Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review
Abstract
1. Introduction
1.1. Role of Sodium Chloride in Meat Products
1.2. Risk of NaCl Intake to Health
1.3. Purpose of this Study
2. Alternative Processing Techniques
2.1. Hot-Boning Technology
2.2. High-Pressure Processing
2.3. Radiation
2.4. Ultrasound
2.5. Pulsed Electric Field Processing
Processing Technology | Product Category and Detailed Method | Significant Effects | Reference |
---|---|---|---|
Hot-boning technology | Chicken breast Mixed addition of pre-rigor salted chicken breast with cold-boned chicken breast | Reduced cooking loss Improved emulsion stability | [3] |
Chicken breast Pre-rigor chicken breast salted with KCl | Increased redness Decreased hardness, gumminess, and chewiness Low overall sensory | [20] | |
High-pressure processing | Breakfast sausage Raw meat treated with high pressure for producing low-salt breakfast sausages (1.5% NaCl) | Reduced cooking loss Increased emulsion stability | [5] |
Chicken meat batter Optimization of high-pressure conditions for improving technological properties | Increased water holding capacity and hardness, and sensory properties (best results for physicochemical properties obtained at 200 MPa among 0.1, 200, and 400 MPa) | [23] | |
Cooked ham Combined application of high pressure and 0.2% salt replacer (KCl) in reduced-salt cooked ham | The production of reduced-salt cooked ham without adverse impacts on water binding and texture in comparison to the product with 1.9% NaCl | [6] | |
Radiation | Emulsion sausage Ionizing irradiation on low-salt emulsion sausage (0.75% NaCl) | Inhibition of the growth of aerobic microbes, coliforms, Enterobacteriaceae, and Pseudomonas spp. during chilled storage | [13] |
Ultrasound | Chicken breast meat batter | Improved gel properties | [36] |
Restructured cooked ham with 0.75% salt | Decreased total fluid release and increased hardness | [37] | |
Pulsed electric field | Beef jerky Pulsed electric field processing in low-salt beef jerky (1.2% NaCl) | Improved the salt diffusion and distribution in the meat matrix and improved the saltiness naturally | [41] |
Loin Deer Longissimus dorsi in pulsed electric field | Higher soluble protein and digestibility of muscle | [44] |
3. Salt Substitutes in Meat Products
3.1. Metallic Agents
3.2. Natural Enhancement
Product Category | Reduced or Replaced Sodium Amount (%) | Sodium Chloride Substitutes | Reference |
---|---|---|---|
Ground meat | |||
Mortadella | 50–75 (50) 1) | CaCl2, MgCl2, KCl | [52] |
Frankfurter | 33 (33) | Fermented red beet | [56] |
Dry-fermented sausage | 61 (61) | KCl, CaCl2 | [48] |
Bologna | 20, 40, and 60 (40) | PuraQ® Arome Na4 | [14] |
50 (50) | Lysine, liquid smoke, KCl | [55] | |
Deli type sausage | 25–50 (50) | Soda-Lo® salt | [62] |
Smoked sausage | 45–50 (50) | OF-45LSN, OF-60LSN, Savory powder | [57] |
Restructured ham | 40–45 (45) | OF-45LSN, OF-60LSN, Savory powder | [57] |
Summer sausage | 30–50 | KCl, soy sauce, fermented flavor enhancer | [58] |
Black pudding | 66.66 | Wheat bran, sodium citrate, carrageenan, pectin, KCl, glycine, carboxymethylcellulose, seaweed wakame, PuraQ®Aroma NA4, KPO4, waxy maize starch | [63] |
Ground beef meat | 50–75 | Microbial transglutaminase, fibrimex, alginate | [64] |
Whole muscle | |||
Beef jerky | 50 (50) | KCl, CaCl2 | [53] |
30–50 (30) | KCl, soy sauce, fermented flavor enhancer | [58] | |
Cooked ham | 25–50 (50) | Soda-Lo® salt | [62] |
Turkey breast | 25–50 (50) | Soda-Lo® salt | [62] |
20–46 (20) | Na2HPO4, Na5P3O10, Na2SO4, C5H8NNaO4,··· | [45] | |
Dry-cured ham | 50–55 (55) | CaCl2, MgCl2, KCl | [47] |
Bacon | 30–50 (50) | KCl, soy sauce, fermented flavor enhancer | [58] |
Boneless ham | 30–50 (30) | KCl, soy sauce, fermented flavor enhancer | [52] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yim, D.G.; Shin, D.J.; Jo, C.; Nam, K.C. Effect of Sodium-Alternative Curing Salts on Physicochemical Properties during Salami Manufacture. Food Sci. Anim. Resour. 2020, 40, 946–956. [Google Scholar] [CrossRef]
- Desmond, E. Reducing salt: A challenge for the meat industry. Meat Sci. 2006, 74, 188–196. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Jeong, T.J.; Jeon, K.H.; Kim, Y.B.; Kim, C.J. Combined effects of presalted prerigor and postrigor batter mixtures on chicken breast gelation. Poult. Sci. 2015, 94, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Chin, K.B. Evaluation of various salt levels and different dairy proteins in combination with microbial transglutaminase on the quality characteristics of restructured pork ham. Int. J. Food Sci. Technol. 2011, 46, 1522–1528. [Google Scholar] [CrossRef]
- O’Flynn, C.C.; Cruz-Romero, M.C.; Troy, D.; Mullen, A.M.; Kerry, J.P. The application of high-pressure treatment in the reduction of salt levels in reduced-phosphate breakfast sausages. Meat Sci. 2014, 96, 1266–1274. [Google Scholar] [CrossRef]
- Tamm, A.; Bolumar, T.; Bajovic, B.; Toepfl, S. Salt (NaCl) reduction in cooked ham by a combined approach of high pressure treatment and the salt replacer KCl. Innov. Food Sci. Emerg. Technol. 2016, 36, 294–302. [Google Scholar] [CrossRef]
- Bidlas, E.; Lambert, R.J. Comparing the antimicrobial effectiveness of NaCl and KCl with a view to salt/sodium replacement. Int. J. Food Microbiol. 2008, 124, 98–102. [Google Scholar] [CrossRef]
- Finan, J.D.; Guilak, F. The effects of osmotic stress on the structure and function of the cell nucleus. J. Cell. Biochem. 2010, 109, 460–467. [Google Scholar] [CrossRef]
- Petit, G.; Jury, V.; de Lamballerie, M.; Duranton, F.; Pottier, L.; Martin, J.L. Salt Intake from Processed Meat Products: Benefits, Risks and Evolving Practices. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1453–1473. [Google Scholar] [CrossRef]
- Kim, T.K.; Kim, Y.B.; Jeon, K.H.; Jang, H.W.; Lee, H.S.; Choi, Y.S. Quality Characteristics of Samgyetang according to the Sodium Chloride Level and with/without Phosphate in Broth. Food Sci. Anim. Resour. 2019, 39, 102. [Google Scholar] [CrossRef]
- Bhana, N.; Utter, J.; Eyles, H. Knowledge, Attitudes and Behaviours Related to Dietary Salt Intake in High-Income Countries: A Systematic Review. Curr. Nutr. Rep. 2018, 7, 183–197. [Google Scholar] [CrossRef]
- Mohan, S.; Campbell, N.R.; Willis, K. Effective population-wide public health interventions to promote sodium reduction. CMAJ 2009, 181, 605–609. [Google Scholar] [CrossRef]
- Song, D.H.; Kim, H.W.; Hwang, K.E.; Kim, Y.J.; Ham, Y.K.; Choi, Y.S.; Shin, D.J.; Kim, T.K.; Lee, J.H.; Kim, C.J. Impacts of Irradiation Sources on Quality Attributes of Low-salt Sausage during Refrigerated Storage. Korean J. Food Sci. Anim. Resour. 2017, 37, 698–707. [Google Scholar] [CrossRef]
- Pires, M.A.; Munekata, P.E.S.; Baldin, J.C.; Rocha, Y.J.P.; Carvalho, L.T.; dos Santos, I.R.; Barros, J.C.; Trindade, M.A. The effect of sodium reduction on the microstructure, texture and sensory acceptance of Bologna sausage. Food Struct. 2017, 14, 1–7. [Google Scholar] [CrossRef]
- Torres, E.; Pearson, A.M.; Gray, J.I.; Booren, A.M.; Shimokomaki, M. Effect of salt on oxidative changes in pre-and post-rigor ground beef. Meat Sci. 1988, 23, 151–163. [Google Scholar] [CrossRef]
- Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Ham, Y.K.; Yeo, E.J.; Jeong, T.J.; Choi, Y.S.; Kim, C.J. Effect of pre-rigor salting levels on physicochemical and textural properties of chicken breast muscles. Korean J. Food Sci. Anim. Resour. 2015, 35, 577. [Google Scholar] [CrossRef] [PubMed]
- Pisula, A.; Tyburcy, A. Hot processing of meat. Meat Sci. 1996, 43, 125–134. [Google Scholar] [CrossRef]
- Seideman, S.C.; Cross, H.R. The economics and palatability attributes of hot-boned beef: A review. J. Food Qual. 1982, 5, 183–201. [Google Scholar] [CrossRef]
- Sukumaran, A.T.; Holtcamp, A.J.; Englishbey, A.K.; Campbell, Y.L.; Kim, T.; Schilling, M.W.; Dinh, T.T.N. Effect of deboning time on the growth of Salmonella, E. coli, aerobic, and lactic acid bacteria during beef sausage processing and storage. Meat Sci. 2018, 139, 49–55. [Google Scholar] [CrossRef]
- Song, D.H.; Ham, Y.K.; Ha, J.H.; Kim, Y.R.; Chin, K.B.; Kim, H.W. Impacts of pre-rigor salting with KCl on technological properties of ground chicken breast. Poul. Sci. 2020, 99, 597–603. [Google Scholar] [CrossRef]
- Inguglia, E.S.; Zhang, Z.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Salt reduction strategies in processed meat products—A review. Trends Food Sci. Technol. 2017, 59, 70–78. [Google Scholar] [CrossRef]
- Iwasaki, T.; Noshiroya, K.; Saitoh, N.; Okano, K.; Yamamoto, K. Studies of the effect of hydrostatic pressure pretreatment on thermal gelation of chicken myofibrils and pork meat patty. Food Chem. 2006, 95, 474–483. [Google Scholar] [CrossRef]
- Zheng, H.B.; Han, M.Y.; Yang, H.J.; Tang, C.B.; Xu, X.L.; Zhou, G.H. Application of high pressure to chicken meat batters during heating modifies physicochemical properties, enabling salt reduction for high-quality products. LWT-Food Sci. Technol. 2017, 84, 693–700. [Google Scholar] [CrossRef]
- Lee, H.L.; Choe, J.H.; Yong, H.I.; Lee, H.J.; Kim, H.J.; Jo, C. Combination of sea tangle powder and high-pressure treatment as an alternative to phosphate in emulsion-type sausage. J. Food Process Preserv. 2018, 42, e13712. [Google Scholar] [CrossRef]
- Bolumar, T.; Orlien, V.; Sikes, A.; Aganovic, K.; Bak, K.H.; Guyon, C.; Stübler, A.-S.; de Lamballerie, M.; Hertel, C.; Brüggemann, D.A. High-pressure processing of meat: Molecular impacts and industrial applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 332–368. [Google Scholar] [CrossRef] [PubMed]
- O’bryan, C.A.; Crandall, P.G.; Ricke, S.C.; Olson, D.G. Impact of irradiation on the safety and quality of poultry and meat products: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 442–457. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.K.; Kim, H.W.; Hwang, K.E.; Song, D.H.; Kim, Y.J.; Choi, Y.S.; Song, B.S.; Park, J.H.; Kim, C.J. Effects of irradiation source and dose level on quality characteristics of processed meat products. Radiat. Phys. Chem. 2017, 130, 259–264. [Google Scholar] [CrossRef]
- Li, C.; He, L.; Jin, G.; Ma, S.; Wu, W.; Gai, L. Effect of different irradiation dose treatment on the lipid oxidation, instrumental color and volatiles of fresh pork and their changes during storage. Meat Sci. 2017, 128, 68–76. [Google Scholar] [CrossRef]
- Kim, T.K.; Hwang, K.E.; Ham, Y.K.; Kim, H.W.; Paik, H.D.; Kim, Y.B.; Choi, Y.S. Interactions between raw meat irradiated by various kinds of ionizing radiation and transglutaminase treatment in meat emulsion systems. Radiat. Phys. Chem. 2020, 166, 108452. [Google Scholar] [CrossRef]
- Turantaş, F.; Kılıç, G.B.; Kılıç, B. Ultrasound in the meat industry: General applications and decontamination efficiency. Int. J. Food Microbiol. 2015, 198, 59–69. [Google Scholar] [CrossRef]
- Alarcon-Rojo, A.D.; Janacua, H.; Rodriguez, J.C.; Paniwnyk, L.; Mason, T.J. Power ultrasound in meat processing. Meat Sci. 2015, 107, 86–93. [Google Scholar] [CrossRef]
- Stadnik, J.; Dolatowski, Z.J. Influence of sonication on Warner-Bratzler shear force, colour and myoglobin of beef (m. semimembranosus). Eur. Food Res. Technol. 2011, 233, 553–559. [Google Scholar] [CrossRef]
- Stadnik, J.; Dolatowski, Z.J.; Baranowska, H.M. Effect of ultrasound treatment on water holding properties and microstructure of beef (M. semimembranosus) during ageing. LWT-Food Sci. Technol. 2008, 41, 2151–2158. [Google Scholar] [CrossRef]
- Carcel, J.A.; Benedito, J.; Bon, J.; Mulet, A. High intensity ultrasound effects on meat brining. Meat Sci. 2007, 76, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Kordowska-Wiater, M.; Stasiak, D.M. Effect of ultrasound on survival of gram-negative bacteria on chicken skin surface. Bull. Vet. Inst. Pulawy. 2011, 55, 207–210. [Google Scholar]
- Li, K.; Kang, Z.-L.; Zou, Y.-F.; Xu, X.-L.; Zhou, G.-H. Effect of ultrasound treatment on functional properties of reduced-salt chicken breast meat batter. J. Food Sci. Technol. 2015, 52, 2622–2633. [Google Scholar] [CrossRef] [PubMed]
- Barretto, T.L.; Pollonio, M.A.R.; Telis-Romero, J.; da Silva Barretto, A.C. Improving sensory acceptance and physicochemical properties by ultrasound application to restructured cooked ham with salt (NaCl) reduction. Meat Sci. 2018, 145, 55–62. [Google Scholar] [CrossRef]
- Kang, D.; Jiang, Y.; Xing, L.; Zhou, G.; Zhang, W. Inactivation of Escherichia coli O157: H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef. Food Res. Int. 2017, 102, 717–727. [Google Scholar] [CrossRef]
- Pinton, M.B.; dos Santos, B.A.; Lorenzo, J.M.; Cichoski, A.J.; Boeira, C.P.; Campagnol, P.C.B. Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Curr. Opin. Food Sci. 2021, 40, 1–5. [Google Scholar] [CrossRef]
- Gomez, B.; Munekata, P.E.S.; Gavahian, M.; Barba, F.J.; Marti-Quijal, F.J.; Bolumar, T.; Campagnol, P.C.B.; Tomasevic, I.; Lorenzo, J.M. Application of pulsed electric fields in meat and fish processing industries: An overview. Food Res. Int. 2019, 123, 95–105. [Google Scholar] [CrossRef]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. Current and future prospects for the use of pulsed electric field in the meat industry. Crit. Rev. Food Sci. Nutr. 2019, 59, 1660–1674. [Google Scholar] [CrossRef]
- Toepfl, S.; Siemer, C.; Heinz, V. Effect of high-intensity electric field pulses on solid foods. In Emerging Technologies for Food Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 147–154. [Google Scholar]
- Warner, R.; McDonnell, C.K.; Bekhit, A.; Claus, J.; Vaskoska, R.; Sikes, A.; Dunshea, F.; Ha, M. Systematic review of emerging and innovative technologies for meat tenderisation. Meat Sci. 2017, 132, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Bhat, Z.F.; Morton, J.D.; Mason, S.L.; Bekhit, A.E.A. The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chem. 2020, 306, 125622. [Google Scholar] [CrossRef]
- Pandya, J.K.; Decker, K.E.; Goulette, T.; Kinchla, A.J. Sodium reduction in Turkey breast meat by using sodium anion species. LWT Food Sci. Technol. 2020, 124, 109110. [Google Scholar] [CrossRef]
- Aaslyng, M.D.; Vestergaard, C.; Koch, A.G. The effect of salt reduction on sensory quality and microbial growth in hotdog sausages, bacon, ham and salami. Meat Sci. 2014, 96, 47–55. [Google Scholar] [CrossRef]
- Blesa, E.; Alino, M.; Barat, J.M.; Grau, R.; Toldra, F.; Pagan, M.J. Microbiology and physico-chemical changes of dry-cured ham during the post-salting stage as affected by partial replacement of NaCl by other salts. Meat Sci. 2008, 78, 135–142. [Google Scholar] [CrossRef]
- Gimeno, O.; Astiasarán, I.; Bello, J. Influence of partial replacement of NaCl with KCl and CaCl2on microbiological evolution of dry fermented sausages. Food Microbiol. 2001, 18, 329–334. [Google Scholar] [CrossRef]
- Beriain, M.J.; Gomez, I.; Petri, E.; Insausti, K.; Sarries, M.V. The effects of olive oil emulsified alginate on the physico-chemical, sensory, microbial, and fatty acid profiles of low-salt, inulin-enriched sausages. Meat Sci. 2011, 88, 189–197. [Google Scholar] [CrossRef]
- Yotsuyanagi, S.E.; Contreras-Castillo, C.J.; Haguiwara, M.M.H.; Cipolli, K.M.V.A.B.; Lemos, A.L.S.C.; Morgano, M.A.; Yamada, E.A. Technological, sensory and microbiological impacts of sodium reduction in frankfurters. Meat Sci. 2016, 115, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Totosaus, A.; Perez-Chabela, M.L. Textural properties and microstructure of low-fat and sodium-reduced meat batters formulated with gellan gum and dicationic salts. LWT-Food Sci. Technol. 2009, 42, 563–569. [Google Scholar] [CrossRef]
- Horita, C.N.; Morgano, M.A.; Celeghini, R.M.S.; Pollonio, M.A.R. Physico-chemical and sensory properties of reduced-fat mortadella prepared with blends of calcium, magnesium and potassium chloride as partial substitutes for sodium chloride. Meat Sci. 2011, 89, 426–433. [Google Scholar] [CrossRef]
- Vidal, V.A.; Biachi, J.P.; Paglarini, C.S.; Pinton, M.B.; Campagnol, P.C.; Esmerino, E.A.; da Cruz, A.G.; Morgano, M.A.; Pollonio, M.A. Reducing 50% sodium chloride in healthier jerked beef: An efficient design to ensure suitable stability, technological and sensory properties. Meat Sci. 2019, 152, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Prado, I.; Cruz, O.; Valero, M.; Zawadzki, F.; Eiras, C.; Rivaroli, D.; Prado, R.; Visentainer, J. Effects of glycerin and essential oils (Anacardium occidentale and Ricinus communis) on the meat quality of crossbred bulls finished in a feedlot. Anim. Prod. Sci. 2016, 56, 2105–2114. [Google Scholar] [CrossRef]
- dos Santos Alves, L.A.A.; Lorenzo, J.M.; Gonçalves, C.A.A.; Dos Santos, B.A.; Heck, R.T.; Cichoski, A.J.; Campagnol, P.C.B. Impact of lysine and liquid smoke as flavor enhancers on the quality of low-fat Bologna-type sausages with 50% replacement of NaCl by KCl. Meat Sci. 2017, 123, 50–56. [Google Scholar] [CrossRef]
- Hwang, K.E.; Kim, T.K.; Kim, H.W.; Oh, N.S.; Kim, Y.B.; Jeon, K.H.; Choi, Y.S. Effect of fermented red beet extracts on the shelf stability of low-salt frankfurters. Food Sci. Biotechnol. 2017, 26, 929–936. [Google Scholar] [CrossRef]
- Gaudette, N.J.; Pietrasik, Z. The sensory impact of salt replacers and flavor enhancer in reduced sodium processed meats is matrix dependent. J. Sens. Stud. 2017, 32, e12247. [Google Scholar] [CrossRef]
- Sindelar, J.J.; Jiminez-Maroto, L.A.; Rankin, S.A.; Sato, T.; Shazer, W.H.; Shazer, W.H., III. Reducing sodium in processed meats using traditionally brewed soy sauce and fermented flavor enhancer. Meat Muscle Biol. 2018, 1. [Google Scholar] [CrossRef][Green Version]
- Dos Santos, B.A.; Campagnol, P.C.B.; Morgano, M.A.; Pollonio, M.A.R. Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl. Meat Sci. 2014, 96, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: An overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Pateiro, M.; Munekata, P.E.S.; Sant’Ana, A.S.; Domínguez, R.; Rodríguez-Lázaro, D.; Lorenzo, J.M. Application of essential oils as antimicrobial agents against spoilage and pathogenic microorganisms in meat products. Int. J. Food Microbiol. 2021, 337, 108966. [Google Scholar] [CrossRef] [PubMed]
- Raybaudi-Massilia, R.; Mosqueda-Melgar, J.; Rosales-Oballos, Y.; Citti de Petricone, R.; Frágenas, N.N.; Zambrano-Durán, A.; Sayago, K.; Lara, M.; Urbina, G. New alternative to reduce sodium chloride in meat products: Sensory and microbiological evaluation. LWT-Food Sci. Technol. 2019, 108, 253–260. [Google Scholar] [CrossRef]
- Fellendorf, S.; O’Sullivan, M.G.; Kerry, J.P. Impact of ingredient replacers on the physicochemical properties and sensory quality of reduced salt and fat black puddings. Meat Sci. 2016, 113, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Atilgan, E.; Kilic, B. Effects of microbial transglutaminase, fibrimex and alginate on physicochemical properties of cooked ground meat with reduced salt level. J. Food Sci. Technol. 2017, 54, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Rios-Mera, J.D.; Saldaña, E.; Cruzado-Bravo, M.L.; Martins, M.M.; Patinho, I.; Selani, M.M.; Valentin, D.; Contreras-Castillo, C.J. Impact of the content and size of NaCl on dynamic sensory profile and instrumental texture of beef burgers. Meat Sci. 2020, 161, 107992. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.-K.; Yong, H.-I.; Jung, S.; Kim, H.-W.; Choi, Y.-S. Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods 2021, 10, 957. https://doi.org/10.3390/foods10050957
Kim T-K, Yong H-I, Jung S, Kim H-W, Choi Y-S. Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods. 2021; 10(5):957. https://doi.org/10.3390/foods10050957
Chicago/Turabian StyleKim, Tae-Kyung, Hae-In Yong, Samooel Jung, Hyun-Wook Kim, and Yun-Sang Choi. 2021. "Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review" Foods 10, no. 5: 957. https://doi.org/10.3390/foods10050957
APA StyleKim, T.-K., Yong, H.-I., Jung, S., Kim, H.-W., & Choi, Y.-S. (2021). Technologies for the Production of Meat Products with a Low Sodium Chloride Content and Improved Quality Characteristics—A Review. Foods, 10(5), 957. https://doi.org/10.3390/foods10050957