Impact of Gluten-Free Sorghum Bread Genotypes on Glycemic and Antioxidant Responses in Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorghum and Bread Production
2.2. Bread Chemical Composition
2.3. Antioxidant Activity
2.4. Individuals
2.5. Clinical Trial Design
2.6. Anthropometric and Body Composition Measurements
2.7. Test Meals
2.8. Antioxidant Capacity
2.9. Biochemical Measurements
2.10. Statistical Analysis
3. Results
3.1. Individuals Characteristics
3.2. Bread Chemical Composition
3.3. Postprandial Glucose and Insulin Responses
3.4. Antioxidant Capacity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sapone, A.; Bai, J.C.; Ciacci, C.; Dolinsek, J.; Green, P.H.; Hadjivassiliou, M.; Kaukinen, K.; Rostami, K.; Sanders, D.S.; Schumann, M.; et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A.; Araya, M.; Bhatnagar, S.; Cameron, D.; Catassi, C.; Dirks, M.; Mearin, M.; Ortigosa, L.; Phillips, A. Federation of International Societies of Pediatric Gastroenterology, Hepatology, and nutrition consensus report on celiac disease. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, N.; Albanell, E.; Miñarro, B.; Gallardo, J.; Capellas, M. Influence of final baking technologies in partially baked frozen gluten-free bread quality. J. Food Sci. 2015, 80, E619–E626. [Google Scholar] [CrossRef]
- Taylor, J.R.; Schober, T.J.; Bean, S.R. Novel and non-food uses for sorghum and millets. J. Cereal Sci. 2006, 44, 252–271. [Google Scholar] [CrossRef]
- Pontieri, P.; Mamone, G.; De Caro, S.; Tuinstra, M.R.; Roemer, E.; Okot, J.; De Vita, P.; Ficco, D.B.M.; Alifano, P.; Pignone, D.; et al. Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. J. Agric. Food Chem. 2013, 61, 2565–2571. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Yousif, A.; Johnson, S.K.; Gamlath, S. Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Res. Int. 2013, 54, 578–586. [Google Scholar] [CrossRef] [Green Version]
- De Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive compounds and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2015, 57, 372–390. [Google Scholar] [CrossRef]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef] [PubMed]
- Dayakar Rao, B.; Patil, J.V.; Hymavathi, T.V.; Nimal Reddy, K.; Rajendra Prasad, M.P. Creation of Demand for Millet Food through PCS Value Chain. In Final Report of NAIP (ICAR); Directorate of Sorghum Research: Rajendranagar, India, 2014. [Google Scholar]
- Rooney, L.W.; Waniska, R.D. Sorghum Food and Industrial Utilization. In Sorghum: Origin, History, Technology and Production, 1st ed.; Wayne Smith, C., Fredericksen, R.A., Eds.; John Wiley and Sons: New York, NY, USA, 2000; pp. 689–717. [Google Scholar]
- Wolter, A.; Hager, A.S.; Zannini, E.; Arendt, E.K. Influence of sourdough on in vitro starch digestibility and predicted glycemic indices of gluten-free breads. Food Funct. 2014, 5, 564–572. [Google Scholar] [CrossRef] [PubMed]
- Prasad, M.P.R. Glycaemic index and glycaemic load of sorghum products. J. Sci. Food Agric. 2014, 95, 1626–1630. [Google Scholar] [CrossRef] [PubMed]
- Balota, M. Sorghum (Sorghum vulgare L.) marketability grain color and relationship to feed value. In AREC-23NP; Virginia Cooperative Extension Bulletin; Virginia Tech: Blacksburg, VA, USA, 2012; pp. 1–3. [Google Scholar]
- Dykes, L.; Rooney, L.W. Review: Sorghum and millet phenols and antioxidants. J. Cereal Sci. 2006, 44, 236–251. [Google Scholar] [CrossRef]
- Moraes, É.A.; Marineli, R.D.S.; Lenquiste, S.A.; Steel, C.J.; de Menezes, C.B.; Queiroz, V.A.V.; Júnior, M.R.M. Sorghum flour fractions: Correlations among polysaccharides, phenolic compounds, antioxidant activity and glycemic index. Food Chem. 2015, 180, 116–123. [Google Scholar] [CrossRef]
- Rhodes, D.H.; Hoffmann, L., Jr.; Rooney, W.L.; Ramu, P.; Morris, G.P.; Kresovich, S. Genome-wide association study of grain polyphenol concentrations in global sorghum (Sorghum bicolor (L.) Moench) germplasm. J. Agric. Food Chem. 2014, 62, 10916–10927. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.N.; Belton, P.S.; Beta, T.; Duodu, K.G. Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci. 2014, 59, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Dlamini, N.R.; Taylor, J.R.; Rooney, L.W. The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chem. 2007, 105, 1412–1419. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free. Radic. Res. 2006, 40, 1014–1028. [Google Scholar] [CrossRef] [PubMed]
- Aruna, C.; Visarada, K.B.R.S. Sorghum Grain in Food and Brewing Industry. In Breeding Sorghum for Diverse End Uses; Woodhead Publishing: Hyderabad, India, 2019; pp. 209–228. [Google Scholar] [CrossRef]
- De Aguiar, L.A.; Rodrigues, D.B.; Queiroz, V.A.V.; Melo, L.; de Oliveira Pineli, L.D.L. Comparison of two rapid descriptive sensory techniques for profiling and screening of drivers of liking of sorghum breads. Food Res. Int. 2020, 131, 108999. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 19th ed.; AOAC: Gaithersburg, MD, USA, 2012; Chapter 45 Met. 985.29; Volume 2, pp. 100–102. Available online: https://sbooks.best/downloads/Official-Methods-Of-Analysis-Of-Aoac-International-19th-Edition- (accessed on 10 May 2018).
- AACC International. AACC International Approved Methods; AACC International: St. Paul, MN, USA, 2015; Available online: http://methods.aaccnet.org/toc.aspx (accessed on 10 May 2018).
- AOCS. Approved Procedure Am 5-04 Rapid Determination of Oil/fat Utilizing High Temperature Solvent Extraction. 2005. Available online: http://www.academia.edu/30938058/AOCS (accessed on 10 May 2018).
- FAO. Food energy-methods of analysis and conversion factors. In Food and Agriculture Organization of the United Nations Technical Workshop Report; FAO: Rome, Italy, 2003. [Google Scholar]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med. 1993, 14, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Poquette, N.M.; Gu, X.; Lee, S.O. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014, 5, 894–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; Technical Report Series; WHO: Geneva, Switzerland, 2000; pp. 241–243. [Google Scholar]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef] [Green Version]
- Suresh, K. An overview of randomization techniques: An unbiased assessment of outcome in clinical research. J. Hum. Reprod. Sci. 2011, 4, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- FAO, Food and Agriculture Organization; World Health Organization, WHO. Carbohydrates in Human Nutrition; WHO: Geneva, Switzerland, 1998. [Google Scholar]
- Westman, E.C.; Yancy, W.S., Jr.; Mavropoulus, J.C.; Marquart, M.; McDuffie, J.R. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr. Metab 2008, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Al Dhaheri, A.S.; Al, A.K.; Laleye, L.C.; Washi, S.A.; Jarrar, A.H.; Al Meqbaali, F.T.; Mohamad, M.N.; Masuadi, E.M. The effect of nutritional composition on the glycemic index and glycemic load values of selected Emirati foods. BMC Nutr. 2015, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Rosell, C.M.; Marco, C. Rice. In Gluten-Free Cereal Products and Beverages; Arendt, E.K., Dal Bello, F., Eds.; Elsevier Science: London, UK, 2008; pp. 81–100. [Google Scholar]
- Calvo-Lerma, J.; Crespo-Escobar, P.; Martínez-Barona, S.; Fornés-Ferrer, V.; Donat, E.; Ribes-Koninckx, C. Differences in the macronutrient and dietary fibre profile of gluten-free products as compared to their gluten-containing counterparts. Eur. J. Clin. Nutr. 2019, 73, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Melini, V.; Melini, F. Gluten-free diet: Gaps and needs for a healthier diet. Nutrients 2019, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Hager, A.-S.; Wolter, A.; Jacob, F.; Zannini, E.; Arendt, E.K. Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J. Cereal Sci. 2012, 56, 239–247. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocoll. 2009, 23, 988–995. [Google Scholar] [CrossRef]
- Thompson, T. Folate, iron, and dietary fiber contents of the gluten-free diet. J. Am. Diet. Assoc. 2000, 100, 1389–1396. [Google Scholar] [CrossRef]
- Hariprasanna, K.; Agte, V.; Elangovan, M.; Gite, S.; Kishore, A. Anti-Nutritional Factors and Antioxidant Capacity in Selected Genotypes of Sorghum [Sorghum bicolor (L.) Moench]. Int. J. Agric. Sci. 2015, 7, 620–625. [Google Scholar]
- FDA. Food Labeling: Specific Requirements for Nutrient Content Claims, Nutrient Content Claims for “Good Source”, “High”, “More”, and “High Potency”. 2019. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.54 (accessed on 10 April 2020).
- ADA. Standards of Medical Care for Patients with Diabetes Mellitus. Diabetes Care 2002, 25 (Suppl. S1), S33–S49. [Google Scholar] [CrossRef] [Green Version]
- Moraes, É.A.; Queiroz, V.A.V.; Shaffert, R.E.; Costa, N.M.B.; Nelson, J.D.; Ribeiro, S.M.R.; Martino, H.S.D. In Vivo protein quality of new sorghum genotypes for human consumption. Food Chem. 2012, 134, 1549–1555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espitia-Hernández, P.; González, M.L.C.; Ascacio-Valdés, J.A.; Dávila-Medina, D.; Flores-Naveda, A.; Silva, T.; Chacón, X.R.; Sepúlveda, L. Sorghum (Sorghum bicolor L.) as a potencial source of bioactive substances and their biological properties. Crit. Rev. Food Sci. Nutr. 2020, 1–12. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Renard, C.M.G.C. Interactions between Polyphenols and Macromolecules: Quantification Methods and Mechanisms. Crit. Rev. Food Sci. Nutr. 2012, 52, 213–248. [Google Scholar] [CrossRef]
- Basu, R.; Schiavon, M.; Petterson, X.-M.; Hinshaw, L.; Slama, M.; Carter, R.; Man, C.D.; Cobelli, C.; Basu, A. A novel natural tracer method to measure complex carbohydrate metabolism. Am. J. Physiol. Endocrinol. Metab 2019, 317, E483–E493. [Google Scholar] [CrossRef]
- Galarregui, C.; Zulet, M.Á.; Cantero, I.; Marín-Alejandre, B.A.; Monreal, J.I.; Elorz, M.; Benito-Boillos, A.; Herrero, J.I.; Tur, J.A.; Abete, I.; et al. Interplay of Glycemic Index, Glycemic Load, and Dietary Antioxidant Capacity with Insulin Resistance in Subjects with a Cardiometabolic Risk Profile. Int. J. Mol. Sci. 2018, 19, 3662. [Google Scholar] [CrossRef] [Green Version]
- Rosén, L.A.H.; Ostman, E.; Shewry, P.R.; Ward, J.L.; Andersson, A.A.M.; Piironen, V.; Lampi, A.-M.; Rakszegi, M.; Bedoe, Z.; Björck, I.M.E. Postprandial Glycemia, Insulinemia, and Satiety Responses in Healthy Subjects after Whole Grain Rye Bread Made from Different Rye Varieties. J. Agric. Food Chem. 2011, 59, 12139–12148. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.H.; Chung, I.M.; Park, Y. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet. Nutr. Res. Pract. (Nutr. Res. Pract.) 2012, 6, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, K.B.; Vimala, V. Hypoglycemic effect of selected sorghum recipes. Nutr. Res. 1996, 16, 1651–1658. [Google Scholar] [CrossRef]
- Ray, T.K.; Mansell, K.M.; Knight, L.C.; Malmud, L.S.; Owen, O.E.; Boden, G. Long-term effects of dietary fiber on glucose tolerance and gastric emptying in noninsulin-dependent diabetic patients. Am. J. Clin. Nutr. 1983, 37, 376–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Chung, I.M.; Cha, Y.S.; Park, Y. Millet consumption decreased serum concentration of triglyceride and C-reactive protein but not oxidative status in hyperlipidemic rats. Nutr. Res. 2010, 30, 290–296. [Google Scholar] [CrossRef] [PubMed]
Control | Brown | Bronze | White | |
---|---|---|---|---|
Moisture | 40.97 ± 0.73 a | 47.42 ± 0.91 b | 46.94 ± 0.74 b | 48.80 ± 0.46 b |
Ashes | 1.51 ± 0.00 b | 1.53 ± 0.00 b | 1.52 ± 0.02 b | 1.35 ± 0.00 a |
Carbohydrate | 37.51 ± 0.85 c | 31.68 ± 0.54 b | 29.29 ± 0.56 a | 30.60 ± 0.39 ab |
Resistant starch | 3.05 ± 0.05 b | 1.77 ± 0.12 a | 2.75 ± 0.19 b | 1.55 ± 0.06 a |
Fiber | 3.96 ± 0.03 a | 5.79 ± 0.03 d | 4.71 ± 0.13 b | 5.48 ± 0.03 c |
Protein | 5.36 ± 0.52 a | 5.42 ± 0.24 a | 6.13 ± 0.15 b | 5.36 ± 0.18 a |
Lipids | 7.58 ± 0.00 a | 6.41 ± 0.08 b | 8.68 ± 0.00 d | 6.87 ± 0.00 c |
ORAC (μmol TE/g) | 25.60 ± 2.77 a | 45.49 ± 2.07 b | 30.84 ± 0.28 a | 22.41 ± 3.04 a |
Glucose 3 h AUC | Glycemic Index | Insulin 3 h AUC | Insulin Index | |
---|---|---|---|---|
Glucose | 2619.75 ± 2094.94 a | 100 | 4797.29 ± 3009.89 a | 100 |
Control | 2098.50 ± 1352.53 a | 80 | 3372.05 ± 3255.73 b | 70 |
Brown | 1144.50 ± 590.67 b | 44 | 2379.59 ± 3083.12 b | 50 |
Bronze | 1571.25 ± 908.22 ab | 60 | 2697.02 ± 2890.74 b | 56 |
White | 1662.75 ± 1362.39 ab | 63 | 2094.09 ± 1212.01 b | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Reis Gallo, L.R.; Reis, C.E.G.; Mendonça, M.A.; da Silva, V.S.N.; Pacheco, M.T.B.; Botelho, R.B.A. Impact of Gluten-Free Sorghum Bread Genotypes on Glycemic and Antioxidant Responses in Healthy Adults. Foods 2021, 10, 2256. https://doi.org/10.3390/foods10102256
dos Reis Gallo LR, Reis CEG, Mendonça MA, da Silva VSN, Pacheco MTB, Botelho RBA. Impact of Gluten-Free Sorghum Bread Genotypes on Glycemic and Antioxidant Responses in Healthy Adults. Foods. 2021; 10(10):2256. https://doi.org/10.3390/foods10102256
Chicago/Turabian Styledos Reis Gallo, Lorenza Rodrigues, Caio Eduardo Gonçalves Reis, Márcio Antônio Mendonça, Vera Sônia Nunes da Silva, Maria Teresa Bertoldo Pacheco, and Raquel Braz Assunção Botelho. 2021. "Impact of Gluten-Free Sorghum Bread Genotypes on Glycemic and Antioxidant Responses in Healthy Adults" Foods 10, no. 10: 2256. https://doi.org/10.3390/foods10102256
APA Styledos Reis Gallo, L. R., Reis, C. E. G., Mendonça, M. A., da Silva, V. S. N., Pacheco, M. T. B., & Botelho, R. B. A. (2021). Impact of Gluten-Free Sorghum Bread Genotypes on Glycemic and Antioxidant Responses in Healthy Adults. Foods, 10(10), 2256. https://doi.org/10.3390/foods10102256