Photobiomodulation and Oral Mucositis: A Systematic Review
Abstract
:1. Introduction
2. Photobiomodulation Therapy
3. Materials and Methods
- Population = patients with oral mucositis;
- Intervention = chemotherapeutic and palliative measures + PBM laser therapy;
- Compared with = chemotherapeutic and palliative alone;
- Outcome of interest = pain; function QoL;
- Study type = randomised controlled trials.
- Randomisation and blinding;
- Comparability of groups at baseline (e.g., severity of disease);
- Description of treatment and irradiation protocol;
- Clinical assessment at baseline and at follow up—VAS, visual assessment improvement in function.
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sonis, S.T. The pathobiology of oral mucositis. Nat. Rev. Cancer 2004, 4, 277–284. [Google Scholar] [CrossRef]
- Zadik, Y.; Arany, P.R.; Fregnani, E.R.; Bossi, P.; Antunes, H.; Bensadoun, R.; Gueiros, L.; Majorana, A.; Nair, R.; Ranna, V.; et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer 2019, 27, 3969–3983. [Google Scholar] [CrossRef] [Green Version]
- Gautam, A.P.; Fernandes, D. Low level laser therapy against radiation induced oral mucositis in elderly head and neck cancer patients- a randomized placebo controlled trial. J. Photocherm. Photobiol. B Biol. 2015, 144, 51–56. [Google Scholar] [CrossRef]
- Lalla, R.V.; Brennan, M.; Schubert, M. Oral complications of cancer therapy. In Pharmacology and Therapeutics for Dentistry, 6th ed.; Yagiela, J., Ed.; Mosby Elsevier: St Louis, MI, USA, 2011; Volume III, pp. 782–798. ISBN 978-0-323-05593-2. [Google Scholar]
- Hahm, E.; Kulhari, S.; Arany, P. Targeting the pain, inflammation and immune (P11) axis: Plausible rationale for PBM. Photon. Lasers Med. 2012, 1, 241–254. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Ferraresi, C.; Huang, Y.Y. Cellular Mechanisms Ch. 4. In Low Level Light Therapy: Photobiomodulation; SPIE Press: Washington, DC, USA, 2018; ISBN 9781510614178. [Google Scholar]
- Romagnoli, E.; Carfaro, A. PBM. Theoretical and Applied Concepts of Adjunctive Use of LLLT/PBM Within Clinical Dentistry. Ch. 7. In Lasers in Dentistry-Current Concepts; Coluzzi, D.J., Parker, S.P.A., Eds.; Springer Nature: Cham, Switzerland, 2017; pp. 131–155. ISBN 978-3-319-51943-2. [Google Scholar] [CrossRef]
- Chung, H.; Dai, T.; Sharma, S.; Huang, Y.Y.; Carroll, J.; Hamblin, M. The nuts and bolts of low level laser therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, T.; Gupta, G.; Carroll, J. Pre-conditioning with low level laser therapy: Light before the storm. Dose Response 2014, 12, 619–649. [Google Scholar] [CrossRef] [Green Version]
- Pesevska, S.; Gjorgoski, I.; Ivanoski, K. The effects of low level diode laser on COX-2 gene expression in chronic periodontitis patients. Lasers Med. Sci. 2017, 32, 1463–1468. [Google Scholar] [CrossRef]
- Choi, H.; Lim, W.; Kim, I.; Kim, J.; Ko, Y.; Kwon, H.; Kim, S.; Ahsan Kabir, K.; Li, X.; Kim, O.; et al. Inflammatory Cytokines Are Suppressed by Light-Emitting Diode Irradiation of P. Gingivalis LPS-treated Human Gingival Fibroblasts: Inflammatory Cytokine Changes by LED Irradiation. Lasers Med. Sci. 2012, 27, 459–467. [Google Scholar] [CrossRef]
- Lopes, N.; Plapler, H.; Chavantes, M.; Lalla, R.; Yoshimura, E.; Alves, M. Cyclooxygenase-2 and Vascular Endothelial Growth Factor Expression in 5- fluorouracil-induced Oral Mucositis in Hamsters: Evaluation of Two Low-Intensity Laser Protocols. Support Cancer Care 2009, 17, 1409–1415. [Google Scholar] [CrossRef]
- Lopes, N.; Plapler, H.; Lalla, R.; Chavantes, M.; Yoshimura, E.; Bastos da Silva, M. Effects of low level laser therapy on collagen expression and neutrophil infiltrate in 5-fluoruracil induced oral mucositis in hamsters. Lasers Surg. Med. 2010, 42, 546–552. [Google Scholar] [CrossRef]
- Pourreau-Schneider, N.; Ahmed, A.; Soudry, M.; Jacquemier, J.; Kopp, F.; Franquin, C.; Martin, P. Helium neon laser treatment transforms fibroblasts into myofibroblasts. Am. J. Pathol. 1990, 137, 171–178. [Google Scholar]
- Basso, F.; Oliveira, C.; Kurachi, C.; Hebling, J.; de Souza Costa, C. Biostimulatory effect of low level laser therapy on keratinocytes in vitro. Lasers Med. Sci. 2013, 28, 367–374. [Google Scholar] [CrossRef]
- Frigo, L.; Favero, G.; Lima, H.; Maria, A.; Bjordal, J.; Joensen, J.; Iversen, V.; Marcos, R.; Parizzoto, N.; Lopes-Martins, R.; et al. Low level laser irradiation(InGaAlP 660 nm) increases fibroblast cell proliferation and reduces cell death in a dose dependent manner. Photomed. Laser Surg. 2010, 28 (Suppl. 1), S151–S156. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.; Armati, P. Photobiomodulation: Implications for anaesthesia and pain relief. Photomed. Laser Surg. 2016, 34, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Chow, R.; David, M.; Armati, P. 830 nm laser irradiation induces varicosity formation, reduces mitochondrial membrane potential and blocks fast axonal flow in small and medium diameter rat dorsal root ganglion neurons: Implications for the analgesic effects of 830 nm laser. J. Peripher. Nerv. Syst. 2007, 12, 28–39. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Huang, Y.; Arany, P.; Hamblin, M. Role of Reactive Oxygen Species in Low Level Light Therapy in Mechanisms for Low Light Therapy IV.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2009; Volume 7165, p. 716502. [Google Scholar] [CrossRef] [Green Version]
- Ottaviani, G.; Martinelli, V.; Rupel, K.; Ottaviani, G.; Martinelli, V.; Rupel, K.; Perinetti, G.; Gobbo, M.; Di Lenarda, R.; Bussani, R.; et al. Laser therapy inhibits tumor growth in mice by promoting immune surveillance and vessel normalization. EBioMedicine 2016, 11, 165–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Freitas, L.; Hamblin, M. Proposed mechanisms of photobiomodulation or low level light therapy. IEEE J. Sel. Top. Quantum. Electron. 2016, 22, 7000417. [Google Scholar] [CrossRef] [Green Version]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.; Group, T. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLOS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [Green Version]
- Saccenti, E.; Hoefsloot, H.; Smilde, A.; Westerhuis, J. Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 2014, 10, 361–374. [Google Scholar] [CrossRef]
- Grootveld, M. Metabolic Profiling: Disease and Xenobiotics; Issues in Toxicology Series; Royal Society of Chemistry: Cambridge, UK, 2014; ISBN 1849731632. [Google Scholar]
- Barasch, A.; Peterson, D.; Tanzer, J.; D’Ambrosio, J.; Nuki, K.; Schubert, M.; Franquin, J.; Clive, J.; Tutschka, P. Helium-neon laser effects on conditioning-induced oral mucositis in bone marrow transplantation patients. Cancer 1995, 76, 2550–2556. [Google Scholar] [CrossRef]
- Cowen, D.; Tardieu, C.; Schubert, M.; Peterson, D.; Resbeut, M.; Faucher, C.; Franquin, J.; Franquin, J. Low energy Helium-neon laser in the prevention of oral mucositis in patients undergoing bone marrow transplantation: Results of a double blind randomized trial. Int. J. Radiat. Oncol. Biol. Phys. 1997, 38, 697–703. [Google Scholar] [CrossRef]
- Bensadoun, R.; Franquin, J.; Ciais, G.; Darcourt, V.; Schubert, M.; Viot, M.; Dejou, J.; Tardieu, C.; Benezery, K.; Nguyen, T.; et al. Low energy He/Ne laser in the prevention of radiation induced mucositis. Support. Care Cancer 1999, 7, 244–252. [Google Scholar] [CrossRef]
- Antunes, H.; de Azevedo, A.; da Silva Bouzas, L.; Esteves Adão, C.; Pinheiro, C.; Mayhe, R.; Pinheiro, L.; Azevedo, R.; D’Aiuto de Matos, V.; Carvalho Rodrigues, P.; et al. Low power laser in the prevention of induced oral mucositis in bone marrow patients: A randomized trial. Blood 2007, 109, 2250–2255. [Google Scholar] [CrossRef] [Green Version]
- Arun Maiya, G.; Sagar, M.; Fernandes, D. Effect of low level helium neon laser therapy in the prevention and treatment of radiation induced mucositis in head and neck patients. Indian J. Med. Res. 2006, 124, 399–402. [Google Scholar]
- Schubert, M.; Eduardo, F.; Guthrie, K.; Franquin, J.; Bensadoun, R.; Migliorati, C.; Lloid, C.; Eduardo, C.; Walter, N.; Marques, M.; et al. A phase 111 randomized double blind placebo controlled clinical trial to determine the efficacy of low level laser therapy for the prevention of oral mucositis in patients undergoing hematopoietic cell transplantation. Support. Care Cancer 2007, 15, 1145–1154. [Google Scholar] [CrossRef]
- Abramoff, M.; Lopes, N.; Almeida Lopes, L.; Dib, L.; Guilherme, A.; Caran, E.; Delboni Barreto, A.; Martinho Lee, M.; Petrilli, A.S. Low level laser therapy in the prevention of chemotherapy induced oral mucositis in young patients. Photomed. Laser Surg. 2008, 26, 393–400. [Google Scholar] [CrossRef]
- Kuhn, A.; Porto, F.; Miraglia, P.; Lunardi Brunetto, A. Low-level Infrared Laser Therapy in Chemotherapy-Induced Oral Mucositis: A Randomized Placebo- Controlled Trial in Children. J. Pediatr. Hematol. Oncol. 2009, 31, 33–37. [Google Scholar] [CrossRef]
- Khouri, V.; Stracieri, A.; Rodrigues, M.; Aparecida de Moraes, D.; Pieroni, F.; Pinto Simões, B.; Voltarelli, J. Use of therapeutic laser for prevention and treatment of oral mucositis. Braz. Dent. J. 2009, 30, 215–220. [Google Scholar] [CrossRef]
- Silva, G.; Mendonca, E.; Bariani, C.; Spindola Antunes, H.; Silva, M. The prevention of induced oral mucositis with low level laser therapy in bone marrow transplantation patients: A randomized clinical trial. Photomed. Laser Surg. 2011, 29, 27–31. [Google Scholar] [CrossRef]
- Lima, A.; Villar, R.; de Castro, G., Jr.; Antequera, R.; Gil, E.; Cabral Rosalmeida, M.; Snitcovsky, I. Oral mucositis prevention by low level laser therapy in head and neck cancer patients undergoing concurrent chemoradiotherapy: A phase 111 randomized study. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 270–275. [Google Scholar] [CrossRef]
- Oton-Leite, A.; De Castro, A.; Oliveira Morais, M.; Dourado Pinezi, J.; Rodrigues Leles, C.; Mendonça, E. Effect of intraoral low level laser therapy on quality of life of patinets with head and neck cancer undergoing radiotherapy. Head Neck. 2012, 34, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, B.; Margolis, D.; Salzman, D.; Eastwood, D.; Tarima, S.; Williams, L.; Sande, J.; Vaughan, W.; Whelan, H. Amelioration of opral mucositis pain by NASA near infrared light emitting diodes in bone marrow transplant patients. Support. Care Cancer 2012, 20, 1405–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, P.; Jaguar, G.; Pellizzon, A.; Prado, J.; Lopes, R.; Alves, F. Evaluation of low level laser therapy in the prevention and treatment of radiation induced mucositis: A double blind randomized study in head and neck patients. Oral Oncol. 2011, 47, 1176–1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbabi-Kalati, F.; ArabaiKalati, F.; Moreidi, T. Evaluation of the effect of low level laser therapy on prevention of chemotherapy induced mucositis. ACTA Med. Iran. 2012, 51, 157–162. [Google Scholar]
- Antunes, H.; Herchenhorn, D.; Small, I.; Araújo, C.; Pais Viégas, C.; Cabral, E.; Rampini, M.; Rodrigues, P.; Silva, T.; Ferreira, E.; et al. Phase 111 trial of loew level laser therapy to prevent oral mucositis in head and neck cancer patinets treatewd with concurrent chemoradiation. Radiother. Oncol. 2013, 109, 297–302. [Google Scholar] [CrossRef]
- Oton-Leite, A.; Elias, L.; Oliveira Morais, M.; Dourado Pinezi, J.; Leles, C.; Santos Silva, M.; Mendonça, M.; Mendonça, E. Effect of low level laser therapy in the reduction of oral complications in patients with cancer of the head and neck submitted to radiotherapy. Spec. Care Dent. 2013, 33, 294–300. [Google Scholar] [CrossRef]
- Oton-Leite, A.; Silva, G.; Morais, M.; Silva, T.; Leles, C.; Campos Valadares, M.; Pinezi, J.; Batista, A.; Mendonça, E. Effect of low level laser therapy on chemoradiotherapy indiced oral mucositis and salivary inflammatory mediators in head and neck cancer patients. Lasers Surg. Med. 2015, 47, 296–305. [Google Scholar] [CrossRef]
- Ferreira, B.; Silveira, F.; de Orange, F. Low level laser therapy prevents severe oral mucopsitis in patients submitted to hematopoietic stem cell transplantation: A randomized clinical trial. Support. Care Cancer 2016, 24, 1035–1042. [Google Scholar] [CrossRef]
- Amadori, F.; Bardellini, E.; Conti, G.; Pedrini, N.; Schumacher, R.; Majorana, A. Low level laser therapy for treatment of chemotherapy induced oral mucositis in childhood: A randomized double blind controlled study. Lasers Med. Sci. 2016, 31, 1231–1236. [Google Scholar] [CrossRef] [Green Version]
- Elad, S.; Luboshitz-Shon, N.; Cohen, T.; Wainchwaig, E.; Shapira, M.; Resnick, I.; Radiano, R.; Lubart, R.; Or, R. A randomized controlled trial of visible light therapy for the prevention of oral mucositis. Oral Oncol. 2011, 47, 125–130. [Google Scholar] [CrossRef]
- Gautam, A.; Fernandes, D.; Vidyasagar, M.; Maiya, A.; Nigudgi, S. Effect of low level laser therapy on patient reported measures of oral mucositis and quality of life in head and neck cancer patients receiving chemoradiotherapy- a randomized controlled trial. Support. Care Cancer 2013, 21, 1421–1428. [Google Scholar] [CrossRef]
- Kelner, N.; de Castro, J. Low energy laser in prevention of oral mucositis in patients receiving radiotherapy and/or chemotherapy in Pernambuco Cancer Hospital. Appl. Cancer Res. 2007, 27, 182–187. [Google Scholar]
- Marin-Conde, F.; Castellanos-Cosano, L.; Pachón-Ibañez, J.; Serrera-Figallo, M.; Gutiérrez-Pérez, J.; Torres-Lagares, D. Photobiomodulation with low level laser therapy reduced oral mucositis caused by head and neck radiotherapy: A prospective randomized controlled trial. Int. J. Oral Maxillofac. Surg. 2019, 48, 917–923. [Google Scholar] [CrossRef]
- Vitale, M.; Modaffari, C.; Vitale, M.; Modaffari, C.; Decembrino, N.; Xiao Zhou, F.; Zecca, M.; Defabianis, P. Preliminary study in a new protocol for the treatment of oral mucositis in pediatric patients undergoing hematopoietic stem cell transplantation (HSCT) and chemotherapy (CT). Lasers Med. Sci. 2017, 32, 1423–1428. [Google Scholar] [CrossRef]
- Salvador, D.; Soave, D.; Tomoko Sacono, N.; de Castro, E.; Silva, G.; Silva, L.; Silva, T.; Valadares, M.; Mendonça, E.; Batista, A.; et al. Effect of photobiomodulation therapy on reducing the chemoinduced oral mucositis severity and on salivary levels of CXCL8/interleukin 8, nitrite and myeloperoxidase in patinets undergoing hematopoietic stem cell transplantation: A randomized clinical trial. Lasers Med. Sci. 2017, 32, 1801–1810. [Google Scholar] [CrossRef]
- Gobbo, M.; Verzegnassi, F.; Ronfani, L.; Zanon, D.; Melchionda, F.; Bagattoni, S.; Majorana, A.; Bardellini, E.; Mura, R.; Piras, A.; et al. Multicenter randomized double blind controlled trail to evaluate bthe efficacy of laser therapy for the treatrment of severe oral mucositis induced by chemotherapy in children:IaMPO RCT. Pediatr. Blood Cancer 2018, 65, e27098. [Google Scholar] [CrossRef] [Green Version]
- Fekrazad, R.; Arany, P. Special Dental Issue Photobiomodulation therapy in clinical dentistry. Photobiomodul. Photomed. Laser Surg. 2019, 37, 737–886. [Google Scholar] [CrossRef]
- Cronshaw, M.; Parker, S. Orthodontic Treatment Management and Photobiomodulation Position Statement. In Proceedings of the World Association of Photobiomodulation Therapy (WALT) Conference, Nice, France, 3–6 October 2018. [Google Scholar]
- Bjordal, J.; Bensadoun, R.; Tunèr, J.; Frigo, L.; Gjerde, K.; Lopes-Martins, R. A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy- induced oral mucositis. Support. Care Cancer 2011, 19, 1069–1077. [Google Scholar] [CrossRef]
- Elad, S.; Arany, P.; Bensadoun, R.; Epstein, J. Photobiomodulation therapy in the management of oral mucositis: Search for the optimal clinical treatment parameters. Support. Care Cancer 2018, 26, 3319–3321. [Google Scholar] [CrossRef]
- Kim, W.; Calderhead, R. Is light emitting diode phototherapy (LED-LLLT) really effective? Laser Ther. 2011, 20, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Tang, E.; Arany, P. Molecular pathway of near infrared laser phototoxicity involves ATF-4 orchestrated ER stress. Sci. Rep. 2015, 5, srep10581. [Google Scholar] [CrossRef] [PubMed]
- Sonis, S.; Hashemi, S.; Epstein, J.; Nair, R.; Raber-Durlacher, J. Could the robustness of low level laser therapy (photobiomodulation) impact its use in the management of mucositis in head and neck cancer patients. Oral Oncol. 2016, 54, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Esteves, T.; Brand, M. The reactions catalyzed by the mitochondrial uncoupling proteins UCP2 and UCP3. BioChim. Biophys. Acta 2005, 1709, 35–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busiello, R.; Savarese, S.; Lombardi, A. Mitochondrial un- coupling proteins and energy metabolism. Front. Physiol. 2015, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, A.; Carroll, J.; Hamblin, M. Biphasic dose response in low level laser therapy. Dose Response 2009, 7, 358–383. [Google Scholar] [CrossRef]
- Huang, Y.; Sharma, S.; Carroll, J.; Hamblin, M. Biphasic dose response in low level laser therapy- an update. Dose Response 2011, 9, 602–618. [Google Scholar] [CrossRef]
- Cronshaw, M.; Parker, S.; Arany, P. Feeling the heat: Evolutionary and microbial basis for the analgesic mechanisms of photobiomodulation therapy. Photobiomodul. Photomed. Laser Surg. 2019, 37, 517–526. [Google Scholar] [CrossRef]
- Ryu, J.; Yoo, S.; Kim, K.; Park, J.; Bang, S.; Lee, H.; Yang, T.; Cho, H.; Hwang, S.W. Laser modulation of heat and capsaicin receptor TRPV1 leads to thermal antinociception. J. Dent. Res. 2010, 89, 1455–1460. [Google Scholar] [CrossRef]
- Cassale, R.; Damiaiani, C.; Maestra, R.; Wells, C. Pain and electrophysiological parameters are improved by combined 830–1064 high intensity laser in symptomatic carpal tunnel syndrome versus transcutaneous electrical nerve stimulation. Eur. J. Phys. Med. 2013, 49, 205–211. [Google Scholar]
- Kate, R.; Rubatt, S.; Enwemeka, C.; Huddleston, W. Optimal laser phototherapy parameters for pain relief. Photomed. Laser Surg. 2018, 36, 354–362. [Google Scholar] [CrossRef]
- Simoes, A.; Eduardo, F.; Luiz, A.; Campos, L.; Henrique, P.; Sá, R.; Marques, M.; Eduardo, C. Laser phototherapy as topical prophylaxis against head and neck cancer radiotherapy induced oral mucositis: Comparison between low and high/low power lasers. Lasers Surg. Med. 2009, 41, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Steiner, R. Laser tissue interactions. In Laser & IPL Technology in Dermatology & Aesthetic Medicine; Springer: New York, NY, USA, 2011. [Google Scholar]
- Bashkatov, A.; Genina, E.; Kochubey, V.; Tuchin, V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 2005, 38, 2543–2555. [Google Scholar] [CrossRef]
- Bashkatov, A.; Genina, E.; Tuchin, V. Optical properties of skin, subcutaneous and muscle tissues: A review. J. Innov. Opt. Health Sci. 2011, 4, 9–38. [Google Scholar] [CrossRef]
- Jacques, S. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 58, 5007–5008. [Google Scholar] [CrossRef]
- Lihong, W. Scattering and its biological origins. Ch. 1.5 pp 8. In Biomedical Optics; Wiley: Hoboken, NJ, USA, 2007; ISBN 978-0-471-74304-0. [Google Scholar]
- Hode, T.; Duncan, D.; Kirkpatrick, S.; Jenjins, P.; Hode, L. The importance of coherence in phototherapy. Proc. SPIE 2009, 7165, 716507. [Google Scholar] [CrossRef]
- Selting, W. Laser operating parameters for hard and soft tissue surgical and PBM parameters. Ch. 4. In Lasers in Dentistry-Current Concepts; Coluzzi, D., Parker, S., Eds.; Springer Nature: Cham, Switzerland, 2017; pp. 59–85. ISBN 978-3-319-51943-2. [Google Scholar] [CrossRef]
- Amaroli, A.; Ravera, S.; Parker, S.; Panfoli, I.; Benedicenti, A.; Benedicenti, S. An 808 nm diode laser with a flat top handpiece positively photobiomodulates mitochondria activity. Photomed. Laser Surg. 2016, 34, 564–571. [Google Scholar] [CrossRef]
Author [ref] | Type of Study Pre- or Post-Treatment | Test T/Control C Group Treatment Tx Delivered (χ = Unknown Value) | Light Therapy Parameters (χ = Unknown Value) | Outcome VAS/S (sig.) (χ = Un-Known Value) | Comments RT = Radiotherapy CT = Chemotherapy |
---|---|---|---|---|---|
Barasch, 1995 [25] | RCT DB Post-treatment | 20 Patients. Split mouth. Tx delivered 1 x day x 5 days. 5 sites @ χ points. | λ632.8, CW, near-contact, 25 mW, fluence 1.0 J/cm2, Irrad. 0.04 W/cm2, total energy 28 J, Beam dia 10 mm, 0.8 cm2, 40 s | 1/2 | RT + CT Area treated 28 cm2 |
Cowen, 1997 [26] | RCT DB Pre-treatment | 30 Patients. T—15, C—15. Tx delivered 1 x day x 5 days. 5 sites @15 points. | λ632.8, CW, Spot 1 cm, 60 mW, fluence 1.5 J/cm2, Irrad 0.06 W/cm2, total energy 45 J, Beam dia 1.2 mm, 1.0 cm2, 10 s/point | 1/3 | RT + CT Area treated 75 cm2 |
Bensadoun, 1999 [27] | RCT DB Pre-treatment | 30 Patients. T—15, C—15. Tx delivered 1 x day x 35 days. χ sites @9 points. | λ632.8, CW, Spot 1 cm, 60 mW, fluence 2 J/cm2, Irrad 0.06 W/cm2, total energy 17.8 J, Beam dia 1.2 mm, 1.0 cm2 33 s/point | 1/3 | RT Area treated 9 cm2 |
Antunes, 2007 [28] | RCT B Pre-treatment | 38 Patients. T—19, C—19. Tx delivered 1 x day x χ days. 9 sites @135 points. | λ660, CW, Spot 1 cm, 46.7 mW, fluence 8.9 J/cm2, Irrad 0.0042 W/cm2, total energy 33.75 J, Beam dia 1.6mm, 0.028 cm2, 16.7 s/point | 1/3 | CT |
Arun, 2006 [29] | RCT DB Pre-treatment | 50 Patients. T—25, C—25. Tx delivered 1 x day x 5 days. 3 sites @ χ points. | λ632.8, CW, 10 mW, fluence 1.8 J/cm2, Irrad. χ W/cm2, total energy 5.4 J, Beam dia χ, χ cm2, 180 s | 2/3 | RT |
Schubert, 2007 [30] | RCT DB Pre-treatment | 70 Patients. T(i)—23, T(ii) 23 C—24. Tx delivered 1 x day x 10 days. 6 sites @ χ points. | T(i) λ660, CW, Spot 1 cm, 40 mW, fluence 71 J/cm2, Irrad. 0.04 W/cm2, total energy χ J, Beam dia 1.6 mm, 0.028 cm2, 50 s T(ii) λ780, CW, Spot 1 cm, near-contact, 60 mW, fluence 107.1 J/cm2, Irrad. 0.06 W/cm2, total energy 28 J, Beam dia 1.6 mm, 0.028 cm2, 33 s | 2/2 | CT CT + RT 660 > 780 |
Abramoff, 2008 [31] | RCT B Pre-treatment | 14 Patients. T—7, C—7. Tx delivered 0.5 x day x 44 days. 7 sites @ 126 points. | λ685, CW, in contact, 35 mW, fluence 72 J/cm2, Irrad 11.67 W/cm2, total energy χ J, Beam dia 0.6 mm, 0.003 cm2, 54 s | 1/3 | CT |
Kuhn, 2009 [32] | RCT DB Post-treatment | 21 Patients. T—9, C—12. Tx delivered 1 x day x 5 days. χ sites @ χ points. | λ830, 100 mW, fluence 4 J/cm2, Irrad. χ W/cm2, total energy χ J, Beam dia χ, χ cm2, χ s | χ/1 | CT |
Khouri, 2009 [33] | RCT Pre-treatment | 22 Patients. T—12, C—10 Tx delivered χ x day x χ days. χ sites @ χ points. | λ660 + 780, CW, in contact, 25 mW, fluence 6.9 J/cm2, Irrad. 0.69 W/cm2, total energy 5.4 J, Beam dia 2 mm, 0.036 cm2, 10 s | χ/3 | CT CT + RT |
Silva, 2011 [34] | RCT B Pre-treatment | 42 Patients. T—21, C—21. Tx delivered 1 x day x 9 days. 10 sites @ 80 points. | λ660, CW, in contact, 40 mW, fluence 11.1 J/cm2, Irrad 1 W/cm2, total energy 12.8 J, Beam dia 2 mm, 0.036 cm2, 10 s | χ/3 | CT CT + RT |
Lima, 2012 [35] | RCT DB Pre-treatment | 75 Patients. T—37, C—38. Tx delivered 1 x day x χ days. 9 sites @ χ points. | λ660, CW, in contact, 10 mW, fluence 2.8 J/cm2, Irrad. 0.25 W/cm2, total energy χ J, Beam dia χ, 0.036 cm2, 10 s | 0/2 | RT |
Oton-Leite, 2012 [36] | RCT Pre-treatment | 60 Patients. T—30, C—30. Tx delivered 1 x day x χ days. 11 sites @ 55 points. | λ685, CW, in contact, 35 mW, fluence 2 J/cm2, Irrad χ W/cm2, total energy χ J, Beam dia χ mm, χ cm2, χ s | χ/3 | RT |
Hodgson, 2012 [37] | RCT DB Post-treatment | 80 Patients. T—40, C—40. Tx delivered 1 x day x 14 days. 3 sites @ χ points. | λ670, CW, in contact, χ mW, fluence 4 J/cm2, Irrad. 0.05 W/cm2, total energy χ J, Beam dia χ, χ cm2, 80 s | 1/0 | CT LED extraoral |
Carvalho, 2011 [38] | RCT Pre-treatment | 70 Patients. T(i)—35, T(ii) 35 C—0. Tx delivered 1 x day x χ days. 7 sites @ χ points. | T(i) λ660, CW, in contact, 5 mW, fluence 1.4 J/cm2, Irrad. 0.125 W/cm2, total energy χ J, Beam dia 2 mm, 0.036 cm2, 10 s T(ii) λ660, CW, in contact, 15 mW, fluence 4.2 J/cm2, Irrad. 0.375 W/cm2, total energy χ J, Beam dia 2 mm, 0.036 cm2, 10 s | 1/1 | RT RT + CT |
Arbabi-Kalati, 2012 [39] | RCT DB Pre-treatment | 48 Patients. T—24, C—24. Tx delivered χ x day x χ days. χ sites @10 points. | λ630, χ mode, χ contact, 30 mW, fluence 5 J/cm2, Irrad χ W/cm2, total energy χ J, Beam dia χ mm, χ cm2, χ s | 3/2 | CT |
Antunes, 2013 [40] | RCT DB Pre-treatment | 94 Patients. T—47, C—47. Tx delivered 1 x day x 5 days. 8 sites @ 72 points. | λ660, CW, in contact, 100 mW, fluence 4.2 J/cm2, Irrad 0.417 W/cm2, total energy 72 J, Beam dia 5 mm, 0.24 cm2, 10 s | 2/3 | CT + RT |
Oton-Leite, 2013 [41] | RCT DB Pre-treatment | 60 Patients. T—30, C—30. Tx delivered 1 x day x 30 days. 11 sites @ 54 points. | λ685, CW, 2 mm distance, 35 mW, fluence 23.9 J/cm2, Irrad 1.25 W/cm2, total energy 46.4 J, Beam dia 2 mm, 0.036 cm2, 25 s | 2/2 | RT |
Oton-Leite, 2015 [42] | RCT DB Pre-treatment | 30 Patients. T—15, C—15. Tx delivered 3 x day x 21 days. 5 sites @ 43 points. | λ660, CW, in contact, 25 mW, fluence 6.9 J/cm2, Irrad 0.625 W/cm2, total energy 10.75 J, Beam dia 2 mm, 0.036 cm2, 10 s | χ/3 | RT + CT |
Ferreira, 2016 [43] | RCT DB Pre-treatment | 35 Patients. T—17, C—18. Tx delivered 1 x day x 5 days. 9 sites @ 27 points. | λ650, CW, in contact, 100 mW, fluence 3.57 J/cm2, Irrad 1.46 W/cm2, total energy 54 J, Beam dia 2 mm, 0.028 cm2, 20 s | 1/2 | CT |
Amadori, 2016 [44] | RCT DB Post-treatment | 123 Patients. T—62, C—61. Tx delivered 1 x day x 4 days. χ sites @ χ points. | λ830, 150 mW, χ mode, χ contact, 100 mW, fluence 4.5 J/cm2, Irrad 0.15 W/cm2, total energy χ J, Beam dia χ mm, 1 cm2, 30 s | 1/0 | CT |
Elad, 2011 [45] | RCT DB Pre-treatment | 19 Patients. T—10, C—9. Tx delivered 1 x day x 25 days. χ sites @ χ points. | λ650, χ mode, χ contact, χ mW, fluence χ J/cm2, Irrad 0.2 W/cm2, total energy χ J, Beam dia χ mm, χ cm2, 68 s | 1/2 | CT CT + RT LED |
Gautam, 2013 [46] | RCT DB Pre-treatment | 220 Patients. T—110, C—110. Tx delivered 1 x day x 32 days. 6 sites @ χ points. | λ632.8, CW, Spot 1 cm, 24 mW, fluence 3.5 J/cm2, Irrad 0.024 W/cm2, total energy 38 J, Beam dia 0.6 mm, 1 cm2, 125 s | 3/3 | CT+RT |
Gautam, 2015 [3] | RCT DB Pre-treatment | 46 Patients. T—22, C—24. Tx delivered 1 x day x 5 days. 12 sites @ χ points. | λ632.8, CW, Spot 1 cm, 24 mW, fluence 3 J/cm2, Irrad 0.024 W/cm2, total energy 36 J, Beam dia 0.6 mm, 1 cm2, 125 s | 2/3 | RT |
Kelner, 2007 [47] | RCT B Pre-treatment | 49 Patients. T—24, C—25. Tx delivered χ x day x χ days. χ sites @ χ points. | λ685, CW, in contact, 35 mW, fluence 1.1 J/cm2, Irrad χ W/cm2, total energy χ J, Beam dia χ mm, χ cm2, 32 s | χ/1 | RT RT + CT |
Marin-Conde, 2019 [48] | RCT DB Pre-treatment | 41 Patients. T—26, C—15. Tx delivered χ x day x χ days. χ sites @ 72 points. | λ940, CW, in contact, 500 mW, fluence 83.3 J/cm2, Irrad 13.88 W/cm2, total energy 216 J, Beam dia 2 mm, 0.036 cm2, 6 s | χ/3 | RT + CT |
Vitale, 2017 [49] | RCT B Post-treatment | 16 Patients. T—8, C—8 Tx delivered 1 x day x χ days. χ sites @ χ points. | λ970, CW, scanning defocussed, 1600 mW, fluence χ J/cm2, Irrad 1.6 W/cm2, total energy χ J, Beam dia 2 mm, 1 cm2, 240 s | 1/2 | CT Full mouth |
Salvador, 2017 [50] | RCT B Pre-treatment | 51 Patients. T—27, C—24. Tx delivered 1 x day x χ days. χ sites @ 80 points. | λ660, CW, in contact, 40 mW, fluence 4 J/cm2, Irrad 1 W/cm2, total energy 12.8 J, Beam dia 2 mm, 0.04 cm2, 4 s | ?/3 | CT |
Gobbo, 2018 [51] | RCT BPost-treatment | 101 Patients. T—51, C—50. Tx delivered 1 x day x 4 days. 9 sites @ χ points. | λ660 + 970, gated 50% duty cycle, scanning defocussed, 320 mW, fluence 36.8 J/cm2, Irrad 0.32 W/cm2, total energy 144 J, Beam dia χ mm, 1 cm2, 450 s | 1/3 | CT/RT Full mouth |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cronshaw, M.; Parker, S.; Anagnostaki, E.; Mylona, V.; Lynch, E.; Grootveld, M. Photobiomodulation and Oral Mucositis: A Systematic Review. Dent. J. 2020, 8, 87. https://doi.org/10.3390/dj8030087
Cronshaw M, Parker S, Anagnostaki E, Mylona V, Lynch E, Grootveld M. Photobiomodulation and Oral Mucositis: A Systematic Review. Dentistry Journal. 2020; 8(3):87. https://doi.org/10.3390/dj8030087
Chicago/Turabian StyleCronshaw, Mark, Steven Parker, Eugenia Anagnostaki, Valina Mylona, Edward Lynch, and Martin Grootveld. 2020. "Photobiomodulation and Oral Mucositis: A Systematic Review" Dentistry Journal 8, no. 3: 87. https://doi.org/10.3390/dj8030087
APA StyleCronshaw, M., Parker, S., Anagnostaki, E., Mylona, V., Lynch, E., & Grootveld, M. (2020). Photobiomodulation and Oral Mucositis: A Systematic Review. Dentistry Journal, 8(3), 87. https://doi.org/10.3390/dj8030087