Sunflower Honey—Evaluation of Quality and Stability during Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Moisture Content
2.3. Sugar Composition Determination
2.4. Electrical Conductivity
2.5. Free Acidity and pH Value
2.6. Ash
2.7. Hydroxymethylfurfural (HMF)
2.8. Diastase Activity
2.9. Water-Insoluble Matter
2.10. Statistical Analysis
3. Results and Discussion
3.1. Moisture Content
3.2. Sugars
3.3. Electrical Conductivity
3.4. Free Acidity and pH Value
3.5. Ash Mass Fraction
3.6. HMF and Diastase Activity
3.7. Water-Insoluble Matter
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Przybyłowski, P.; Wilczyńska, A. Honey as an environmental marker. Food Chem. 2001, 74, 289–291. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Silva, B.; Bergamo, G.; Brugnerotto, P.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res. Int. 2019, 119, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Živkov Baloš, M.; Popov, N.; Prodanov Radulović, J.; Stojanov, I.; Jakšić, S. Sugar profile of different floral origin honeys from Serbia. J. Apic. Res. 2020, 59, 398–405. [Google Scholar] [CrossRef]
- da Silva, P.M.; Gonzaga, L.V.; Biluca, F.C.; Schulz, M.; Vitali, L.; Micke, G.A.; Costa, A.C.O. Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds. LWT 2020, 129, 109521. [Google Scholar] [CrossRef]
- Czipa, N.; Philips, C.J.C.; Kovács, B. Composition of acacia honey following processing, storage, and adulteration. J. Food Sci. Technol. 2019, 56, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Eshete, Y.; Eshete, T.A. A Review of the effect of processing temperature and time duration on commercial honey quality. Madr. J. Food Technol. 2019, 4, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Živkov Baloš, M.; Jakšić, S.; Popov, N.; Mihaljev, Ž.; Ljubojević Pelić, D. Comparative study of water content in honey produced in different years. Arch. Vet. Med. 2019, 12, 43–53. [Google Scholar] [CrossRef]
- Srinual, K.; Intipunya, P. Effects of crystallization and processing on sensory and physicochemical qualities of Thai sunflower honey. Asian J. Food Agro-Ind. 2009, 2, 749–754. [Google Scholar]
- Sari, E.; Ayyildiz, N. Biological activities and some physicochemical properties of sunflower honeys collected from the Thrace region of Turkey. Pak. J. Biol. Sci. 2012, 15, 1102–1110. [Google Scholar] [CrossRef] [Green Version]
- Tosi, E.; Martinet, R.; Ortega, M.; Lucero, H.; Ré, E. Honey diastase activity is modified by heating. Food Chem. 2008, 106, 883–887. [Google Scholar] [CrossRef]
- Soares, S.; Pinto, D.; Rodigues, F.; Alves, R.C.; Oliveira, M.B.P.P. Portuguese honeys different geographical and botanical origins: A 4-year stability study regarding quality parameters and antioxidant activity. Molecules 2017, 22, 1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, R.F.A.; De Maria, C.A.B.; Pietroluongo, M.; Trugo, L.C. Chemical changes in the volatile fractions of Brazilian honeys during storage under tropical conditions. Food Chem. 2010, 104, 1236–1241. [Google Scholar] [CrossRef]
- Evahelda Pratama, F.; Malahayati, N.; Santoso, B. The changes in moisture content, pH, and total sugar content of honey originated from the flowers of the Bangka rubber tree during storage. Int. J. Sci. Eng. Res. 2017, 5, 33–36. [Google Scholar]
- Kamboj, R.; Sandhu, R.S.; Kaler, R.S.S.; Bera, M.B.; Nanda, V. Optimization of process parameters on hydroxymethylfurfural content, diastase and invertase activity of coriander honey. J. Food Sci. Technol. 2019, 56, 3205–3214. [Google Scholar] [CrossRef] [PubMed]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, I.; Hua Gan, S. 5-Hydroximethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Mouhoubi-Tafinine, Z.; Ouchemoukh, S.; Bachir, M.; Louaileche, H.; Tamendjari, A. Effect of storage on hydroxymethylfurfural (HMF) and color of some Algerian honey. Int. Food Res. J. 2018, 25, 1044–1050. [Google Scholar]
- Khan, Z.S.; Nanda, V.; Bhat, M.S.; Khan, A. Kinetic studies of HMF formation and diastase activity in two different honeys of Kashmir. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 97–106. [Google Scholar]
- Sousa, J.M.B.; Souza, E.L.; Marques, G.; Benassi, M.; Gullon, B.; Pintado, M.; Magnani, M. Sugar profile, physicochemical and sensory aspects of monofloral honeys produced by different stingless bee species in Brazilian semi-arid region. LWT 2016, 65, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.; Liao, H.; Yang, Y.; Peng, C. Evaluation of Honey Quality with Stored Time and Temperatures. J. Food Nutr. Res. 2020, 8, 591–599. [Google Scholar] [CrossRef]
- Živkov Baloš, M.; Popov, N.; Vidaković, S.; Ljubojević Pelić, D.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical conductivity and acidity of honey. Arch. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Prica, N.; Živkov-Baloš, M.; Jakšić, S.; Mihaljev, Ž.; Kartalović, B.; Babić, J.; Savić, S. Moisture and acidity as indicators of the quality of honey originating from Vojvodina region. Arch. Vet. Med. 2014, 7, 99–109. [Google Scholar] [CrossRef]
- Martínez, R.A.; Schvezov, N.; Brumovsky, L.A.; Pucciarelli Román, A.B. Influence of temperature and packaging type on quality parameters and antimicrobial properties during Yateí honey storage. Food Sci. Technol. 2018, 38, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Turhan, I.; Tetik, N.; Karhan, M.; Gurel, F.; Tavukcuoglu, H.R. Quality of honeys influenced by thermal treatment. LWT 2008, 41, 1396–1399. [Google Scholar] [CrossRef]
- Kabbani, D.; Sepulcre, F.; Wedekind, J. Ultrasound-assisted liquefaction of rosemary honey: Influence on rheology and crystal content. J. Food Eng. 2011, 107, 173–178. [Google Scholar] [CrossRef]
- Dobre, I.; Georgescu, I.A.; Alexe, P.; Escuerdo, O.; Seijo, M.C. Rheological behavior of different honey types from Romania. Food Res. Int. 2012, 49, 126–132. [Google Scholar] [CrossRef]
- Laos, K.; Kirs, E.; Pall, R.; Martverk, K. The crystallization behavior of Estonian honeys. Agron. Res. 2011, 9, 427–432. [Google Scholar]
- Al-Ghamdi, A.; Mohammed, S.E.A.; Ansari, M.J.; Adgaba, N. Comparison of physicochemical properties and effects of heating regimes on stored Apis mellifera and Apis Florea honey. Saudi Biol. Sci. 2019, 26, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.F.; Wen, X.S.; Xian, C.J. Hydroxymethyl furfural in Chinese herbal medicines: Its formation, presence, metabolism, bioactivities and implications. Afr. J. Tradit. Complem. Altern. Med. 2015, 12, 43–54. [Google Scholar] [CrossRef]
- Fallico, B.; Zappalá, M.; Arena, E.; Verzera, A. Effects of conditioning on HMF content in unifloral honeys. Food Chem. 2004, 85, 305–313. [Google Scholar] [CrossRef]
- Kȩdzierska-Matysek, M.; Florek, M.; Wolanciuk, A.; Skałecki, P. Effect of freezing and room temperature storage for 18 months on quality of raw rapeseed honey (Brassica napus). J. Food Sci. Technol. 2016, 53, 3349–3355. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, S.; Lukasiewicz, M.; Duda-Chodak, A.; Ziȩć, G. 5-Hydroximethyl-2-Furfural (HMF)—Heat-Induced Formation, Occurrence in Food and Biotransformation—A Review. Polish J. Food Nutr. Sci. 2013, 63, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, D.; Patriwar, P.; Ravandale, V.; Bandekar, S.H.; Das, B.; Guduri, B.R.; Alam, T. Effect of lamitubes packaging on the shelf life of honey. J. Package Technol. Res. 2021, 5, 23–28. [Google Scholar] [CrossRef]
- Olaitan, P.B.; Olufemi, E.A.; Ola, I.O. Honey: A reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci. 2007, 7, 159–165. [Google Scholar]
- Fuad, A.M.A.; Anwar, N.Z.R.; Zakaria, A.J.; Shahidan, N.; Zakaria, Z. Physicochemical characteristics of Malaysian honeys influenced by storage time and temperature. J. Fundam. Appl. Sci. 2017, 9, 841–851. [Google Scholar] [CrossRef] [Green Version]
- International Honey Commission. World Network of Honey Science. Harmonized Methods of the International Honey Commission; Swiss Bee Research Centre; FAM: Liebefeld, Switzerland, 2009. [Google Scholar]
- Official Gazette RS. Rulebook on Quality of Honey and Other Bee Products; No. 101; Official Gazette RS: Belgrade, Serbia, 2015; Available online: https://www.pravno-informacioni-sistem.rs/SlGlasnikPortal/eli/rep/sgrs/ministarstva/pravilnik/2015/101/2 (accessed on 25 May 2023).
- Juan-Borrás, M.; Domenech, E.; Hellebrandova, M.; Esriche, I. Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Res. Int. 2014, 60, 86–94. [Google Scholar] [CrossRef]
- Lazarević, K.B.; Andrić, F.; Trifković, J.; Tešić, Ž.L.J.; Milojković-Opsenica, D.M. Characterisation of Serbian unifloral honeys according to their physicochemical parameters. Food Chem. 2012, 132, 2060–2064. [Google Scholar] [CrossRef]
- Thrasyvoulou, A.; Manikis, J. Some physicochemical and microscopic characteristics of Greek unifloral honeys. Apidologie 1995, 26, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Acquarone, C.; Buera, P.; Elizalde, B. Pattern of pH and electric conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys. Food Chem. 2007, 101, 695–703. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Bergamo, G.; Molognoni, L.; Daguer, H.; Silva, B.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Quality changes during long-term storage of a peculiar Brazilian honeydew honey: “Bracatinga”. J. Food Compos. Anal. 2021, 97, 103769. [Google Scholar] [CrossRef]
- Council Directive of the European Union Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off J. Eur. Union. 2002, 10, 47–52. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32001L0110 (accessed on 27 May 2023).
- Devillers, J.; Morlot, M.; Pham-Delègue, M.H.; Doré, J.C. Classification of monofloral honeys on their quality control data. Food Chem. 2004, 86, 305–312. [Google Scholar] [CrossRef]
- Escuredo, O.; Dobre, I.; Fernández-Gonzálezm, M.; Seijo, M.C. Contribution of botanical origin and sugar composition of honey on the crystallization phenomenon. Food Chem. 2014, 149, 84–90. [Google Scholar] [CrossRef]
- Venir, E.; Spaziani, M.; Maltini, E. Crystallization in “Tarassaco” Italian honey studied by DSC. Food Chem. 2010, 122, 410–415. [Google Scholar] [CrossRef]
- Đogo Mračević, S.; Krstić, M.; Lolić, A.; Ražić, S. Comparative study of the chemical composition and biological potential of honey from different regions of Serbia. Microchem. J. 2020, 152, 104420. [Google Scholar] [CrossRef]
- Cimpoiu, C.; Hosu, A.; Miclaus, V.; Puscas, A. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 100, 149–154. [Google Scholar] [CrossRef]
- Yadata, D. Detection of the electrical conductivity and acidity of honey from different areas of Tepi. Food Sci. Technol. 2014, 2, 59–63. [Google Scholar] [CrossRef]
- Korkmaz, S.D.; Küplülü, Ö. Effects of storage temperature on HMF and diastase activity of strained honeys. Ank. Univ. Vet. Fak. Derg. 2017, 64, 281–287. [Google Scholar]
- Hasan, S.H. Effect of storage and processing temperature on honey quality. JUBAS 2013, 6, 2244–2253. [Google Scholar]
- Fallico, B.; Arena, E.; Zappalá, M. Prediction of honey shelf life. J. Food Qual. 2009, 32, 352–368. [Google Scholar] [CrossRef]
- Sajid, M.; Yasmin, T.; Asad, F.; Samina, Q. Changes in HMF content and diastase activity in honey after heating treatment. Pure Appl. Bio 2019, 8, 1668–1674. [Google Scholar] [CrossRef]
- Albu, A.; Radu-Rusu, C.G.; Pop, I.M.; Frunza, G.; Nacu, G. Quality Assessment of Raw Honey Issued from Eastern Romania. Agriculture 2021, 11, 247. [Google Scholar] [CrossRef]
Sample | Moisture (%) | Electrical Conductivity (mS/cm) | Free Acidity (mEq/kg) | pH | Ash (%) | Insoluble Matter (%) | HMF (mg/kg) | Diastase Activity (DN) |
---|---|---|---|---|---|---|---|---|
1 | 16.2 | 0.40 | 35.4 | 3.83 | 0.17 | <0.01 | 1.72 | 24.82 |
2 | 18.6 | 0.32 | 24.4 | 3.57 | 0.08 | <0.01 | 3.05 | 15.50 |
3 | 18.6 | 0.22 | 21.4 | 3.49 | 0.03 | <0.01 | 2.07 | 16.52 |
4 | 16.4 | 0.28 | 20.4 | 3.69 | 0.05 | <0.01 | 2.66 | 19.64 |
5 | 18.4 | 0.30 | 20.8 | 3.52 | 0.05 | <0.01 | 1.64 | 13.61 |
6 | 17.8 | 0.32 | 30.8 | 3.58 | 0.04 | <0.01 | 4.41 | 25.57 |
7 | 16.4 | 0.40 | 31.0 | 3.50 | 0.24 | 0.03 | 1.75 | 19.43 |
8 | 17.8 | 0.30 | 26.4 | 3.63 | 0.09 | 0.19 | 2.17 | 17.73 |
9 | 17.6 | 0.32 | 32.2 | 3.70 | 0.09 | <0.01 | 2.24 | 21.94 |
10 | 17.2 | 0.36 | 29.2 | 3.68 | 0.11 | 0.02 | 1.79 | 17.34 |
11 | 17.4 | 0.36 | 27.2 | 3.64 | 0.11 | <0.01 | 1.23 | 16.24 |
12 | 16.4 | 0.54 | 30.0 | 3.63 | 0.21 | <0.01 | 1.94 | 18.71 |
13 | 17.8 | 0.32 | 32.0 | 3.56 | 0.15 | 0.17 | 2.67 | 19.67 |
14 | 16.4 | 0.39 | 25.6 | 3.70 | 0.21 | 0.19 | 2.35 | 16.43 |
15 | 15.2 | 0.28 | 23.8 | 3.55 | 0.12 | <0.01 | 0.82 | 18.71 |
16 | 16.4 | 0.42 | 36.4 | 3.61 | 0.13 | 0.07 | 2.51 | 16.03 |
17 | 16.0 | 0.22 | 26.8 | 3.46 | 0.09 | 0.05 | 4.30 | 10.88 |
18 | 15.4 | 0.26 | 24.5 | 3.59 | 0.09 | <0.01 | 2.17 | 13.24 |
19 | 16.8 | 0.30 | 26.2 | 3.68 | 0.10 | 0.03 | 2.14 | 17.83 |
20 | 14.6 | 0.30 | 22.4 | 3.99 | 0.14 | 0.02 | 0.82 | 18.86 |
21 | 17.8 | 0.44 | 34.4 | 3.84 | 0.25 | 0.12 | 1.26 | 16.47 |
22 | 16.8 | 0.34 | 36.8 | 3.97 | 0.15 | 0.09 | 1.45 | 10.22 |
23 | 18.0 | 0.32 | 29.8 | 3.71 | 0.17 | 0.01 | 1.11 | 10.14 |
24 | 18.2 | 0.46 | 35.6 | 3.62 | 0.30 | 0.11 | 1.66 | 20.89 |
Mean | 17.01 | 0.34 | 28.48 | 3.66 | 0.13 | 0.08 | 2.08 | 17.35 |
SD | 1.10 | 0.08 | 5.09 | 0.14 | 0.07 | 0.07 | 0.91 | 3.97 |
Min | 14.60 | 0.22 | 20.40 | 3.46 | 0.03 | 0.01 | 0.82 | 10.14 |
Max | 18.60 | 0.54 | 36.80 | 3.99 | 0.30 | 0.19 | 4.41 | 25.57 |
CV (%) | 6.45 | 22.26 | 17.88 | 3.76 | 53.25 | 78.34 | 43.55 | 22.88 |
Sample | Sucrose (%) | Glucose (%) | Fructose (%) | Reducing Sugars (%) | F/G * | G/W ** |
---|---|---|---|---|---|---|
1 | <0.250 | 37.66 | 40.94 | 78.60 | 1.09 | 2.32 |
2 | 0.299 | 37.04 | 39.46 | 76.50 | 1.07 | 1.99 |
3 | 0.253 | 36.22 | 39.78 | 76.00 | 1.10 | 1.95 |
4 | 0.568 | 37.33 | 41.53 | 78.86 | 1.11 | 2.28 |
5 | 0.267 | 38.47 | 40.85 | 79.32 | 1.06 | 2.09 |
6 | <0.250 | 35.50 | 39.93 | 75.43 | 1.12 | 1.99 |
7 | <0.250 | 38.25 | 40.64 | 78.89 | 1.06 | 2.33 |
8 | <0.250 | 38.11 | 40.03 | 78.14 | 1.05 | 2.14 |
9 | 0.274 | 37.62 | 39.73 | 77.35 | 1.06 | 2.14 |
10 | <0.250 | 38.58 | 40.14 | 78.72 | 1.04 | 2.24 |
11 | <0.250 | 36.66 | 38.87 | 75.53 | 1.06 | 2.11 |
12 | <0.250 | 36.35 | 38.87 | 75.22 | 1.07 | 2.22 |
13 | <0.250 | 37.27 | 39.99 | 77.26 | 1.07 | 2.09 |
14 | <0.250 | 37.77 | 40.84 | 78.61 | 1.08 | 2.30 |
15 | <0.250 | 37.77 | 40.84 | 78.61 | 1.08 | 2.48 |
16 | <0.250 | 37.17 | 40.06 | 77.23 | 1.08 | 2.27 |
17 | <0.250 | 34.39 | 39.61 | 74.00 | 1.15 | 2.15 |
18 | <0.250 | 37.93 | 41.36 | 79.29 | 1.09 | 2.46 |
19 | <0.250 | 38.00 | 40.61 | 78.61 | 1.07 | 2.26 |
20 | <0.250 | 37.14 | 39.31 | 76.45 | 1.06 | 2.54 |
21 | <0.250 | 36.78 | 40.48 | 77.26 | 1.10 | 2.07 |
22 | <0.250 | 37.38 | 40.93 | 78.31 | 1.09 | 2.23 |
23 | <0.250 | 37.21 | 40.36 | 77.57 | 1.08 | 2.07 |
24 | <0.250 | 33.02 | 40.70 | 73.72 | 1.23 | 1.81 |
Mean | 0.332 | 37.07 | 40.24 | 77.31 | 1.09 | 2.19 |
SD | 0.133 | 1.28 | 0.72 | 1.63 | 0.04 | 0.17 |
Min | 0.253 | 33.02 | 38.87 | 73.72 | 1.04 | 1.81 |
Max | 0.568 | 38.58 | 41.53 | 79.32 | 1.23 | 2.54 |
CV (%) | 39.99 | 3.46 | 1.79 | 2.11 | 3.67 | 7.98 |
Sample | Moisture (%) | Free Acidity (mEq/kg) | pH | HMF (mg/kg) | Diastase Activity (DN) |
---|---|---|---|---|---|
1 | 14.0 | 37.0 | 3.61 | 36.49 | 6.60 |
2 | 18.4 | 22.8 | 3.56 | 27.38 | 7.08 |
3 | 18.4 | 20.4 | 3.39 | 35.90 | 7.94 |
4 | 16.6 | 21.0 | 3.54 | 38.45 | 9.78 |
5 | 18.0 | 22.0 | 3.66 | 26.98 | 6.50 |
6 | 14.8 | 28.4 | 3.63 | 42.61 | 12.92 |
7 | 15.8 | 32.0 | 3.75 | 36.45 | 8.56 |
8 | 16.8 | 25.2 | 3.51 | 38.02 | 7.94 |
9 | 15.4 | 32.0 | 3.35 | 31.14 | 9.40 |
10 | 15.2 | 28.6 | 3.60 | 35.14 | 6.88 |
11 | 16.2 | 27.8 | 3.56 | 27.70 | 6.50 |
12 | 15.4 | 28.4 | 3.83 | 29.22 | 8.40 |
13 | 17.2 | 34.0 | 3.39 | 33.06 | 7.42 |
14 | 16.6 | 30.8 | 3.66 | 38.91 | 6.48 |
15 | 15.0 | 23.6 | 3.51 | 32.14 | 9.76 |
16 | 16.8 | 31.4 | 3.64 | 30.25 | 9.24 |
17 | 15.4 | 25.6 | 3.57 | 44.65 | 5.32 |
18 | 15.4 | 25.6 | 3.57 | 42.13 | 6.86 |
19 | 16.2 | 25.2 | 3.39 | 33.92 | 8.74 |
20 | 18.0 | 23.2 | 3.54 | 30.00 | 11.34 |
21 | 15.8 | 34.4 | 3.60 | 27.10 | 9.96 |
22 | 14.6 | 31.0 | 3.45 | 37.94 | 6.08 |
23 | 17.6 | 26.0 | 3.53 | 33.57 | 5.30 |
24 | 16.2 | 37.2 | 3.65 | 42.88 | 11.30 |
Mean | 16.29 | 28.07 | 3.56 | 34.67 | 8.18 |
SD | 1.24 | 4.88 | 0.11 | 5.36 | 1.99 |
Min | 14.00 | 20.40 | 3.35 | 26.98 | 5.30 |
Max | 18.40 | 37.20 | 3.83 | 44.65 | 12.92 |
CV (%) | 7.60 | 17.38 | 3.23 | 15.46 | 24.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Živkov Baloš, M.; Popov, N.; Jakšić, S.; Mihaljev, Ž.; Pelić, M.; Ratajac, R.; Ljubojević Pelić, D. Sunflower Honey—Evaluation of Quality and Stability during Storage. Foods 2023, 12, 2585. https://doi.org/10.3390/foods12132585
Živkov Baloš M, Popov N, Jakšić S, Mihaljev Ž, Pelić M, Ratajac R, Ljubojević Pelić D. Sunflower Honey—Evaluation of Quality and Stability during Storage. Foods. 2023; 12(13):2585. https://doi.org/10.3390/foods12132585
Chicago/Turabian StyleŽivkov Baloš, Milica, Nenad Popov, Sandra Jakšić, Željko Mihaljev, Miloš Pelić, Radomir Ratajac, and Dragana Ljubojević Pelić. 2023. "Sunflower Honey—Evaluation of Quality and Stability during Storage" Foods 12, no. 13: 2585. https://doi.org/10.3390/foods12132585
APA StyleŽivkov Baloš, M., Popov, N., Jakšić, S., Mihaljev, Ž., Pelić, M., Ratajac, R., & Ljubojević Pelić, D. (2023). Sunflower Honey—Evaluation of Quality and Stability during Storage. Foods, 12(13), 2585. https://doi.org/10.3390/foods12132585