docking of DK and DK–Ca with the TRPV6 Channel Key Target Protein
2.12. Statistical Analysis
3. Results and Discussion
3.1. Calcium Transport Properties Studies in the Caco-2 Monolayer Model
3.1.1. The Concentration Selection of DK and DK–Ca
3.1.2. The Concentration and Time Selection of Calcium Transport
3.1.3. Calcium Transport-Promoting Properties of DK and DK–Ca
3.1.4. Influence of Dietary Components on Calcium Transport
3.1.5. Component Changes in DK–Ca Calcium Transport Promoting in the Caco-2 Monolayer
3.1.6. Visualization of the Calcium Transport-Promoting Effect
3.2. Investigation of the Calcium Transport Pathway
3.2.1. The Concentration Selection of Channel Regulators
3.2.2. Calcium Transport-Promoting Pathways of DK and DK–Ca
3.3. Mechanism of DK and DK–Ca in Calcium Transport-Promoting
3.3.1. Expression Levels of Calcium Channel-Related Protein Genes
3.3.2. Interaction of DK and DK–Ca withTRPV6 Channel Key Target Protein
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, S.T.; Li, J.; Hu, X.; Chen, S.J.; Huang, H.; Wu, Y.Y.; Li, Z.X. Potential dietary calcium supplement: Calcium-chelating peptides and peptide-calcium complexes derived from blue food proteins. Trends Food Sci. Tech. 2024, 145, 104364. [Google Scholar] [CrossRef]
- Zheng, W.; Wang, J.; Yao, X.; Li, S.; Chen, Z.; Qi, B.; Ma, A.; Jia, Y. Preparation, structural characterisation, absorption and calcium transport studies of walnut peptide calcium chelate. Food Funct. 2025, 16, 461–474. [Google Scholar] [CrossRef]
- Pu, F.; Chen, N.; Xue, S. Calcium intake, calcium homeostasis and health. Food Sci. Hum. Wellness 2016, 5, 8–16. [Google Scholar] [CrossRef]
- Suzuki, Y.; Landowski, C.P.; Hediger, M.A. Mechanisms and regulation of epithelial Ca2+ absorption in health and disease. Annu. Rev. Physiol. 2008, 70, 257–271. [Google Scholar] [CrossRef]
- Weaver, C.M.; Peacock, M. Calcium. Adv. Nutr. 2019, 10, 546–548. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.R.L.; Tu, M.Y.; Chen, Y.H.; Chang, K.Y.; Chen, C.F.; Lai, J.C.; Tung, Y.T.; Chen, H.L.; Fan, H.C.; Chen, C.M. Kfp-1, a novel calcium-binding peptide isolated from kefir, promotes calcium influx through TRPV6 channels. Mol. Nutr. Food Res. 2021, 65, 2100182. [Google Scholar] [CrossRef]
- Katya, K.; Lee, S.; Bharadwaj, A.S.; Browdy, C.L.; Vazquez-Anon, M.; Bai, S.C. Effects of inorganic and chelated trace mineral (Cu, Zn, Mn and Fe) premixes in marine rockfish, sebastes schlegeli (hilgendorf), fed diets containing phytic acid. Aquacult. Res. 2017, 48, 4165–4173. [Google Scholar] [CrossRef]
- Guo, L.; Harnedy, P.A.; O’Keeffe, M.B.; Zhang, L.; Li, B.; Hou, H.; FitzGerald, R.J. Fractionation and identification of alaska pollock skin collagen-derived mineral chelating peptides. Food Chem. 2015, 173, 536–542. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef]
- Hou, T.; Liu, W.; Shi, W.; Ma, Z.; He, H. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid. Food Chem. 2017, 219, 428–435. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Xu, H.; Li, X.; Hao, X. Preparation of sheep bone collagen peptide–calcium chelate using enzymolysis-fermentation methodology and its structural characterization and stability analysis. RSC Adv. 2020, 10, 11624–11633. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, H.; Wang, S.; Wang, R.; Wang, Z. Casein phosphopeptide-calcium chelate: Preparation, calcium holding capacity and simulated digestion in vitro. Food Chem. 2023, 401, 134218. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Liu, S.; Liu, X.; Duan, S.; Xiao, S.; Yang, Z.; Cao, Y.; Miao, J. The purification, identification and bioactivity study of a novel calcium-binding peptide from casein hydrolysate. Food Funct. 2019, 10, 7724–7732. [Google Scholar] [CrossRef]
- Liu, B.; Zhuang, Y.; Sun, L. Identification and characterization of the peptides with calcium-binding capacity from tilapia (oreochromis niloticus) skin gelatin enzymatic hydrolysates. J. Food Sci. 2019, 85, 114–122. [Google Scholar]
- Li, C.; Geng, F.; Huang, X.; Ma, M.; Zhang, X. Phosvitin phosphorus is involved in chicken embryo bone formation through dephosphorylation. Poult. Sci. 2014, 93, 3065–3072. [Google Scholar] [CrossRef]
- Oscar, C.; Corinne, B.; Elisabeth, D.B.; Catherine, G.D.; Marc, A. The role of metal ions in emulsion characteristics and flocculation behaviour of phosvitin-stabilised emulsions. Food Hydrocoll. 2008, 22, 1243–1253. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, Q.; Li, M.; Liu, H.; Wang, Q.; Wu, Y.; Niu, L.; Liu, Z. Isolation of a novel calcium-binding peptide from phosvitin hydrolysates and the study of its calcium chelation mechanism. Food Res. Int. 2021, 141, 110169. [Google Scholar] [CrossRef]
- Goulart, A.J.; Bassan, J.C.; Barbosa, O.A.; Marques, D.P.; Silveira, C.B.; Santos, A.F.; Garrido, S.S.; Resende, F.A.; Contiero, J.; Monti, R. Transport of amino acids from milk whey by Caco-2 cell monolayer after hydrolytic action of gastrointestinal enzymes. Food Res. Int. 2014, 63, 62–70. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, Y.; Jiang, Y.; Wang, L.; Liu, B.; Liu, J. Transport of egg white ace-inhibitory peptide, Gln-Ile-Gly-Leu-Phe, in human intestinal caco-2 cell monolayers with cytoprotective effect. J. Agric. Food Chem. 2014, 62, 3177–3182. [Google Scholar] [CrossRef]
- Liao, W.; Chen, H.; Jin, W.; Yang, Z.; Cao, Y.; Miao, J. Three newly isolated calcium-chelating peptides from tilapia bone collagen hydrolysate enhance calcium absorption activity in intestinal Caco-2 cells. J. Agric. Food Chem. 2020, 68, 2091–2098. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Huai, H.; Hou, W.; Qi, Y.; Leng, Y.; Liu, X.; Wang, X.; Wu, D.; Min, W. Purification, identification, chelation mechanism, and calcium absorption activity of a novel calcium-binding peptide from peanut (Arachis hypogaea) protein hydrolysate. J. Agric. Food Chem. 2023, 71, 11970–11981. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Duan, S.; Yuan, P.; Liu, J.; Wang, X.; Liu, Y.; Peng, Y.; Pan, C.; Xia, K. Preparation of casein phosphopeptides calcium complex and the promotion in calcium cellular uptake through transcellular transport pathway. J. Food Biochem. 2021, 45, e14001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.D.; Ahn, D.U.; Li, S.M.; Liu, W.; Yi, S.W.; Huang, X. Effects of phosvitin phosphopeptide-Ca complex prepared by efficient enzymatic hydrolysis on calcium absorption and bone deposition of mice. Food Sci. Hum. Wellness 2022, 11, 1631–1640. [Google Scholar] [CrossRef]
- Si, K.; Gong, T.; Ding, S.; Liu, H.; Shi, S.; Tu, J.; Zhu, L.; Song, L.; Song, L.; Zhang, X. Binding mechanism and bioavailability of a novel phosvitin phosphopeptide (Glu-Asp-Asp-pSer-pSer) calcium complex. Food Chem. 2023, 404, 134567. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, J.; Li, A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. Ecotoxicol. Environ. Saf. 2023, 249, 114447. [Google Scholar] [CrossRef]
- Chen, Q.; Guo, L.; Du, F.; Chen, T.; Hou, H.; Li, B. The chelating peptide (gpagphgppg) derived from alaska pollock skin enhances calcium, zinc and iron transport in Caco-2 cells. Int. J. Food Sci. Technol. 2017, 52, 1283–1290. [Google Scholar] [CrossRef]
- Su, J.; Chen, T.; Liao, D.; Wang, Y.; Su, Y.; Liu, S.; Chen, X.; Ruifang, Q.; Jiang, L.; Liu, Z. Novel peptides extracted from Muraenesox cinereus bone promote calcium transport, osteoblast differentiation, and calcium absorption. J. Funct. Foods. 2022, 95, 105157. [Google Scholar] [CrossRef]
- Regazzo, D.; Mollé, D.; Gabai, G.; Tomé, D.; Dupont, D.; Leonil, J.; Boutrou, R. The (193–209) 17-residues peptide of bovine β-casein is transported through Caco-2 monolayer. Mol. Nutr. Food Res. 2010, 54, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Men, D.; Dai, J.; Lei, Z.; Tian, L.; Wang, Z.; Sheng, J.; Tian, Y.; Tao, L. Preparation, characterization, stability and replenishing calcium ability of moringa oleifera leaf peptide-calcium chelates. Food Res. Int. 2025, 200, 115439. [Google Scholar] [CrossRef]
- Xue, T.; Zhao, W.; Hao, C.; Zhi, H.; Xu, Q.; Zhang, X. Two novel phosvitin peptides FGTEPDAK and IWGR: The dual effects and associated mechanisms for inhibiting α-amylase and alleviating insulin resistance in ir-hepg2 cells. Food Chem. 2025, 475, 143314. [Google Scholar] [CrossRef]
- De Barboza, G.D.; Guizzardi, S.; de Talamoni, N.T. Molecular aspects of intestinal calcium absorption. World J. Gastroenterol. 2015, 21, 7142–7154. [Google Scholar] [CrossRef]
- Xu, Z.; Zhu, Z.; Chen, H.; Han, L.; Shi, P.; Dong, X.; Wu, D.; Du, M.; Li, T. Application of a Mytilus edulis-derived promoting calcium absorption peptide in calcium phosphate cements for bone. Biomaterials 2022, 282, 121390. [Google Scholar] [CrossRef]
- Cao, Y.; Miao, J.; Liu, G.; Luo, Z.; Xia, Z.; Liu, F.; Yao, M.; Cao, X.; Sun, S.; Lin, Y.; et al. Bioactive peptides isolated from casein phosphopeptides enhance calcium and magnesium uptake in Caco-2 cell monolayers. J. Agric. Food Chem. 2017, 65, 2307–2314. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; He, Y.; Tian, Y.; Xiong, H.; Zhang, C.; Sun, Y. Characterization and mechanism of a novel rice protein peptide (AHVGMSGEEPE) calcium chelate in enhancing calcium absorption in Caco-2 cells. J. Agric. Food Chem. 2024, 72, 8569–8580. [Google Scholar] [CrossRef]
- Cui, P.; Lin, S.; Han, W.; Jiang, P.; Zhu, B.; Sun, N. The formation mechanism of a sea cucumber ovum derived heptapeptide–calcium nanocomposite and its digestion/absorption behavior. Food Funct. 2019, 10, 8240–8249. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.; Jin, Z.; Li, D.; Yin, H.; Lin, S. An exploration of the calcium-binding mode of egg white peptide, asp-his-thr-lys-glu, and in vitro calcium absorption studies of peptide–calcium complex. J. Agric. Food Chem. 2017, 65, 9782–9789. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.B.; Watanuki, M.; Kim, S.; Shevde, N.K.; Pike, J.W. The human transient receptor potential vanilloid type 6 distal promoter contains multiple vitamin D receptor binding sites that mediate activation by 1,25-dihydroxyvitamin D3 in intestinal cells. Mol. Endocrinol. 2006, 20, 1447–1461. [Google Scholar] [CrossRef]
- Kutuzova, G.D.; DeLuca, H.F. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin d3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch. Biochem. Biophys. 2004, 432, 152–166. [Google Scholar] [CrossRef]
- Lin, Y.; Cai, X.; Wu, X.; Lin, S.; Wang, S. Fabrication of snapper fish scales protein hydrolysate-calcium complex and the promotion in calcium cellular uptake. J. Funct. Foods. 2020, 65, 103717. [Google Scholar] [CrossRef]
- Xu, F.; Wang, L.; Ju, X.; Zhang, J.; Yin, S.; Shi, J.; He, R.; Yuan, Q. Transepithelial transport of ywdhnnpqir and its metabolic fate with cytoprotection against oxidative stress in human intestinal Caco-2 cells. J. Agric. Food Chem. 2017, 65, 2056–2065. [Google Scholar] [CrossRef]
- Tu, M.; Liu, H.; Cheng, S.; Xu, Z.; Wang, L.-S.; Du, M. Identification and analysis of transepithelial transport properties of casein peptides with anticoagulant and ACE inhibitory activities. Food Res. Int. 2020, 138, 109764. [Google Scholar] [CrossRef] [PubMed]
- Perego, S.; Del Favero, E.; De Luca, P.; Dal Piaz, F.; Fiorilli, A.; Cantu’, L.; Ferraretto, A. Calcium bioaccessibility and uptake by human intestinal like cells following in vitro digestion of casein phosphopeptide–calcium aggregates. Food Funct. 2015, 6, 1796–1807. [Google Scholar] [CrossRef]
- Lv, Y.; Bao, X.L.; Yang, B.C.; Ren, C.G.; Guo, S.T. Effect of soluble soybean protein hydrolysate-calcium complexes on calcium uptake by Caco-2 cells. J. Food Sci. 2008, 73, H168–H173. [Google Scholar] [CrossRef]
- Hofer, A.; Kovacs, G.; Zappatini, A.; Leuenberger, M.; Hediger, M.A.; Lochner, M. Design, synthesis and pharmacological characterization of analogs of 2-aminoethyl diphenylborinate (2-apb), a known store-operated calcium channel blocker, for inhibition of TRPV6-mediated calcium transport. Bioorg. Med. Chem. 2013, 21, 3202–3213. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zhang, R.; Li, J.; Ma, W.; Li, L.; Jiang, N.; Liu, B.; Wu, J.; Zheng, N.; Wu, Z. Mβcd inhibits sftsv entry by disrupting lipid raft structure of the host cells. Antivir. Res. 2024, 231, 106004. [Google Scholar] [CrossRef]
- An, J.; Zhang, Y.; Ying, Z.; Li, H.; Liu, W.; Wang, J.; Liu, X. The formation, structural characteristics, absorption pathways and bioavailability of calcium–peptide chelates. Foods 2022, 11, 2762. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, K. Calcium supplements and structure–activity relationship of peptide-calcium chelates: A review. Food Sci. Biotechnol. 2022, 31, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Furuse, M. Tight junction structure and function revisited. Trends Cell Biol. 2020, 30, 805–817. [Google Scholar] [CrossRef]
- McGoldrick, L.L.; Singh, A.K.; Saotome, K.; Yelshanskaya, M.V.; Twomey, E.C.; Grassucci, R.A.; Sobolevsky, A.I. Opening of the human epithelial calcium channel TRPV6. Nature 2017, 553, 233–237. [Google Scholar] [CrossRef]
- Hou, T.; Lu, Y.; Guo, D.; Liu, W.; Shi, W.; He, H. A pivotal peptide (Val-Ser-Glu-Glu) from duck egg white promotes calcium uptake and structure-activity relationship study. J. Funct. Foods 2018, 48, 448–456. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; He, Y.; Ma, X. Identification and molecular docking of novel antioxidant peptides from candida utilis. Food Chem. 2024, 455, 139860. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ru, J.; Gao, S.; Zhi, H.; Zhao, W.; Hao, C.; Zhang, X. Study on the Calcium Transport-Promoting Property and Mechanism of the Peptide–Calcium Complex DEEENDQVK–Ca Based on a Caco-2 Monolayer Model. Foods 2025, 14, 3119. https://doi.org/10.3390/foods14173119
Zhang Y, Ru J, Gao S, Zhi H, Zhao W, Hao C, Zhang X. Study on the Calcium Transport-Promoting Property and Mechanism of the Peptide–Calcium Complex DEEENDQVK–Ca Based on a Caco-2 Monolayer Model. Foods. 2025; 14(17):3119. https://doi.org/10.3390/foods14173119
Chicago/Turabian StyleZhang, Yaxin, Jingjing Ru, Shan Gao, Hongli Zhi, Wei Zhao, Chunyan Hao, and Xiaowei Zhang. 2025. "Study on the Calcium Transport-Promoting Property and Mechanism of the Peptide–Calcium Complex DEEENDQVK–Ca Based on a Caco-2 Monolayer Model" Foods 14, no. 17: 3119. https://doi.org/10.3390/foods14173119
APA StyleZhang, Y., Ru, J., Gao, S., Zhi, H., Zhao, W., Hao, C., & Zhang, X. (2025). Study on the Calcium Transport-Promoting Property and Mechanism of the Peptide–Calcium Complex DEEENDQVK–Ca Based on a Caco-2 Monolayer Model. Foods, 14(17), 3119. https://doi.org/10.3390/foods14173119